求f(t)=te^(-at)的拉普拉斯变换 求具体过程!
之前的两位兄台也不知道咋想的,我反复验算过,那一步积分取极限就是0-0,最后根本没有1,希望后来的看官能看清楚小菜G的建站之路2023-05-26 08:17:537
拉普拉斯变换性质
拉普拉斯变换性质有:线性性质、微分性质、积分性质、位移性质、延迟性质、初值定理与终值定理。1、拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式X(s)=(式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。2、拉普拉斯变换变换和傅里叶变换都是用于LTI连续时间系统分析的数学工具。拉普拉斯变换可以看作是傅里叶变换的一种推广,通过这一推广首先将作为分析对象的信号的范畴大大拓展了,拉氏变换方法是围绕简化线性微分方程求解而形成的。发展至今,这种方法的应用领域已经拓展到通信与控制工程的诸多方面。应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。hi投2023-05-26 08:17:521
常见函数拉普拉斯变换
拌三丝2023-05-26 08:17:521
拉普拉斯变换
图像的轮廓往往是像素突变的。要么中间的亮,两边的暗,要么中间暗,两边亮。这种模板就能让这个特性加剧,也就是说让大的值更大,即锐化。举个例子,如果图像很平缓,和拉普拉斯核做卷积之后,得到的值为0。这时候 原图 减去 拉普拉斯变换后的图还是 等于 原图 ,但是如果图像很陡峭,因为拉普拉斯变换之后的图像的值必定是大于零的,那么 原图减去拉普拉斯变换后的图必定会小于原图 。当值变小了之后,相当于给陡峭的地方画上了 粗粗的黑线 。这样就把边缘描绘出来了。因此拉普拉斯变换是一种高通滤波。 https://blog.csdn.net/zxc024000/article/details/51252073 https://blog.csdn.net/majinlei121/article/details/46831769 http://www.cnblogs.com/xfzhang/archive/2011/01/19/1939020.htmlCarieVinne 2023-05-26 08:17:521
拉普拉斯变换
L{A}=A/s ,A为常数;墨然殇2023-05-26 08:17:522
拉普拉斯变换的性质
拉普拉斯变换的性质有:线性性质、微分性质、积分性质、位移性质、延迟性质、初值定理与终值定理。拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有参数实数t(t≥0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。有些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。北营2023-05-26 08:17:521
u(t+1)的拉普拉斯变换是什么
(t-1)u(t-1)+3u(t-1),这两部分都有相应的性质可以用,(t-1)u(t-1)是t*u(t)的拉式变换乘上一个因子,t*u(t)是u(t)的拉氏变换的求导。可以用定义直接积分。也可以查表:L[u(t)]=1/s;对于L[u(t-1)],用时移定理,L[u(t-1)]=exp(-s)*1/s,因此,L[u(t)-u(t-1)]=1/s-exp(-s)*1/s。对输入求拉普拉斯变换:F(s)=1+e^(-s)对输出求拉普拉斯变换:Y(s)=[1-e^(-s)]/s所以H(s)=Y(s)/F(s)是h(t)的拉式变换,对H(s)求拉式反变换就是h(t)如果f(t)=δ(t) -δ( t− 1)的话,h(t)=u(t),波形就是t≥0时的一条直线。扩展资料:两个相异的可积函数,只有在其差的勒贝格测度为零时,才会有相同的拉普拉斯变换。因此以转换的角度而言,存在其反转换。包括可积分函数在内,拉普拉斯变换是单射映射,将一个函数空间映射到其他的函数空间。典型的函数空间包括有界连续函数、函数空间L(0, ∞)、或是更广义,在 (0, ∞) 区间内的缓增广义函数(函数的最坏情形是多项式增长)。在实务上一般会配合查表,将函数的拉普拉斯变换分换为许多已知函数的拉普拉斯变换,再利用观察的方式产生其拉普拉斯逆变换。在微分方程中会用到拉普拉斯逆变换,会比用傅里叶转换的处理方式要简单。参考资料来源:百度百科-拉普拉斯变换法凡尘2023-05-26 08:17:521
拉普拉斯变换的性质
