高阶导数

高阶导数中 d2y/d2x 和 d2y/dx2 区别是什么?

后者是二阶导数的意思前者,好像不是很常见吧,正常情况是不会出现 的吧但如果x是关于某个自变量的函数,那么那就可以理解了。但要求y与x是关于同一个自变量的函数,要不好像没有什么意义了如果是关于同一个自变量t的,那么就是说相当于参数方程,将y关于t的函数求二阶导数,x关于t求二阶导数,然后做商就行了,就是这个意思不懂在问,兄弟愿与你分享知识呜呜,没奖励、、、
拌三丝2023-08-04 10:57:541

tanx高阶导数的通用形式是什么?

tanx高阶导数的通用形式:^tanx=sinx/cosx。tanx"=(cosx^bai2+sinx^2)/cosx^2=1/cosx^2。tanx""=(1/cosx^2)"=-sin2x/cosx^4。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。分析:这是基本初等函数求任意阶导数的问题,其求导任务实际是寻求导函数表达式与导数阶数 n 的关系。为找出其间的规律性,可先具体计算若干阶导数,再设法确定一般规律。
墨然殇2023-06-30 08:57:551

求arcsin x的高阶导数 公式

铁血嘟嘟2023-06-28 09:35:141

xsinx的最高阶导数

y=xsinxy"=sinx+xcosxy""=cosx+cosx - xsinx=2cosx - xsinxy"""= - 2sinx - (sinx+xcosx)=-3sinx - xcosx,y^(4)=-3cosx - (cosx - xsinx)= - 4cosx+xsinx,一般的,y^(n)=nsin[x+(n-1)π/2]+xsin(x+nπ/2)。
可桃可挑2023-06-06 07:56:521

高阶导数 y=X^3lnX 求y^(4)

y=x^3lnxy"=2x^2lnx+x^2y""=4xlnx+4xy"""=4lnx+8y""""=4/x+8
再也不做站长了2023-06-06 07:56:393

高数高阶导数公式中d/dt是什么意思?

函数的微分与微变量的商,或称为微商
苏萦2023-06-06 07:55:524

高阶导数代表的物理意义

议论纷纷、众说纷纭。我个人认为有一定的物理意义的。再高阶的导数都有一定意思,只是很少用得上罢了。 位移对时间t的一阶导数表示质点运动的速度,位移对t的二阶导数表示质点运动的动的加速度,那么位移对时间t的三阶导数以及更高阶的导数有物理意义吗? 远在三百多年前,微积分和经典力学刚刚诞生的牛顿时代,人们就已经知道一阶导数和二阶导数的物理意义和几何意义。 在力学中,位移对时间t的一阶导数表示质点运动速度的大小和方向;位移对时间t的二阶导数表示质点运动加速度的大小和方向.这样,依此类推,人们自然要问位移对时间t的三阶导数以及位移对时间t的更高阶导数有没有物理意义呢 ? 近年来,我国有人著文谈到这个问题.他认为位移对时间t的三阶导数等有物理意义,并定名为"急动度".他认为急动度是加速度对时间t的变化率,并且人对这个量还能有感觉,在有些运动中是应该考虑这个物理量的.不久,又有人著文反对这种观点,他们认为没有物理意义.他们的主要根据是牛顿力学已经历了三百多年形成了完整的体系,直到目前为止没有任何实验要求讨论这个物理量,因此,他们认为位移r对时间t的三阶导数乃至更高的导数都是没有物理意义的.(据笔者所知,关于这一问题,目前仅处于学术争论阶段,至今尚无定论) 在教学过程中,有的同学也提出过这个问题,可见这个问题有一定的普遍性,因此在这里简要地介绍了有关这个问题的争论情况.我们倾向于认为位移对时间t的三阶导数乃至更高阶的导数都可能有物理意义,只是目前我们尚没有认识到它们的物理意义是什么罢了.
陶小凡2023-06-04 09:20:291

高阶导数的物理意义是加速度对吗

位移的一阶导数是速度,位移的二阶导数是加速度。
再也不做站长了2023-06-04 09:20:251

a的x次方的高阶导数

你要问的是什么呢。
人类地板流精华2023-06-04 09:19:332

常见高阶导数8个公式是什么?

