什么是调和级数?
什么叫调和级数? 形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是 p=1 的p级数。 调和级数是发散级数。珐n趋于无穷时其部分和没有极限(或部分和为无穷大)。 调和级数 是什么 调和级数 ∑ u(n) 满足: { 1/ u(n) } 为等差数列, 最简单的调和级数∑ 1/n 交错级数 ∑ u(n) , { u(n) } 是正负项相间的数列, 例如:∑ (-1)^n / n 什么叫调和级数和p级数? p级数指的是∑1/n^p,这个级数当且仅当p>1时收敛;p=1时就是调和级数就是∑1/n。 调和级数为什么叫做“调和”级数? 调和级数是一个发散的无穷级数。这个级数名字源于泛音及泛音列(泛音列与调和级数英文同为harmonic series):一条振动的弦的泛音的波长依次是基本波长的1/2、1/3、1/4……等等。调和序列中,第一项之后的每一项都是相邻两项的调和平均数;而“调和平均数”一词同样地也是源自音乐。 调和级数是什么 由调和数列各元素相加所得的和为调和级数,易得,所有调和级数都是发散于无穷的。精。。。。。锐。。。。。。教。。。。。。。师。。。。。。。为。。。。。你。。。。。。。。解。。。。。。。答。。。。。。 什么是调和级数?! 调和级数一般项趋于零,但是级数不收敛。大鱼炖火锅2023-05-22 18:12:561
什么是调和级数
是一个发散的无穷级数。调和级数是由调和数列各元素相加所得的和。早在14世纪,尼克尔·奥里斯姆已经证明调和级数发散,但知道的人不多。中世纪后期的数学家Oresme证明了所有调和级数都是发散于无穷的。但是调和级数的拉马努金和存在,且为欧拉常数。调和级数是数学中最古老和最基本的级数之一。它的名字来源于音乐中的调和音程,即两个音符的频率之比为整数比的音程。调和级数的性质在数学史上有着重要的地位,它与素数、欧拉常数、黎曼ζ函数等概念都有着密切的联系。meira2023-05-22 18:12:561
什么是调和级数?为什么?
形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是 p=1 的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).1 +1/2+1/3 +1/4 + 1/5+ 1/6+1/7+1/8 +... 1/2+1/2+(1/4+1/4)+(1/8+1/8+...gitcloud2023-05-22 18:12:561
调和级数求和公式是什么?
自然数的倒数组成的数列,称为调和数列,即:1/1+1/2+1/3+...+1/n 这个数组是发散的,所以没有求和公式,只有一个近似的求解方法: 1+1/2+1/3+......+1/n ≈ lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)当n很大时,有:1+1/2+1/3+1/4+1/5+1/6+...1/n = 0.57721566490153286060651209 + ln(n)0.57721566490153286060651209叫做欧拉常数 1+1/2+1/3+…+1/n是没有好的计算公式的,所有计算公式都是计算近似值的,且精确度不高。 自然数的倒数组成的数列,称为调和数列.人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)kikcik2023-05-22 18:12:561
什么是调和级数
取An=Σ1/an( 其中an为等差数列) 称An为调和级数最典型的调和级数也许是1/1+1/2+1/3+1/4+.......+1/n+.............另外,值得一提的是,调和级数虽然每一项都比前一项小,但却是发散的(证明方法很多,比如放缩法,映射法....)一个概念而已,没必要太认真韦斯特兰2023-05-22 18:12:561
调和级数收敛的证明
证明1、比较审敛法因此该级数发散。2、积分判别法通过将调和级数的和与一个瑕积分作比较可证此级数发散。考虑右图中长方形的排列。每个长方形宽1个单位、高1/n个单位(换句话说,每个长方形的面积都是1/n),所以所有长方形的总面积就是调和级数的和: 矩形面积和: 而曲线y=1/x以下、从1到正无穷部分的面积由以下瑕积分给出: 曲线下面积: 由于这一部分面积真包含于(换言之,小于)长方形总面积,长方形的总面积也必定趋于无穷。更准确地说,这证明了:这个方法的拓展即积分判别法。3、反证法假设调和级数收敛 , 则:但与 矛盾,故假设不真,即调和级数发散。扩展资料调和级数是各项倒数为等差数列的级数,通常指项级数各项倒数所成的数列(不改变次序)为等差数列。从第2项起,它的每一项是前后相邻两项的调和平均,故名调和级数。推而广之,具有这种性质的每一个级数,即形如的级数也称为调和级数,其中 a,b 是常数. 调和级数是发散的,但其部分和增长极慢。欧拉 (Euler,L.) 计算过 与 是等价无穷大,更准确地,有 其中 C=0.557 215... 是欧拉常数, 这是欧拉于1740 年发现的,更一般地,级数称为广义调和级数,亦简称调和级数,它的通俗名称是 p 级数,当 p>1 时收敛,p<=1 时发散。参考资料来源:百度百科-调和数列参考资料来源:百度百科-调和级数西柚不是西游2023-05-22 18:12:561
关于调和级数1/n
调和级数可以看做是一个每阶宽度为1,值为1/n的阶梯形下的面积和s1,而lnn则是1/x下的面积s2,随着n的增大,那个阶梯形和1/x的图象越来越接近,使s1与s2越来越接近,在极限的情况下它们之间的差是一个常数,叫做欧拉常数。你根据图像的关系可以加深对调和级数的理解kikcik2023-05-22 18:12:561
调和级数在哪本书里能学到