假定L[f(x)]=F(s),L[g(x)]=G(s),则(1)线性 af(x)+bg(x)的拉普拉斯变换是aF(s)+bG(s)(a,b是常数);(2)卷积 f(x)*g(x)的拉普拉斯变换是F(s)·G(s);(3)微分 f′(x)的拉普拉斯变换是sF(s)-f(0);(4)积分 ∫x0f(x)dt的拉普拉斯变换是 (5)位移 eatf(x)的拉普拉斯变换是F(s-a);(6)时移(延迟) f(x-x0)的拉普拉斯变换是 [例1]求方程y″+2y′-3y=e-t满足初始条件y|t=0=0,y′|t=0=1的解。解:设L[y(t)]=Y(s),对方程的两边取拉氏变换,并考虑到初始条件,则得地球物理数据处理基础这是含未知量Y(s)的代数方程,整理后解出Y(s),即地球物理数据处理基础这便是所求函数的拉氏变换,取它的逆变换便可以得出所求函数y(t)。[例2]求解 满足初始条件 解:假定L[y(t)]=Y(s),L[x(t)]=X(s),对方程两边取拉氏变换,并考虑到初始条件,则得地球物理数据处理基础整理化简,得地球物理数据处理基础解这个方程组,即得地球物理数据处理基础根据逆变换,我们可得地球物理数据处理基础这便是方程组的解。gitcloud2023-05-26 08:17:521
u(t+2)的拉普拉斯变换怎么算
u(t+2)的拉普拉斯变换的方法L[u(t)]=2/s;对于L[u(t-2)],用时移定理,L[u(t-1)]=exp(-s)*2/s,因此,L[u(t)-u(t-1)]=2/s-exp(-s)*2/s肖振2023-05-26 08:17:521
求函数sinωt的拉普拉斯变换,其中ω为实数
1拆成两项 2分母凑完全平方 3利用求导性质 4拆成两项,后一项利用延时性质 自己算一下,我只是给个思路。北有云溪2023-05-26 08:17:5210
用拉普拉斯变换怎样求微分方程
根据性质L(f"(x)) = sF(s) - f(0)推广:L(f""(x)) = sF"(s) - f"(0) = s ( sF(s) - f(0) ) - f"(0) = s^2F(s) - sf(0) - f"(0)可继续推导出f(x)的n阶导的拉变换代入初始条件后可得f(x)的拉变换,再进行拉式反变换即可得到原函数f(x)北有云溪2023-05-26 08:17:522
单边拉普拉斯变换
不是的。1.单边拉普拉斯变换只关心t>=0处的值,两函数负半轴值不一样无法在单边拉普拉斯变换中体现出来2.不影响积分值的不同也不会体现在拉普拉斯变换中,比如说x1(t)=sint,x2(t)=sint(t≠2)100(t=2)这两个函数的拉普拉斯变换相同康康map2023-05-26 08:17:521
拉普拉斯变换和拉普拉斯定理的区别
拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的拉普拉斯变换、拉普拉斯定理和拉普拉斯方程,在科学技术的各个领域有着广泛的应用。拉普拉斯,法国数学家、天文学家,法国科学院院士。是天体力学的主要奠基人、天体演化学的创立者之一,他还是分析概率论的创始人,因此可以说他是应用数学的先驱。1773年解决了一个当时著名的难题:解释木星轨道为什么在不断地收缩,而同时土星的轨道又在不断地膨胀。拉普拉斯用数学方法证明行星平均运动的不变性,即行星的轨道大小只有周期性变化,并证明为偏心率和倾角的3次幂。这就是著名的拉普拉斯定理。1784~1785年,他求得天体对其外任一质点的引力分量可以用一个势函数来表示,这个势函数满足一个偏微分方程,即著名的拉普拉斯方程。1786年证明行星轨道的偏心率和倾角总保持很小和恒定,能自动调整,即摄动效应是守恒和周期性的,不会积累也不会消解。拉普拉斯注意到木星的三个主要卫星的平均运动Z1,Z2,Z3服从下列关系式:Z1-3×Z2+2×Z3=0。同样,土星的四个卫星的平均运动Y1,Y2,Y3,Y4也具有类似的关系:5×Y1-10×Y2+Y3+4×Y4=0。后人称这些卫星之间存在可公度性,由此演变出时间之窗的概念。tt白2023-05-26 08:17:521
拉普拉斯变换的问题
u(t)是拉普拉斯变换的条件(t>0-)cos(2t)是s/(s^2+2^2)exp(-t)将原拉普拉斯变换中的s用s+1代替结果为(s+1)/[(s+1)^2+4]此后故乡只2023-05-26 08:17:521
周期信号存在拉普拉斯变换吗
根据拉普拉斯变换的定义,从负无穷到正无穷对周期信号进行积分所得的结果不收敛,所以周期信号应该没有拉普拉斯变换,如果你指的周期信号是从0开始的,那应该有拉普拉斯变换无尘剑 2023-05-26 08:17:521
拉普拉斯变换
F(s)=1/[s^2(s^2-1)]=(1/2)1/(s-1)-(1/2)1/(s+1)-1/(s^2),所以f(s)=(1/2)exp(t)-(1/2)exp(-t)-tL(sint)=1/(s^2+1),所以L(t*sint)=-[1/(s^2+1)]"=2s/(s^2+1)^2,所以L(t*sint*exp(2t))=2(s-2)/[(s-2)^2+1]^2NerveM 2023-05-26 08:17:522
关于拉普拉斯变换
u(t)------1/su(t-2)-------e^(-2s)/su(3t-2)-------e^(-2/3s)/stu(t)----1/s^2(3t-2)u(3t-2)----3*e^(-2s/3)/(s^2)陶小凡2023-05-26 08:17:521
有什么简单方法求拉普拉斯变换?