常见高阶导数8个公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。任意阶导数的计算对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
小白2023-06-03 14:30:101

请问这个高阶导数怎么求

分析过程与结果如图
Chen2023-06-03 14:27:032

高阶导数公式是什么?

高阶导数公式有如下:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。任意阶导数的计算对任意n阶导数的计算,由于n不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
meira2023-06-03 14:27:021

如何从隐函数中求高阶导数?

如果求二阶导数,可以在一阶导数的基础上再求导数,也可以在隐函数对应的方程中求导,例如x2+y2=1(一)两边关于x求导,注意y是x的函数得2x+2yy"=0①即y"=-x/y.②(二)对①两边再关于x求导,则2+2(y")2+2yy""=0即y""=[-1-(y")2]/y=-(x2+y2)/y3或者对②式关于x求导得y""=(-y+xy")/y2=-(x2+y2)/y3不明白可以追问,如果有帮助,请选为满意回答!
西柚不是西游2023-06-03 14:27:012

求高阶导数

由sin3x=3sinx-4(sinx)^3得y=(sinx)^3=(3sinx-sin3x)/4sinx的n阶导数为: sin(x+nπ/2)sin3x的n阶导数为:3^n sin(3x+nπ/2)因此y的n阶导数为:[3sin(x+nπ/2)-3^n sin(3x+nπ/2)]/4
余辉2023-06-03 14:27:011

高阶导数怎么计算 5.(3)

x=roots([1,0,1,-2,0,1,0,0,1])
拌三丝2023-06-03 14:27:013

sinx的高阶导数怎么求的?

我有个幻灯片,专门将求高阶导数的。给你
小白2023-06-03 14:23:463

复合函数的高阶导数怎么求

简单说就是找规律,就跟求数列通项公式一样。
kikcik2023-05-25 12:16:192

高阶导数如何求?

y=(ax+b)^(-1)y"=-a*(ax+b)^(-2)y"=2a^2(ax+b)^(-3)y的n阶导数=(-1)^n*n!*(ax+b)^(-n-1)例如:[f(ax+b)]"=f"(ax+b)*(ax+b)"=af"(ax+b)[f(ax+b)]""=[af"(ax+b)]"=a²f""(ax+b)以此类推[f(ax+b)]的n阶导数=a^n*f(n)(ax+b)任意阶导数的计算对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。以上内容参考:百度百科-高阶导数
凡尘2023-05-25 12:16:191

高阶导数十个常用公式是什么?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。任意阶导数的计算对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
北营2023-05-25 12:16:191

高阶导数的意义

问题一:高阶导数有什么用 你好,高阶导数非常有用。二阶导可以判断函数图像的凹凸性; 泰勒级数公式是用系数含有n阶导的x的幂次方表示的,而泰勒级数的作用非常强大,它可以把非常复杂的函数变成容易研究的幂函数。 问题二:高阶导数的物理意义……… 确实有这种说法,但是这个应该属于高级物理学里面的知识,至少要到三维空间里面才会出现,甚至是四维空间或者更高,至少要到四维空间,我上物理课时老师说到过这个概念,但是没有作任何解释,因为这个概念属于顶尖级别的人才会用到,所以相关的资料很少,所以甚至有人怀疑急动度是不是官方的说法, 如果你想了解相关的知识,最好到研究生论文和博士论文甚至更高层次的论文里面去查找相关资料 《试论混沌和急动度之关系》,是一篇江西师大教授的论文 问题三:高阶导数有什么用 高阶导数有什么用 位移相对于时间的一阶导数是速度, 二阶导数是加速度, 三阶导数是急动度 四阶导数是什么痉挛度 问题四:高阶导数中的!符号是什么意思 阶乘,9!=9*8*7*6*5*4*3*2*1 n!=1*2*3一直乘到n 问题五:高阶导数的定义 1、二阶以上的导数习惯上称之为高阶导数。2、一个函数的导数,其中A为三阶导数,B为四阶导数,则可以说B是A的高阶导数。n阶导数定义为:
mlhxueli 2023-05-25 12:16:191