http://www.cnki.com.cn/Article/CJFDTotal-XUSJ199402002.htm《高等数学研究》 1994年02介绍调和级数发散性的两种证法调和级数 外文名称Harmonic series形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是 p=1 的p级数。 调和级数是发散级数。在n趋于无穷时其部分和没有极限(或部分和为无穷大)。 发源 1360年 学科 数学名称定义形如1/1+1/2+1/3+……+1/n+……的级数 又称p级数是发散级数 在n趋于无穷时没有极限很早就有数学家研究,比如中世纪后期的数学家Oresme在1360年就证明了这个级数是发散的。他的方法很简单:1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+...1/2+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+...注意后一个级数每一项对应的分数都小数调合级数中每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调合级数也是发散的。级数推导随后很长一段时间,人们无法使用公式去逼近调合级数,直到无穷级数理论逐步成熟。1665年Newton(牛顿)在他的著名著作<流数法>中推导出第一个幂级数:ln(1+x) = x - x2/2 + x3/3 - ...Euler(欧拉)在1734年,利用Newton的成果,首先获得了调和级数有限多项和的值。结果是:1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r为常量)他的证明是这样的:根据Newton的幂级数有:ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...于是:1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...代入x=1,2,...,n,就给出:1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - .........1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...相加,就得到:1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...+1/n^3) + ......后面那一串和都是收敛的,我们可以定义1+1/2+1/3+1/4+...1/n = ln(n+1) + rEuler近似地计算了r的值,约为0.577218。这个数字就是后来称作的欧拉常数。不过遗憾的是,我们对这个常量还知之甚少,连这个数是有理数还是无理数都还是个谜。关于思考调和级数是发散的,这是一个令人困惑的事情,事实上调和级数以令人不耐烦地慢向无穷大靠近,我们可以很容易的看到这个事实,因为S2n-Sn>1/2,而调和级数的第一项是1,也就是说调和级数的和要想达到51那么它需要有2的100次方那个多项才OK。而2的100次方这个项是一个大到我们能够处理范围以外的数字,在计算机元科学领域,这属于一个不可解的数。p-级数在P>1的时候是收敛的,也就是说对于任意ε>0,n的1+ε次方的倒数这个级数是收敛的,在我们直观上看来,好像调和级数下面的n只要大了一小点,或者说调和级数的每一项只要小一小点点,那么这个级数就是收敛的了,但是事实上并不是这样sin1/n这个级数的发散的,但是在1/n>0的时候,sin1/n<1/n是一个人尽皆知的事实,但是它却并不收敛,这个令人困惑的问题恰恰说明了一个问题,数轴上数的稠密性.在分母换成素数的时候又会产生两个令人困惑不解的事实:设所有的素数的倒数和为:s=1/2+1/3+1/5+1/7+1/11+...在我们直观的看来,素数比自然数要少的多,但是很不幸这个级数是发散的.但是在同时所有孪生素数的倒数和:b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+...这个级数是收敛的,现在这个常数就被称为布隆常数:b=1.90216054...另外一个我们取调和级数的一个子数列,例如取n=4k,级数仍然是发散的,但是这样却产生了另一个困惑,我们如果取n为所有不含有数字8的自然数,所得的级数是收敛的,这个事实可以这样解释,在无限的范围以内,每个自然数几乎含有所有的10个数字.可桃可挑2023-05-22 18:12:561
什么叫调和级数发散
问题一:为什么调和级数发散? 书上好多证明方法 反证 设前n项和sn,前2n项和s2n 假如调和级数收敛,有sn=s2n=a(常数) (级数收敛部分项和存在) s2n-sn=1/(n+1)+1/(n+2)+~1/2n≠0与s2n=sn=a矛盾 所以级数发散 问题二:为什么调和级数是发散的? 1+1/2+1/3+1/4+... 分段 =1+1/2+(1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10...+1/16)+... 放缩法,每个括号里统一分母 >1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+(1/16+1/16...+1/16)+... =1+1/2+2/4+4/8+8/16... =1+1/2+1/2+1/2+... 有无穷多个1/2 所以是趋于无穷大的 调和级数缩小后尚且趋于无穷大,说明调和级数本身也是趋于无穷大的,故发散。 问题三:证明调和级数发散,这个是什么意思?具体解释一下 对常数1/k进行积分,就可以获得结果为1/k,因为积分区间的长度为1. 问题四:什么叫调和级数? 形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是 p=1 的p级数。 调和级数是发散级数。珐n趋于无穷时其部分和没有极限(或部分和为无穷大)。 问题五:为什么调和级数是发散的? 30分 数列的收敛和级数的收敛是不一样的, 级数收敛是指它的部分和的极限存在 问题六:调和级数 是什么 调和级数 ∑ u(n) 满足: { 1/ u(n) } 为等差数列, 最简单的调和级数∑ 1/n 交错级数 ∑ u(n) , { u(n) } 是正负项相间的数列, 例如:∑ (-1)^n / n凡尘2023-05-22 18:12:561
什么叫调和级数和p级数?
p级数指的是∑1/n^p,这个级数当且仅当p>1时收敛;p=1时就是调和级数就是∑1/n。水元素sl2023-05-22 18:12:561
数列1/n收敛吗?它和调和级数1/n有什么区别吗?
这是两个不同的概念数列1/n收敛,收敛于0调和级数1/n发散,这指的是∑1/n(级数收敛指:当部分数列和{Sn}收敛于s时收敛)建议别在百度知道问问题,作业帮里的人比这靠谱多了小菜G的建站之路2023-05-20 17:38:213
调和级数约等于ln(n)+欧拉常数 是怎样推导的?
因为lim(n→∞)∑1/n-lnn=欧拉常数小白2023-05-19 20:19:291