最近在预习复变函数,看到拉普拉斯变换了,应该说是比较熟悉的, 初中看高数时在常微分方程里就介绍过用拉氏变换解常系数线性微分方程的方法, 我印象中那时我看到这种方法很高兴,因为我很容易地推导出了附录里两页几乎全部的拉氏变换公式(那时我还不能推导出附录里积分表的所有公式) 可现在我重新看的时候,发现我找不回当时推导拉氏变换公式的那种简单方法了,只会用书上那些要用到我初中时还不会的知识的麻烦方法。 比如t^n的变换,按现在方法是要用到欧拉积分里的伽马函数的知识,可我是直到高中才推导出伽马函数的表达式的,(当然初中看的那本简单的高数里是用我那时知道的阶乘表示的),我不可能用这种方法推导的。 还有现在使用的方法大量使用复数各种运算,可当时我连欧拉公式都不知道。。我感到很疑惑,虽然当时可能不是用的严格的方法做的,但结果是的确对的,ardim2023-05-26 08:17:521
拉普拉斯变换不适用于含二极管的动态电路
拉普拉斯变换不适用于含二极管的动态电路:拉普拉斯变换是一种重要的数学工具,用于将一个时间域的函数转换为一个复频率域的函数。它在工程、物理学、控制论等领域中都有广泛的应用,被认为是微积分学中最重要的工具之一。拉普拉斯变换的意义在于它可以将一个复杂的微分方程转化为一个简单的代数方程,从而便于解决。在实际应用中,很多物理系统都可以用微分方程来描述,但是微分方程的解析解往往难以求得,而拉普拉斯变换则可以将微分方程转换为一个代数方程,从而可以更方便地求解。拉普拉斯变换的定义式为:$$F(s) = int_{0}^{infty} f(t) e^{-st} dt$$,其中,$f(t)$ 是时间域函数,$F(s)$ 是拉普拉斯变换后的复频率域函数,$s$ 是复变量。拉普拉斯变换的逆变换式为:$$f(t) = frac{1}{2pi i}int_{gamma - iinfty}^{gamma + iinfty} F(s) e^{st} ds$$,其中,$gamma$ 是一个实数,$gamma$ 大于所有极点的实部,$gamma$ 从左侧开始逼近所有极点的实部,即 $gamma ightarrow -infty$。拉普拉斯变换的一些重要性质包括线性性、移位性、尺度性和微分性等。这些性质使得拉普拉斯变换在实际应用中非常方便。例如,在控制系统中,拉普拉斯变换可以用来分析系统的稳定性、性能等。在信号处理中,拉普拉斯变换可以用来分析信号的频谱、滤波等。在电路分析中,拉普拉斯变换可以用来分析电路的稳态响应、瞬态响应等。总之,拉普拉斯变换是一种非常有用的数学工具,它在解决微分方程、分析系统性质、信号处理、电路分析等方面都有广泛的应用。它的基本思想是将一个时间域函数转换为一个复频率域函数,从而便于分析和求解。FinCloud2023-05-26 08:17:521
拉普拉斯变换性质
拉斯变换的重要性质包括:尺度变换、时移、频移、微分、积分、卷积、初值定理与终值定理。它是一个线性变换,意义为可将一个有引数实数t(t≥0)的函数转换为一个引数为复数s的函数。利用拉氏变换变换求解数学模型时,可以当作求解一个线性方程,换而言之拉氏变换不仅可用来将简单的时域信号转换为复数域信号,还可以用来求解控制系统微分方程。拉氏变换是将时域信号变为复数域信号,反之,拉氏反变换是将复数域信号变为时域信号。意义和作用:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。无尘剑 2023-05-26 08:17:511
拉普拉斯变换
设函数f(t)当t≥0时有定义,而且积分∫+∞0f(t)e-stdt(s是一个复数变量),在s的某一域内收敛,则由此积分所确定的函数可以写为地球物理数据处理基础则我们称上式为函数f(t)的拉普拉斯变换(简称拉氏变换)。记为地球物理数据处理基础F(s)称为f(t)的拉氏变换。我们可以看出,f(t)(t≥0)的拉氏变换,实际上就是φ(t)u(t)e-βt的傅氏变换。豆豆staR2023-05-26 08:17:511
拉普拉斯变换
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏转换。拉氏变换是一个线性变换,可将一个有引数实数 t( t≥ 0)的函数转换为一个引数为复数 s的函数。拉普拉斯变换(3) 有些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。瑞瑞爱吃桃2023-05-26 08:17:511
拉普拉斯变换
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。豆豆staR2023-05-26 08:17:511
拉普拉斯变换具体详解
拉普拉斯变换 拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。FinCloud2023-05-26 08:17:511
拉普拉斯变换有哪些性质?
拉普拉斯变换具有下列性质:1、线性性质2、微分性质3、积分性质4、位移性质5、延迟性质北营2023-05-26 08:17:512
傅立叶变换和拉普拉斯变换的区别及应用。
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。fourier变换是将连续的时间域信号转变到频率域。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。拓展资料:一般情况下,若“傅里叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数表示成复指数函数的积分形式:上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数表示为频率域的函数的积分。反过来,其正变换恰好是将频率域的函数。表示为时间域的函数的积分形式。一般可称函数为原函数,而称函数为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。当为奇函数(或偶函数)时,其余弦(或正弦)分量为零,而可以称这时的变换为余弦变换(或正弦变换)。铁血嘟嘟2023-05-26 08:17:491
傅里叶变换和拉普拉斯变换的意义
傅里叶变换和拉普拉斯变换都是数学中的重要工具,用于分析和处理信号和系统。傅里叶变换可以将一个时间域上的信号分解成不同频率的正弦和余弦波,从而更好地理解信号在频域上的特性。它在信号处理、图像处理、通信系统等领域中有着广泛的应用。而拉普拉斯变换则是一种更为通用的变换方法,它可以将一个时间域上的函数转化成一个复平面上的函数,从而更好地描述函数在复平面上的性质。它在控制理论、电路分析、微积分等领域中有着广泛应用。总之,傅里叶变换和拉普拉斯变换都是数学中非常重要的工具,它们为我们研究和理解信号与系统提供了强大的数学工具。Jm-R2023-05-26 08:17:491
傅里叶变换 拉普拉斯变换 Z变换在工程应用意义,求举出实例,越详细越好
这个你为什么不去问问你的高数老师???豆豆staR2023-05-26 08:17:492
傅里叶变换与拉普拉斯变换的条件是什么?
1、傅里叶变换的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。2、拉普拉斯变换的条件:t>=0函数值不为零的连续时间函数x(t)。扩展资料:1、傅里叶变换的应用:(1)傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;(2)傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;(3)正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。2、拉普拉斯变换的应用:在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。参考资料来源:百度百科-拉普拉斯变换参考资料来源:百度百科-傅里叶变换康康map2023-05-26 08:17:471
拉普拉斯变换与傅里叶变换的区别是什么?