高阶导数怎么求

y^(n)=-(n-1)!/(1-x)ⁿ设y=ln(1-x)y"=-1/(1-x)y""=-1/(1-x)²y"""=-2/(1-x)³y^(4)=-3!/(1-x)⁴y^(n)=-(n-1)!/(1-x)ⁿ高阶导数的计算法则从理论上看,逐次应用一阶导数的求导规则就可得到高阶导数相应的运算规则。然而,对于和、差的导数计算的线性规则,这种推导是方便的,而对乘积求导的非线性运算规则,其推导过程和结果就未必简单了。
苏萦2023-05-25 12:16:191

什么是高阶导数,怎么用?

无穷比无穷类型的极限一般采用洛必达法则。洛必达使用条件:极限为0/0型或∞/∞型;分子分母在定义域内可导;求导后所得式极限存在,且极限等于原式极限。当变量X->0时,若各项间是乘除关系,可以用等价无穷小代替;若存在加减关系可以考虑使用泰勒公式进行替换;常用泰勒公式如下:幂函数:1/(1-x)=1+x+x^2+...+x^n指数函数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!对数函数:ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k三角函数:sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!反三角函数:arctan x = x - x^3/3 + x^5/5arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5高等数学中一般要求到三阶的泰勒公式,可以将常用的背诵下来。
可桃可挑2023-05-25 12:16:181

请问为什么分步求导,和直接运用高阶导数结果不一样??

1、一般来说,当然就是一次一次地求导,要几次导数给几次;2、上面的方法比较沉闷,而且容易出错,通常根据被求导的函数,求几次导数后,根据结果,找到规律,然后用归纳法,证明结果正确;3、在解答麦克劳林级数、泰勒级数时,经常要求高阶导数,找规律是非常需要技巧的,很多情况下,递推公式(redunction)是很难找到。实在找不到时,只能写一个抽象的表达式。
西柚不是西游2023-05-25 12:16:181

怎么用高阶导数?

常见高阶导数8个公式如下:常见高阶导数公式有莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。任意阶导数的计算:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
北营2023-05-25 12:16:181

高等数学高阶导数莱布尼兹公式

这个公式和排列组合中的二项式定理相似,二项式定理中的多少次方在这里改为多少阶导数。比如(uv)一阶导=u一阶导乘以v+u乘以v一阶导(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导一次类推,以上是文字描述,你写出公式来就可以理解了,ok~~
康康map2023-05-25 12:16:184

求函数的高阶导数值

(1).y=x^4+x³+x²+x+1y"=4x³+3x²+2x+1; y"(0)=1;y""=12x²+6x+2; y""(0)=2;y"""=24x+6; y"""(0)=6;y""""=24. y""""(0)=24.(2).f(x)=e^(2x-1);f "(x)=4e^(2x-1); f""(0)=4e^(-1);(3).y=xlnxy"=lnx+1; y""=1/x; y"""=-1!/x²; y^(4)=2!/x³; y^(5)=-3!/x^4;............; y^(10)=8!/x^7.
kikcik2023-05-25 12:16:183

高数题 求高阶导数 求大神帮忙

真颛2023-05-25 12:16:182

n阶导数和高阶导数区别

n阶导数,其实是指对函数进行n次求导,就求函数的高阶导数中的n阶导数。某一邻域内必定具有一切低于阶的导数.二阶及二阶以上的导数统称高阶导数.
肖振2023-05-25 12:16:181

高阶导数的计算公式?

