- 此后故乡只
-
已知概率密度函数,它的期望:
已知概率密度函数,它的方差:
扩展资料:
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。
如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
- bikbok
-
给,我们学校的课件,幸好我还留着。233
概率密度函数怎么求呢?
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量X,其分布函数为F(x),概率密度为f(x)。可以按照下面的思路计算概率密度:由定义F(x)=∫[-∞,x]。f(y)dy可知F"(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。2023-07-17 02:38:091
数学概率密度函数
y的积分范围 x<y<=1-x若x>=1-x则无法达成, x>=1/2时与上述相斥,所以x<1/2P(X+Y<=1)=∫(0~1/2)∫(1-x~x) e^(-y) dydx =∫(0~1/2)e^(x-1)-e^(-x) dx =e^(x-1)+e^(-x)|(0~1/2) =2e^(-1/2)-e^(-1)-12) 连续型联合密度函数在任何一条线上概率都是03)fX(x)= ∫(x~无穷)e^(-y) dy (x>0) = 0-(-e^(-x)) =e^(-x) fY(y)=∫(0~y)e^(-y) dx (y>0) =e^(-y)y4)P(X>2,Y<4)=∫(2~4)∫(x~4) e^(-y) dy dx= ∫(2~4)-e^(-4)+e^(-x) dx=-2e^(-4)+(-e^(-4)+e^(-2))=-3e^(-4)+e^(-2)P(X>2)=∫(2~无穷)e^(-x) dx=e^(-2)P(X>2)/P(X>2,Y<4)=[e^(-2)-3e^(-4)]/e^-2=1-3e^(-4)2023-07-17 02:38:181
概率密度函数的性质
这里指的是一维连续随机变量,多维连续变量也类似。随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。密度函数f(x) 具有下列性质:① ;② ;③2023-07-17 02:38:271
概率密度函数的性质
简单分析一下,详情如图所示2023-07-17 02:38:522
卡方分布的概率密度函数是什么?
卡方分布(χ2分布)是概率论与统计学中常用的一种概率分布。k个独立的标准正态分布变量的平方和服从自由度为k的卡方分布,卡方分布常用于假设检验和置信区间的计算。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。二项分布:在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。2023-07-17 02:39:471
这种概率密度函数是怎么出来的?
在分布函数F(x)中对x求导就得到密度函数f(x)。密度函数f(x)是分布函数的导数。 函数在数学中为两不为空集的集合间的一种对应关系为,输入值集合中的每项元素皆能对应唯一一项输出值集合中的元素。函数概念含有三个要素,包括定义域2023-07-17 02:39:541
概率密度函数有什么几何意义?
要了解这个 先得知道密度的意义 概率密度就是用概率的大小除以相应变量在那一段的大小 举个例子 就类似与一把尺子 有个点要在尺子上出现 但在尺子上每点出现概率是不一样的 需要用个函数表示 概率密度函数在对应段的积分就是相应段出现的点的概率2023-07-17 02:40:031
已知概率密度函数怎么求它的数学期望和方差
x是均匀分布期望:EX=(a-a)/2=0方差:DX=(a+a)^2/12=(a^2)/32023-07-17 02:40:102
正态分布概率密度函数公式是什么?
这是标准正态分布密度函数(如图):如果是计算概率,那就要用分布函数,但是它的分布函数是不能写成正常的解析式的。一般的计算方法就是,将标准正态分布函数的分布函数在各点的值计算出来制成表,实际计算时通过查表找概率。非标准正态分布函数可以转换成标准正态分布再算。简介μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。本词条的正态分布是一维正态分布,此外多维正态分布参见“二维正态分布”。2023-07-17 02:40:341
如何判断某个函数是否可作为某随机变量的概率密度
简单分析一下即可,详情如图所示2023-07-17 02:40:492
正态分布的密度函数怎么求?