1、傅里叶变换的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。2、拉普拉斯变换的条件:t>=0函数值不为零的连续时间函数x(t)。扩展资料:1、傅里叶变换的应用:(1)傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;(2)傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;(3)正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。2、拉普拉斯变换的应用:在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。参考资料来源:百度百科-拉普拉斯变换参考资料来源:百度百科-傅里叶变换大鱼炖火锅2023-05-25 22:21:091
阐述信号与系统中三大变换(即傅里叶变换、拉普拉斯变换、Z变换)的关系! 请高手解答 !!
先说一下三个变换的定义,写一下公式(包括逆变换)然后说关系:傅立叶变换是最基本得变换,由傅里叶级数推导出。傅立叶级数只适用于周期信号,把非周期信号看成周期T趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。拉普拉斯变换是傅立叶变换的推广,傅立叶变换不适用于指数级增长的函数,而拉氏变换相当于是带有一个指数收敛因子的傅立叶变换,把频域推广到复频域,能分析的信号更广。然而缺点是从拉普拉斯变换的式子中,只能看到变量s,没有频率f的概念,要看幅频响应和相频响应,还得令s=j2πfZ变换的本质是离散时间傅里叶变换(DTFT),如果说拉普拉斯变换专门分析模拟信号,那Z变换就是专门分析数字信号,Z变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。Z变换看系统频率响应,就是令Z在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。由于傅里叶变换的特性“时域离散,则频域周期”,因此离散信号的频谱必定是周期的,就是以这个单位圆为周期,Z在单位圆上不停的绕圈,就是周期重复。单位圆0°位置是实际频率0HZ,单位圆180度的实际频率就是采样频率的一般,fs/2.*****************************************************考试题目看分数多少,压轴大题的话,就多写点,自己再展开细化一下,我上面也只是点到为止,但内容基本上就是这些。小白2023-05-25 22:21:042
试述信号处理中的几大变换(傅立叶变换、拉普拉斯变换、z变换和希尔伯特变换)的关系及其应用
傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。拉普拉斯变换定义式:设有一时间函数f(t)[0,∞]或0≤t≤∞单边函数其中,S=σ+jω是复参变量,称为复频率。左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcalleft=int_^inftyf(t),e^,dt其中积分下标取0-而不是0或0+,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。希尔伯特变换一物理可实现系统其传递函数为一解析函数,而其冲激响应必为因果函数(即时,冲击响应为0)。也就是说时域的因果性与频域得解析性是等效的。无尘剑 2023-05-25 22:21:041
拉普拉斯变换和傅立叶变换的区别
傅立叶变换是拉普拉斯变换的一种特例,在拉普拉斯变换中,只要令Re[s]=1,就得到傅立叶变换。当然,两者可以转换的前提是信号的拉普拉斯变换的收敛域要包含单位圆(即包含圆周上的点)。 很多信号都不一定有傅立叶变换,因为狄力克雷条件比较苛刻,而绝大多数信号都有拉普拉斯变换。故对于连续信号,拉普拉斯变换比傅立叶变换用得更广泛。傅立叶变换 中文译名 Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 概要介绍 * 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C. C. Lin & L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc., New York, 1974)。 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; * 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 基本性质 线性性质 两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f left( x ight )和g left(x ight)的傅里叶变换mathcal[f]和mathcal[g]都存在,α 和 β 为任意常系数,则mathcal[alpha f+eta g]=alphamathcal[f]+etamathcal[g];傅里叶变换算符mathcal可经归一化成为么正算符; 频移性质 若函数f left( x ight )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i omega_ x}也存在傅里叶变换,且有mathcal[f(x)e^{i omega_ x}]=F(omega + omega _0 ) 。式中花体mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位sqrt; 微分关系 若函数f left( x ight )当|x| ightarrowinfty时的极限为0,而其导函数f"(x)的傅里叶变换存在,则有mathcal[f"(x)]=-i omega mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(pminfty)=f"(pminfty)=ldots=f^{(k-1)}(pminfty)=0,且mathcal[f^{(k)}(x)]存在,则mathcal[f^{(k)}(x)]=(-i omega)^ mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。 卷积特性 若函数f left( x ight )及g left( x ight )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_{-infty}^{+infty} f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcal[f*g]=mathcal[f]cdotmathcal[g] 。卷积性质的逆形式为mathcal^[F(omega)G(omega)]=mathcal^[F(omega)]*mathcal^[G(omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。 