y=(ax+b)^(-1)y"=-a*(ax+b)^(-2)y"=2a^2(ax+b)^(-3)y的n阶导数=(-1)^n*n!*(ax+b)^(-n-1)例如:[f(ax+b)]"=f"(ax+b)*(ax+b)"=af"(ax+b)[f(ax+b)]""=[af"(ax+b)]"=a²f""(ax+b)以此类推[f(ax+b)]的n阶导数=a^n*f(n)(ax+b)任意阶导数的计算对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。以上内容参考:百度百科-高阶导数
tt白2023-05-25 12:16:171

求高阶导数常用什么公式?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
再也不做站长了2023-05-25 12:16:171

高阶导数十个常用公式是什么?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
拌三丝2023-05-25 12:16:171

求高阶导数,请过程详细

P(x)=(1-x^m)^n={(1-x)[1+x^2+x^3+……+x^(m-1)]}^n=(1-x)^n*[(1+x+x^2+……+x^(m-1)]^nP(1)的n阶导数=(1-x)^n的n阶导数×[(1+x+x^2+……+x^(m-1)]^n+(1-x)^n的n-1阶导数×[(1+x+x^2+……+x^(m-1)]^n的1阶导数+……+(1-x)^n×[(1+x+x^2+……+x^(m-1)]^n的n阶导数 (x=1)=(1-x)^n的n阶导数×[(1+x+x^2+……+x^(m-1)]^n (x=1)=n!×m^n
u投在线2023-05-25 12:16:171

怎么求高数高阶导数?

高数高阶导数公式中ddt是一个整体记号,单独出现一个d没有意义,单独出现ddt也没有意义,必须出现d(接一个东西)/dt,表示对括号中的函数求导,并且是对自变量t求导。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。扩展资料:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
无尘剑 2023-05-25 12:16:171

sinx和cosx的高阶导数

高阶导数为以下内容:cosx的n阶导是:cos(x+nπ/2)。y^(n)=(sinx)^(n)=sin(x+nπ/2)。sinx的高阶导数推导过程:y=sinxy"=(sinx)"=cosx=sin(x+π/2)y""=(sinx)""=(cosx)"=-sinx=sin(x+π)=sin(x+2π/2)y"""=(-sinx)"=-cosx=sin(x+3π/2)y""""=sinx=sin(x+2π)=sin(x+4π/2)以此类推sinx的高阶导数:y^(n)=(sinx)^(n)=sin(x+nπ/2)。cosx的高阶导数推导过程:cosx的n阶导数公式:y=cosx。y′=-sinx。y′′=-cosx。y′′′=sinx。y′′′′=cosx。当n=4k+1时:y=cosx的n阶导数=-sinx。总结上面所述,cosx的n阶导是:cos(x+nπ/2)。
NerveM 2023-05-25 12:16:171

求复合函数高阶导数的求法

用链式法则链式法则是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x,g(x)=x+3,g(f(x))就是一个复合函数,并且g(f(x))=3x+3 链式法则(chain rule)若h(x)=f(g(x))则h"(x)=f"(g(x))g"(x)链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里边函数代入外边函数的值之导数,乘以里边函数的导数。以上是求一阶导数高阶导数就是先求一阶,然后再用链式法则求2阶,3阶。。。
人类地板流精华2023-05-25 12:16:171

高阶导数公式是什么?

根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k)。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。任意阶导数的计算对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
bikbok2023-05-25 12:16:171

复合函数的高阶导数怎么求

复合函数的高阶导数求解方法如下:用链式法则求解。链式法则是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。链式法则用文字描述就是“由两个函数凑起来的复合函数,其导数等于里边函数代入外边函数的值之导数,乘以里边函数的导数。”以上是求解一阶导数,求解高阶导数就是先求一阶,然后再用链式法则求2阶、3阶等。
可桃可挑2023-05-25 12:16:161

常见高阶导数8个公式分别是什么?

常见高阶导数8个公式分别是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。2、两个函数的乘积的导函数:一导乘二+一乘二导。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。4、如果有复合函数,则用链式法则求导。
黑桃花2023-05-25 12:16:161

什么是最高阶导数

  哪儿有最高阶导数的说法?有的函数确实到某一阶导数以后就不可导了,如    x²D(x)在 x=0 处只是一阶可导的。不知你是否这个意思?
人类地板流精华2023-05-25 12:16:162

如何从隐函数中求高阶导数

如果求二阶导数,可以在一阶导数的基础上再求导数,也可以在隐函数对应的方程中求导,例如x2+y2=1(一)两边关于x求导,注意y是x的函数得2x+2yy"=0①即y"=-x/y.②(二)对①两边再关于x求导,则2+2(y")2+2yy""=0即y""=[-1-(y")2]/y=-(x2+y2)/y3或者对②式关于x求导得y""=(-y+xy")/y2=-(x2+y2)/y3不明白可以追问,如果有帮助,请选为满意回答!
豆豆staR2023-05-25 12:16:161

能否举几个例子 哪些函数有低阶导数但是却没有高阶导数?

可导必连续,连续不一定可导,可导函数不是都有高阶导数的,你这个问题有问题。
大鱼炖火锅2023-05-25 12:16:162

函数在1点数的高阶导数有几种求法?

函数在1点数的高阶导数有2种求法, 直接法与间接法。首先要把几个常用求导公式记清楚;然后在解题时先看好定义域;对函数求导,对结果通分接下来,一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负。是正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像,根据图像就可以求出你想要的东西,比如最大值或最小值等。如果特殊情况,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;反之,就减。高阶导数公式是二阶和二阶以上的导数。高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。高阶导数莱布尼兹公式是(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n)。高阶导数一般来说,就是一次一次地求导,要几次导数给几次;此类题有一定的难度。
wpBeta2023-05-25 12:16:151

高阶导数公式是什么?

第一个:无穷等比数列所有项之和,q=2x。第二个,定积分公式,定积分等于原函数积分上下限值之差。这个应该可以用数学归纳法证明:a)duv/dx = u"v + uv"得证b)假设(uv)^(k) = sum(C(n,k)u^(k)v^(n-k))则uv的第k+1次导数(uv)^(k+1) = d((uv)^(k))/dx = dsum(C(n,k)u^(k)v^(n-k))/dx=sum(C(n,k) du^(k)v^(n-k)/dx)=sum(C(n,k)u^(k+1)v^(n-k) + C(n,k) u^k v^(n-k+1))对上市重新整理,考虑上式中的u^(k)v^(n-k+1)项,它的系数应该是C(n,k)+C(n,k-1)根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k),带人就是你要的公式 导数公式规律一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。
meira2023-05-25 12:16:151

高阶导数求导方法

1、一般来说,当然就是一次一次地求导,要几次导数给几次; 2、上面的方法比较沉闷,而且容易出错,通常根据被求导的函数,求几次导数后, 根据结果,找到规律,然后用归纳法,证明结果正确; 3、在解答麦克劳林级数、泰勒级数时,经常要求高阶导数,找规律是非常需要技巧的, 很多情况下,递推公式(Redunction)是很难找到. 实在找不到时,只能写一个抽象的表达式.
苏萦2023-05-25 12:16:151

高阶导数十个常用公式是什么?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
苏州马小云2023-05-25 12:16:152

高阶导数怎么算?

y^(n)=-(n-1)!/(1-x)ⁿ设y=ln(1-x)y"=-1/(1-x)y""=-1/(1-x)²y"""=-2/(1-x)³y^(4)=-3!/(1-x)⁴y^(n)=-(n-1)!/(1-x)ⁿ高阶导数的计算法则从理论上看,逐次应用一阶导数的求导规则就可得到高阶导数相应的运算规则。然而,对于和、差的导数计算的线性规则,这种推导是方便的,而对乘积求导的非线性运算规则,其推导过程和结果就未必简单了。
NerveM 2023-05-25 12:16:151

高阶导数到底是什么鬼?