Parseval定理 若函数f left( x ight )可积且平方可积,则int_{-infty}^{+infty} f^2 (x)dx = frac{2pi}int_{-infty}^{+infty} |F(omega)|^domega 。其中 F(ω) 是 f(x) 的傅里叶变换。 傅里叶变换的不同变种 连续傅里叶变换 主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = mathcal^[F(omega)] = frac{sqrt{2pi}} intlimits_{-infty}^infty F(omega) e^{iomega t},domega. 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。 当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)*成立. 傅里叶级数 主条目:傅里叶级数 连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的: f(x) = sum_{n=-infty}^{infty} F_n ,e^ , 其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成: f(x) = fraca_0 + sum_{n=1}^inftyleft[a_ncos(nx)+b_nsin(nx) ight], 其中an和bn是实频率分量的振幅。 离散时间傅里叶变换 主条目:离散时间傅里叶变换 离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。 离散傅里叶变换 主条目:离散傅里叶变换 为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式: x_n = frac1 sum_{k=0}^ X_k e^{ifrac{2pi} kn} qquad n = 0,dots,N-1 其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为mathcal(n log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。 在阿贝尔群上的统一描述 以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。 时频分析变换 主条目:时频分析变换 小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。 傅里叶变换家族 下表列出了傅里叶变换家族的成员. 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性.反之连续则意味着在对应域的信号的非周期性. 变换 时间 频率 连续傅里叶变换 连续, 非周期性 连续, 非周期性 傅里叶级数 连续, 周期性 离散, 非周期性 离散时间傅里叶变换 离散, 非周期性 连续, 周期性 离散傅里叶变换 离散, 周期性 离散, 周期性 傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 拉普拉斯变换 拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。ardim2023-05-25 22:21:041
拉普拉斯变换的卷积定理
卷积的拉普拉斯变换等于各自拉普拉斯变换的乘积.拉普拉斯乘积的逆变换等于卷积.NerveM 2023-05-23 19:24:461
拉普拉斯变换、卷积定理
卷积的拉普拉斯变换等于各自拉普拉斯变换的乘积.拉普拉斯乘积的逆变换等于卷积.求采纳为满意回答。拌三丝2023-05-23 19:24:461
傅立叶变换和拉普拉斯变换的区别及应用。
fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT.九万里风9 2023-05-23 19:24:315
傅里叶变换、拉普拉斯变换、Z变换的区别于联系
在复习傅里叶变换、拉普拉斯变换、Z变换和卷积等知识时,我发现网上有非常非常多的大牛。他们用通俗易懂的语言来讲解这些复杂的知识,使人豁然开朗。 如果现在还无法理解,为什么要对信号进行傅里叶变换,请看这篇博客,保证秒懂: 傅里叶分析之掐死教程 这篇文章可以帮助回忆周期信号的傅里叶级数及其性质: 傅里叶级数及其性质 这篇文章可以帮助回忆非周期信号的傅里叶变换及其性质(非周期信号也可理解为周期无穷大的周期信号) : 傅里叶变换及其性质 这篇博客记录了常用信号的傅里叶变换对,文章不仅描写了傅里叶变换的数学表达式,还画出了对应的图形,非常方便理解: 常用傅里叶变换对 这篇文章将常用的傅里叶变换对列成表,方便查询: 常用傅里叶变换对表 这边文章可以帮助回忆离散时间傅里叶变换: 离散时间傅里叶变换 这篇知乎文章可以帮助理解离散傅里叶变换: 如何通俗地解释什么是离散傅里叶变换? DFT的推导(记录与疑惑) 这边文章可以帮助我们更深入的理解DFT。 一幅图弄清DFT与DTFT,DFS的关系 这篇文章以采样为例子,详细地介绍DFT、DTFT和DFS之间的关系,非常容易理解。 拉普拉斯变换 这篇文章详细介绍了拉普拉斯变换的定义、性质以及和连续时间傅里叶变换的关系。 Z变换 这篇文章详细介绍了Z变换的定义、性质以及和离散时间傅里叶变换的关系。 如果没有理解,为什么可以使用卷积运算来表示线性时不变系统的输出,这边博客将会让人恍然大悟,使人产生相见很晚之感: 如何通俗易懂地解释卷积? 参考文献: [1]. (一看就懂)傅里叶变换、拉普拉斯变换、Z变换、卷积的经典文章汇总 [2]. 一幅图弄清DFT与DTFT,DFS的关系 [3]. 傅里叶分析之掐死教程(完整版)更新于2014.06.06此后故乡只2023-05-23 19:24:311
高等数学,积分变换,自动控制原理,离散系统,傅里叶变换拉,拉普拉斯变换
离散信号对应的“拉普拉斯变换”我们成为z变换1.e(kT)=1-e^(-akT)对应连续信号e(t)=1-e^(-at) 1对应z变换为z/z-1 e^(-at)对应z变换为z/z-e^-(aT) 则:e(kT)=1-e^(-akT)对应z变换为z/z-1 -z/z-e^-(aT)2.e(kT)=e^(-akT)*cos(bkT)对应连续信号e(t)=e^(-at)*cos(bt)这个怎么变换我也不会,其实考试不会考这样的,一般来说你只要把常规z变换记住就行了,不需要会推导人类地板流精华2023-05-23 19:24:302
请问傅里叶变换和拉普拉斯变换的条件各是什么?
(1)傅里叶变换的充分条件:函数f(t)在无限区间上绝对可积。引入广义函数的概念后,许多绝对不可积的函数傅里叶变换也存在。(2)拉普拉斯变换条件:函数f(t)在有限区间内可积;|f(t)|乘上衰减因子后,t趋于无穷的时候趋于0。CarieVinne 2023-05-23 19:24:282
有4道拉普拉斯变换题不会,基础薄弱,有人能解决吗?
1、函数 f(t) = t^2 + e^(2t) 的拉普拉斯变换可以通过定义和性质进行计算。拉普拉斯变换是一种将时域函数转换为复频域函数的数学工具。根据拉普拉斯变换的定义,假设 F(s) 是函数 f(t) 的拉普拉斯变换,那么可以表示为:F(s) = L[f(t)] = ∫[0,∞] e^(-st) * f(t) dt对于给定的函数 f(t) = t^2 + e^(2t),我们可以将其分解为两个部分:t^2 和 e^(2t)。然后分别计算它们的拉普拉斯变换。首先,对于函数 f(t) = t^2,根据拉普拉斯变换的性质,可以得到:L[t^2] = 2 / s^3然后,对于函数 f(t) = e^(2t),根据拉普拉斯变换的性质,可以得到:L[e^(2t)] = 1 / (s - 2)因此,最终的拉普拉斯变换是:F(s) = L[f(t)] = L[t^2] + L[e^(2t)] = 2 / s^3 + 1 / (s - 2)这就是函数 f(t) = t^2 + e^(2t) 的拉普拉斯变换结果2、函数 f(t) = e^(-2t) * sin(3t) 的拉普拉斯变换可以通过定义和性质进行计算。拉普拉斯变换是一种将时域函数转换为复频域函数的数学工具。根据拉普拉斯变换的定义,假设 F(s) 是函数 f(t) 的拉普拉斯变换,那么可以表示为:F(s) = L[f(t)] = ∫[0,∞] e^(-st) * f(t) dt对于给定的函数 f(t) = e^(-2t) * sin(3t),我们可以将其分解为两个部分:e^(-2t) 和 sin(3t)。然后分别计算它们的拉普拉斯变换。首先,对于函数 f(t) = e^(-2t),根据拉普拉斯变换的性质,可以得到:L[e^(-2t)] = 1 / (s + 2)然后,对于函数 f(t) = sin(3t),根据拉普拉斯变换的性质,可以得到:L[sin(3t)] = 3 / (s^2 + 9)因此,最终的拉普拉斯变换是:F(s) = L[f(t)] = L[e^(-2t) * sin(3t)] = 1 / (s + 2) * 3 / (s^2 + 9)这就是函数 f(t) = e^(-2t) * sin(3t) 的拉普拉斯变换结果3、函数 f(t) = te^(-t) 的拉普拉斯变换可以通过定义和性质进行计算。拉普拉斯变换是一种将时域函数转换为复频域函数的数学工具。根据拉普拉斯变换的定义,假设 F(s) 是函数 f(t) 的拉普拉斯变换,那么可以表示为:F(s) = L[f(t)] = ∫[0,∞] e^(-st) * f(t) dt对于给定的函数 f(t) = te^(-t),我们可以将其分解为两个部分:t 和 e^(-t)。然后分别计算它们的拉普拉斯变换。首先,对于函数 f(t) = t,根据拉普拉斯变换的性质,可以得到:L[t] = 1 / s^2然后,对于函数 f(t) = e^(-t),根据拉普拉斯变换的性质,可以得到:L[e^(-t)] = 1 / (s + 1)因此,最终的拉普拉斯变换是:F(s) = L[f(t)] = L[t] * L[e^(-t)] = (1 / s^2) * (1 / (s + 1)) = 1 / (s^2 * (s + 1))4、函数 F(s) = 1/s 的拉普拉斯逆变换可以通过查表或应用拉普拉斯变换的逆变换公式进行计算。拉普拉斯逆变换是一种将复频域函数转换为时域函数的数学工具。根据拉普拉斯逆变换的公式,假设 f(t) 是函数 F(s) 的拉普拉斯逆变换,那么可以表示为:f(t) = L^(-1)[F(s)] = (1 / (2πj)) * ∫[-j∞,j∞] F(s) * e^(st) ds对于给定的函数 F(s) = 1/s,我们可以直接应用逆变换公式进行计算。根据逆变换公式,我们有:f(t) = (1 / (2πj)) * ∫[-j∞,j∞] (1/s) * e^(st) ds化简上述积分,我们得到:f(t) = (1 / (2πj)) * ∫[-j∞,j∞] e^(st) / s ds这里需要注意,逆变换中的积分路径是垂直于虚轴的。具体计算该积分需要应用复积分的技巧,可以使用留数定理等方法来求解。但是由于涉及复变量的计算,具体的计算步骤可能比较繁琐,无法在文字中完整展示。综上所述,函数 F(s) = 1/s 的拉普拉斯逆变换是一个复杂的计算过程,需要应用复积分等技巧来求解。凡尘2023-05-20 08:55:492
常数的拉普拉斯变换是多少??为什么 什么样的函数的拉普拉斯变换是常数
系统把这个题推荐给我了,可是我不会呀,汗CarieVinne 2023-05-18 09:39:513
设f(t)=sin(t/2),那么拉普拉斯变换L[f(t)]=
L[sinwt]=w/(s^2+w^2)L[f(t)]=(1/2)/(s^2+(1/4))=2/(4s^2+1)大鱼炖火锅2023-05-18 09:39:512
已知函数f(t)=sint,它的拉普拉斯变换F(s)=什么 求过程
FinCloud2023-05-18 09:39:512
拉普拉斯变换公式是什么?
http://wenku.baidu.com/view/68cdb719964bcf84b9d57b84.html苏州马小云2023-05-18 09:39:511
什么是拉普拉斯变换??
http://www.jpkc.cq.edu.cn:8080/s/word/shoukejiexuan8.docFinCloud2023-05-18 09:39:503
拉普拉斯变换
本来就是-1/T,你看的书有问题,稳定的极点都是负的西柚不是西游2023-05-18 09:39:502
拉普拉斯变换 含义
拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。 如果定义: f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,; s, 是一个复变量; mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。 则f(t),的拉普拉斯变换由下列式子给出: F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。 拉普拉斯逆变换的公式是: 对于所有的t>0,; f(t) = mathcal ^ left =frac int_ ^ F(s),e^ ,ds c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。 为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。 用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定: 如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。 函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。hi投2023-05-18 09:39:501
什么是拉普拉斯变换?其主要应用是什么?