高数高阶导数公式中ddt是一个整体记号,单独出现一个d没有意义,单独出现ddt也没有意义,必须出现d(接一个东西)/dt,表示对括号中的函数求导,并且是对自变量t求导。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。扩展资料:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
ardim2023-05-25 12:16:151

复合函数的高阶导数公式

常见高阶导数8个公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。介绍:1、导数的四则运算:(uv)"=uv"+u"v (u+v)"=u"+v" (u-v)"=u"-v" (u/v)"=(u"v-uv")/v^2。2、原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y"=1/x"。3、复合函数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
豆豆staR2023-05-25 12:16:151

高等数学高阶导数莱布尼兹公式

这个公式和排列组合中的二项式定理相似,二项式定理中的多少次方在这里改为多少阶导数。比如(uv)一阶导=u一阶导乘以v+u乘以v一阶导(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导一次类推,以上是文字描述,你写出公式来就可以理解了,ok~~
Ntou1232023-05-25 12:16:154

高阶导数公式

高阶导数莱布尼兹公式是(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n)。高阶导数一般来说,就是一次一次地求导,要几次导数给几次;此类题有一定的难度。 高阶导数常用公式
bikbok2023-05-25 12:16:141

高阶导数的运算法则

高阶导数的运算法则如下:一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。高阶导数莱布尼兹公式是(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n)。高阶导数一般来说,就是一次一次地求导,要几次导数给几次;此类题有一定的难度。怎么学好导数首先要把几个常用求导公式记清楚;然后在解题时先看好定义域;对函数求导,对结果通分接下来,一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负。正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像,根据图像就可以求出你想要的东西,比如最大值或最小值等。如果特殊情况,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;反之,就减。
wpBeta2023-05-25 12:16:141

高阶导数的定义

1、二阶以上的导数习惯上称之为高阶导数。2、一个函数的导数,其中A为三阶导数,B为四阶导数,则可以说B是A的高阶导数。n阶导数定义为:
tt白2023-05-25 12:16:141

高阶导数求导公式

常见高阶导数公式有莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。 扩展资料   第一个:无穷等比数列所有项之和,q=2x。   第二个,定积分公式,定积分等于原函数积分上下限值之差。   这个应该可以用数学归纳法证明:   a)duv/dx = u"v + uv"得证   b)假设(uv)^(k) = sum(C(n,k)u^(k)v^(n-k))   则uv的第k+1次导数   (uv)^(k+1) = d((uv)^(k))/dx = dsum(C(n,k)u^(k)v^(n-k))/dx   =sum(C(n,k) du^(k)v^(n-k)/dx)   =sum(C(n,k)u^(k+1)v^(n-k) + C(n,k) u^k v^(n-k+1))   对上市重新整理,考虑上式中的u^(k)v^(n-k+1)项,它的系数应该是C(n,k)+C(n,k-1)   一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。   可见导数阶数越高,相应乘积的`导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。
水元素sl2023-05-25 12:16:141

求高阶导数公式怎么来的?

高数高阶导数公式中ddt是一个整体记号,单独出现一个d没有意义,单独出现ddt也没有意义,必须出现d(接一个东西)/dt,表示对括号中的函数求导,并且是对自变量t求导。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。扩展资料:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
善士六合2023-05-25 12:16:141

如何用导数计算高阶导数。

y^(n)=-(n-1)!/(1-x)ⁿ设y=ln(1-x)y"=-1/(1-x)y""=-1/(1-x)²y"""=-2/(1-x)³y^(4)=-3!/(1-x)⁴y^(n)=-(n-1)!/(1-x)ⁿ高阶导数的计算法则从理论上看,逐次应用一阶导数的求导规则就可得到高阶导数相应的运算规则。然而,对于和、差的导数计算的线性规则,这种推导是方便的,而对乘积求导的非线性运算规则,其推导过程和结果就未必简单了。
北境漫步2023-05-25 12:16:141

如何求高阶导数?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
NerveM 2023-05-25 12:16:141

高阶导数的公式

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
北境漫步2023-05-25 12:16:131

高阶导数有哪些常见的公式?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
NerveM 2023-05-25 12:16:131

高阶导数公式是什么?