第八章 拉普拉斯变换 基本要求: 1. 掌握拉普拉斯变换的基本概念以及常见函数的拉普拉斯正变换; 2. 利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换; 3. 利用拉普拉斯正反变换求解线性动态电路的常微分方程。 引言:所谓复频域分析,是指线性动态电路的一种分析方法,这种方法不是在时间域里直接进行分析和求解,而是变换到复频域的范围内求解。所使用的教学工具就是拉普拉斯变换.拉普拉斯变换是一种积分变换,是解线性常微分方程,研究线性系统的一个重要工具。下面回顾“变换”的概念。 1、对数与指数的变换 为求乘积ab 可先取对数 ln(ab)= lna+lnb 再取指数运算 2、相量与正弦量的变换 为了计算正弦稳态响应,可将激励源变为相量,然后在频率域里求相量(即相量法),然后再变回时域得到正弦时间函数响应。 其中 此复数的模 就是正弦量u(t)的振幅值,幅角就是u(t)的初相角。这种对应关系就是一种变换。 §8-1 拉普拉斯变换 讲述要点:1. 拉普拉斯变换的定义 2.常见函数的拉普拉斯变换 一.拉普拉斯变换 定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 其中,S=σ+jω 是复参变量,称为复频率。 左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换; 右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。 以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。 如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。 二.拉普拉斯反变换 这是复变函数的积分 拉氏变换和拉氏反变换可简记如下 F(S)=L[f(t)] ; f(t)=L-1[F(s)] 三.拉氏变换的收敛域: 例8-1-1 单边指数函数 (其中a为复常数) 当 >0时,结果为有限值即 具体的说,即Re[s]- Re[a]=σ- Re[a] > 0 有σ> Re[a]这时eatε(t)的拉氏变换存在。我们称σ> Re[a]的s=σ+jω的范围为该函数的拉氏变换的收敛域,一般而言,对一个具体的单边函数f(t),并非所有的σ值都能使f(t)eσt绝对可积,即把能使用f(t)eσt绝对可积的s的范围称为单边函数f(t)的拉氏变换的收敛域。 收敛域可以在s平面上表示出来,如下图。 如前例变换的收敛域为:σ> Re[a]=σO 例8-1-2, 单位冲激函数δ(t)的象函数 收敛域为整个s平面 例8-1-3 单位阶跃函数ε(t)的象函数 收敛域σ>0 , 右半s平面 §8-2 拉普拉斯变换的基本性质 讲述要点:微分定理,积分定理, 时域卷积定理 假定以下需进行拉氏变换的函数,其拉氏变换都存在 1、线性组合定理 L[af1(t)±bf2(t)]=aL[f1(t)]±b[f2(t)] 若干个原函数的线性组合的象函数,等于各个原函数的象函数的线性组合。 例8-2-1 求sinωtε(t)的象函数 同理可得L[cosω(t)]= 此二函数的拉氏变换收敛域为 2、微分定理 设 L[f(t)]=F(s),则有 证明: 其中 这是可以进行拉氏变换的条件,即f(t)乘上 必衰减为零(t→∞)才能绝对可积。于是有 =SL[f(t)-f(0-) 得证! f(t)的二阶导数的象函数,可重复利用微分定理 =S {sL[f(t)]-f(0-)}- f/(0-) =S2L[f(t)]-Sf(0-)-f/(0-) f(t)的n阶导数的象函数应为 记入f(0-)到f(n-1)(0-)共n个原始值 例8-2-2 某动态电路的输入—输出方程为 原始值为r(0-)及r/(0-) ,原始值为e(0-)=0,求r(t)的象函数。 解:设r(t),e(t)均可进行拉氏变换即有 E(S)=L[e(t)] , R(S)=L[r(t)] 两端进行拉氏变换,应用线性组合与微分定理可得 [S2R(s)-Sr(0-)-r/(0-)]+a1[SR(s)-r(0-)]+a0R(s)=b1[SE(s)-e(0-)]+b0E(s) 整理合并得 (S2+a1S+a0)R(S)-(S+a1)r(0-)-r/(0-)=(Sb1+b0)E(s)-b1×0 反变换得 r(t)=L-1[R(s)] 3、积分定理 设 L[f(t)]=F(s),则有 积分上限也应为0- 例8-2-3 根据单位阶跃函数的象函数确定 的原函数 解: ·ε(t)的象函数为 , ·ε(t)的积分为单边倾斜函数,即 而 同理 进而有 ; 反过来有 4、时域位移定理 设 L[f(t)ε(t)]=F(s),则有 L[f(t-t0)ε(t-t0)]= F(s) 此定理表明f(t)推迟t0出现则象函数应乘以一个时延因子 5、时域卷积定理 设 L[f1(t)]=F1(s) L[f2(t)]=F2(s) 则有 L[f1(t)* f2(t)]= F1(s) F2(s) 例8-2-5 图2-2-5所示电路中,电压源为 ,试用时域卷积定理求零状态响应电流i(t) 解:令激励电压为单位冲激电压δ (t),则初值为 冲激响应电流为 h(t)= 零状态响应电流为卷积积分 i(t)=u(t)* h(t)=u(t)* 图2-2-5 进行拉普拉斯变换 L[i(t)]=U(s)H(s)=U(s)×L[h(t)] 故 查表8-2-1第13项,得 * 终值定理:设L[f(t)]=F(s),则有 例:已知L[f1(t)]=F1(s) ,求f1(∞);L[f2(t)]=F2(s) ,求f2(∞) 解: 参考资料:http://www.jpkc.cq.edu.cn:8080/s/word/shoukejiexuan8.docChen2023-05-18 09:39:502
如何理解拉普拉斯变换
拉普拉斯变换是运用在数学及其它理工学科的常见变换公式,下面就介绍一下如何理解拉普拉斯变换。 1、 拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。 2、 拉普拉斯变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。 3、 拉普拉斯变换的应用学科:数学、工程数学。 4、 拉普拉斯变换适用领域范围:解微分、积分方程,偏微分方程。 5、 拉普拉斯变换适用领域范围:信号系统、电子工程、轨道交通、自动化等。 关于如何理解拉普拉斯变换的相关内容就介绍到这里了。九万里风9 2023-05-18 09:39:491
什么是拉普拉斯变换?