高阶导数公式是如下:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。
黑桃花2023-05-25 12:16:131

高阶导数怎么算?

常见高阶导数8个公式如下:常见高阶导数公式有莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。任意阶导数的计算:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
无尘剑 2023-05-25 12:16:131

什么事高阶导数?

高等数学中d是微分,可以对任一变量微分,比如dy=y"dx,d/dx是对微分的商,可以叫对x的导数或者微商,先d才有d/dx。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。扩展资料:对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
北境漫步2023-05-25 12:16:131

常见高阶导数8个公式是什么?

常见高阶导数8个公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。介绍:1、导数的四则运算:(uv)"=uv"+u"v (u+v)"=u"+v" (u-v)"=u"-v" (u/v)"=(u"v-uv")/v^2。2、原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y"=1/x"。3、复合函数的导数: 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数(称为链式法则)。
拌三丝2023-05-25 12:16:131

高阶导数公式有哪些?

求导公式表如下:1、(sinx)"=cosx,即正弦的导数是余弦。2、(cosx)"=-sinx,即余弦的导数是正弦的相反数。3、(tanx)"=(secx)^2,即正切的导数是正割的平方。4、(cotx)"=-(cscx)^2,即余切的导数是余割平方的相反数。5、(secx)"=secxtanx,即正割的导数是正割和正切的积。6、(cscx)"=-cscxcotx,即余割的导数是余割和余切的积的相反数。7、(arctanx)"=1/(1+x^2)。8、(arccotx)"=-1/(1+x^2)。9、(fg)"=f"g+fg",即积的导数等于各因式的导数与其它函数的积,再求和。10、(f/g)"=(f"g-fg")/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。11、(f^(-1)(x))"=1/f"(y),即反函数的导数是原函数导数的倒数,注意变量的转换。求导注意事项对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。
gitcloud2023-05-25 12:16:121

莱布尼兹公式高阶导数是什么?

莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。(uv)" = u"v+uv"。(uv)"‘ = u""v+2u"v"+uv"。依数学归纳法:可证该莱布尼兹公式。各个符号的意义:Σ-------------求和符号。C(n,k)--------组合符号,即n取k的组合。u^(n-k)------u的n-k阶导数。v^(k)---------v的k阶导数。这个公式和排列组合中的二项式定理相似,二项式定理中的多少次方在这里改为多少阶导数。(uv)一阶导=u一阶导乘以v+u乘以v一阶导。(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导。(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导。相关内容解释:戈特弗里德·威廉·莱布尼茨,德国哲学家、数学家,历史上少见的通才,被誉为十七世纪的亚里士多德。他本人是一名律师,经常往返于各大城镇,许多的公式都是在颠簸的马车上完成的,也自称具有男爵的贵族身份。莱布尼茨在数学史和哲学史上都占有重要地位。在数学上,他和牛顿先后独立发现了微积分,而且他所使用的微积分的数学符号被更广泛的使用,莱布尼茨所发明的符号被普遍认为更综合,适用范围更加广泛。莱布尼茨还发明并完善了二进制。
西柚不是西游2023-05-25 12:16:121

幂函数的高阶导数

高阶导啊,比如一阶导就是求一次导数,二阶导就是求2次导数,n阶导就是求n次导,一般大于3阶的都称为高阶导比如x^4一阶导就是4x^3二阶导就是一阶导上再求导,4*3*x^2三阶导就是4*3*2*x四阶导就是4*3*2*1=4!=24咯
豆豆staR2023-05-25 12:16:123

高阶导数公式

高阶导数公式是二阶和二阶以上的导数。常见高阶导数公式有:莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v"+n(n-1)/2!u(n-2)v"+n(n-1)...(n-k+1)u(n-k)v(k)+...+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。基础的高阶导数八个公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。
北营2023-05-25 12:16:121

高阶导数公式有哪些?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。10、y=arccosx,y"=-1/√(1-x^2)。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
凡尘2023-05-25 12:16:121

高阶导数公式是什么?