拉普拉斯变换是求解微分方程的一种方法。其求解步骤如下:1、对已知的微分方程取拉氏变换,如y"+2y"-3y=e^(-t),y(0)=0,y"(0)=1,则s²Y(s)-1+2sY(s)-3Y(s)=1/(s+1)2、解含有未知变量Y(s)的方程,即Y(s)=(s+2)/[(s+1)(s-1)(s+3)]3、将上式转换成部分分式的形式,即Y(s)=-1/[4(s+1)]+3/[8(s-1)]-1/[8(s+3)]4、取逆拉氏变换,可以得到微分方程的解y(t)=[3e^t-2e^(-t)-e^(-3t)]/8大鱼炖火锅2023-05-18 09:39:491
t的拉普拉斯变换是多少
t -> 1/s^2阿啵呲嘚2023-05-18 09:39:495
拉普拉斯变换有那些应用呢?
常见拉普拉斯变换公式:V=sLI,I=sCV,H(s)=(1/RC)/(s+(1/RC)),Y(s)=X(s)H(s)等。拉普拉斯变换是工程数学中常用的一种积分变换,又名拉简戚氏变换。 拉氏变换是一祥袭个线性变换,可将谨咐兄一个有参数实数t(t≥0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。铁血嘟嘟2023-05-18 09:39:491
怎么理解拉普拉斯变换?
拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量s的乘积,将时间表示的微分方程,变成以s表示的代数方程,简化算法。阿啵呲嘚2023-05-18 09:39:492
为什么复数的拉普拉斯变换是复变函数的积分运算?
具体回答如下:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0;s是一个复变量;一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e" dt;F(s)是f(t)的拉普拉斯变换结果。扩展资料:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。善士六合2023-05-18 09:39:491
常用拉普拉斯变换公式表
常见拉普拉斯变换公式:V=sLI,I=sCV,H(s)=(1/RC)/(s+(1/RC)),Y(s)=X(s)H(s)等。拉普拉斯变换是工程数学中常用的一种积分变换,又名拉简戚氏变换。 拉氏变换是一祥袭个线性变换,可将谨咐兄一个有参数实数t(t≥0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。拌三丝2023-05-18 09:39:481
f(t)的拉普拉斯变换是什么?
具体回答如下:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0;s是一个复变量;一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e" dt;F(s)是f(t)的拉普拉斯变换结果。扩展资料:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。余辉2023-05-18 09:39:481
拉普拉斯变换的公式概念
拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式(式中st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。据此,在“电路分析”中,元件的伏安关系可以在复频域中进行表示,即电阻元件:V=RI,电感元件:V=sLI,电容元件:I=sCV。如果用电阻R与电容C串联,并在电容两端引出电压作为输出,那么就可用“分压公式”得出该系统的传递函数为H(s)=(1/RC)/(s+(1/RC)) 于是响应的拉普拉斯变换Y(s)就等于激励的拉普拉斯变换X(s)与传递函数H(s)的乘积,即 Y(s)=X(s)H(s)如果定义:f(t)是一个关于t的函数,使得当t<0时候,f(t)=0;s是一个复变量;mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e" dt;F(s)是f(t)的拉普拉斯变换结果。则f(t),的拉普拉斯变换由下列式子给出:F(s),=mathcal left =int_ ^infty f(t)" e" dt 拉普拉斯逆变换,是已知F(s)" 求解f(t)的过程。用符号 mathcal" 表示。拉普拉斯逆变换的公式是:对于所有的t>0,f(t)= mathcal ^ left=frac int_ ^ F(s)" e"dsc" 是收敛区间的横坐标值,是一个实常数且大于所有F(s)" 的个别点的实部值。为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e-σt在t→∞时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。NerveM 2023-05-18 09:39:471
拉布拉斯变换的拉普拉斯变换的定义
定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数其中,S=σ+jω 是复参变量,称为复频率。左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。这是复变函数的积分拉氏变换和拉氏反变换可简记如下F(S)=L[f(t)] ; f(t)=L-1[F(s)]当 >0时,结果为有限值即具体的说,即Re[s]- Re[a]=σ- Re[a] > 0 有σ> Re[a]这时eatε(t)的拉氏变换存在。我们称σ> Re[a]的s=σ+jω的范围为该函数的拉氏变换的收敛域,一般而言,对一个具体的单边函数f(t),并非所有的σ值都能使f(t)eσt绝对可积,即把能使用f(t)eσt绝对可积的s的范围称为单边函数f(t)的拉氏变换的收敛域。收敛域可以在s平面上表示出来假定以下需进行拉氏变换的函数,其拉氏变换都存在1、线性组合定理L[af1(t)±bf2(t)]=aL[f1(t)]±b[f2(t)]若干个原函数的线性组合的象函数,等于各个原函数的象函数的线性组合ardim2023-05-18 09:39:471
拉普拉斯变换公式有哪些?
常见拉普拉斯变换公式:V=sLI,I=sCV,H(s)=(1/RC)/(s+(1/RC)),Y(s)=X(s)H(s)等。拉普拉斯变换是工程数学中常用的一种积分变换,又名拉简戚氏变换。 拉氏变换是一祥袭个线性变换,可将谨咐兄一个有参数实数t(t≥0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。阿啵呲嘚2023-05-18 09:39:461
拉普拉斯变换公式
拉普拉斯变换公式表如下:拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。工程数学是好几门数学的总称。工科专业的学生大一学了高数后。就要根据自己的专业学“积分变换”、“复变函数”、“线性代数”、“概率论”、“场论”等数学,这些都属工程数学。数学物理方程和特殊函数也是工学数学的一分支。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用。如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)。应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。CarieVinne 2023-05-18 09:39:461