根据组合数学知识,C(n,k)+C(n,k-1)=C(n+1,k)。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。简介对任意n阶导数的计算,由于n不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
墨然殇2023-05-25 12:16:121

高阶导数公式有哪些?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
FinCloud2023-05-25 12:16:121

高阶导数公式有哪些?

常见高阶导数公式是:1、y=c,y"=0(c为常数) 。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax, y"=1/(xlna)(a>0且 a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。导数公式规律:一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。
西柚不是西游2023-05-25 12:16:121

最高阶导数怎么算?

实际上不用考虑太多|x|在x=0处不可导因为左右导数分别为-1和1那么x²|x|只能二次可导所以最高阶为2
左迁2023-05-25 12:16:111

泰勒公式求高阶导数

目测whut大一吧?我也来找这题的...
FinCloud2023-05-25 12:16:114

什么是高阶导数,低阶

2阶以上的导数称为高阶导数,包括2阶导数。没有低价导数的说法。通常讲的导数指得都是一阶导数。
再也不做站长了2023-05-25 12:16:111

高阶导数的意义是什么

 
凡尘2023-05-25 12:16:113

大一高数 高阶导数?

详情如图所示有任何疑惑,欢迎追问
可桃可挑2023-05-25 12:16:112

泰勒公式求高阶导数

^利用sinx的Taylor展式sinx=x-x^3/3!+x^5/5!-x^7/7!+...,故f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...由此知道f^(6)(0)/6!=-1/3!,故f^(6)(0)=-6!/3!=-120。Taylor展式有唯一性:其表达式必定是这样的:f(x)=f(0)+f"(0)x+f""(0)x^2/2!+....+f^(n)(0)x^n/n!+...即必有x^n的系数时f^(n)(0)/n!。扩展资料:高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:(1)一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。(2)二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行不通的,此时需研究专门的方法。参考资料来源:百度百科-高阶导数
小菜G的建站之路2023-05-25 12:16:101

高阶导数有哪些公式?

高阶导数十个常用公式是:1、y=c,y"=0(c为常数)。2、y=x^μ,y"=μx^(μ-1)(μ为常数且μ≠0)。3、y=a^x,y"=a^x lna;y=e^x,y"=e^x。4、y=logax,y"=1/(xlna)(a>0且a≠1);y=lnx,y"=1/x。5、y=sinx,y"=cosx。6、y=cosx,y"=-sinx。7、y=tanx,y"=(secx)^2=1/(cosx)^2。8、y=cotx,y"=-(cscx)^2=-1/(sinx)^2。9、y=arcsinx,y"=1/√(1-x^2)。导数的求导法则:由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。4、如果有复合函数,则用链式法则求导。
阿啵呲嘚2023-05-25 12:16:101

高阶导数有什么用

理论上就是对不同变量的不同次数求导。实践上会有很多应用,你比如说物理化学里面的热力学定律,高阶导数可以实现对不同变量求导以验证甚至猜想规律,通过不同角度计算验证或者得出结论。楼主是不是高考文科大学商科的?如果是这样的话建议去高等数学级别高的班级(我们学校高等数学A最难,6+5学分)旁听一下,将会对以后的专业课起到更好的作用!
大鱼炖火锅2023-05-25 12:16:101

复合函数的高阶导数怎么求

复合函数的高阶导数求解方法如下: 用链式法则求解。链式法则是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。 链式法则用文字描述就是“由两个函数凑起来的复合函数,其导数等于里边函数代入外边函数的值之导数,乘以里边函数的导数。” 以上是求解一阶导数,求解高阶导数就是先求一阶,然后再用链式法则求2阶、3阶等。
苏州马小云2023-05-25 12:16:101

函数的高阶导数能说明什么呢

高阶导数说明前面低阶导数的性质,描述的是函数图像的特征。首先,如果k阶导数存在,那么前面的低阶导数都存在。同时k阶导数描述了k-1阶导数的变化率,同时描述了k-2阶导数函数图象的拐点。
tt白2023-05-25 12:16:103
 1 2  下一页  尾页