正态分布的密度函数怎么求?正态分布的密度函数可以用下面的公式表示:f(x) = 1/√2πσexp[-(x-μ)^2/2σ^2] 其中 μ 是均值, σ 是标准差。2023-07-17 02:41:331
概率密度函数的特征函数
对概率密度函数作傅里叶变换可得特征函数。特征函数与概率密度函数有一对一的关系。因此知道一个分布的特征函数就等同于知道一个分布的概率密度函数。2023-07-17 02:41:501
泊松分布的概率密度函数和累计密度函数是什么
P{X=k}= (λ“-k" e"-λ")/k! k =0,1,2… λ >0; 0 λ <0;引号内为上标。。。其余自己推。2023-07-17 02:42:063
如果知道分布函数怎么求密度函数
对密度函数求定积分,即F(x)=∫[-∞,x]f(x)dx。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。把-a带进去 -Aa+B=0 ,把a带进去 Aa+B=1 ,联立解出 AB给F求导就得出的是密度函数!f=a 定义域和上面是对应的!2023-07-17 02:42:185
概率论,密度函数
。int_{-infty}^{infty} f_ (x),dx = 1。随机变量x在区间上的概率可以由其概率密度函数的定积分表示: p[a< xle b]=int_^ f_x (x),dx。而f(x)=p[x是x的累积分布函数,显然概率密度函数是它的导函数。[编辑]应用由机率密度函数可以求出期望值、变异数等矩量。期望值(一阶矩):e[x]=int_{-infty}^{infty} xf(x),dx 。变异数(二阶矩):var[x]=int_{-infty}^{infty} (x-e[x])^2f(x),dx 。[编辑]特征函数。对机率密度函数作傅利叶转换可得特徵函数。特徵函数与机率密度函数有一对一的关系。因此知道一个分布的特徵函数就等同於知道一个分布的机率密度函数。2023-07-17 02:42:521
如何判断概率密度函数
f(x)是随机变量的密度,当且仅当 1)f(x)>=0; 2)f(x)从-∞到+∞积分为1.2023-07-17 02:43:011
如何快速掌握概率密度函数?
大多数情况下,概率密度函数f(x)就是分布函数F(x)的导数,即dF(x0)=f(x0)dx,所以变量x落在x0附近的概率就是区间长乘f(x0)。考虑一个经典的扔小球的模型:将某一区间分成n份并向其中随机地扔球,那么f(x)越大,在点x附近的球就越多,也就是说,f(x)是小球的“密度”。考虑一个密度分布不均匀的小球,总质量为1,概率密度就相当于这个小球某处的密度,值是可以大于1的,但是这个密度乘以体积所得的质量是恒小于等于1的。然后至于概率密度越大的点,说明单位体积落在该点的质量越大。概率密度函数对系统的随机性能有更为全面的描述,因此文中将连续随机变量非线性函数的概率密度函数作为研究对象,提出一种引入辅助随机变量求解非线性密度函数的方法。首先,针对随机变量的密度函数,利用概率密度演化方法。通过引入时间变量使问题转换为关于联合概率密度的偏微分方程,获取边缘密度得到函数的解析解,而对于部分密度函数的广义函数,则需引入辅助随机变量对函数进行数值积分后通过傅里叶变换获取概率密度;其次,对于非线性系统的概率密度函数,提出基于非线性系统的状态变量子空间法。在任意一子空间上对FPK方程进行积分获取低维的FPK方程,通过等效线性化处理达到表述非线性概率密度函数的目的.实验证明,通过对非线性概率密度函数的有效研究可为非线性系统控制提供可靠的理论基础。2023-07-17 02:43:101
概率密度函数
f(x)、g(x)、h(x)分别在负无穷到正无穷上积分得1af(x)+bg(x)+ch(x)在负无穷上到正无穷上积分也必须得1由积分的性质可知af(x)+bg(x)+ch(x)在负无穷上到正无穷上积分=a+b+c=1 因为是概率密度函数,概率密度函数在其整个积分域上的积分是得1的。概率密度函数积分是分布函数,整个积分域积分就相当于分布函数在整个域上的概率,因此必须为1.2023-07-17 02:43:282
均匀分布的概率密度函数是什么?
均匀分布的概率密度函数是f(x)=1/(b-a)。在概率论和统计学中,均匀分布(矩形分布),是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。概率论分析均匀分布对于任意分布的采样是有用的。 一般的方法是使用目标随机变量的累积分布函数(CDF)的逆变换采样方法。 这种方法在理论工作中非常有用。 由于使用这种方法的模拟需要反转目标变量的CDF,所以已经设计了cdf未以封闭形式知道的情况的替代方法。 一种这样的方法是拒收抽样。正态分布是逆变换方法效率不高的重要例子。 然而,有一个确切的方法,Box-Muller变换,它使用逆变换将两个独立的均匀随机变量转换成两个独立的正态分布随机变量。在模数转换中,发生量化误差。 该错误是由于四舍五入或截断。 当原始信号比一个最低有效位(LSB)大得多时,量化误差与信号不显着相关,并具有大致均匀的分布。 因此,RMS误差遵循该分布的方差。2023-07-17 02:43:491
概率密度函数和概率密度的区别在哪里?
两者的定义 概率密度函数:用于直观地描述连续性随机变量(离散型的随机变量下该函数称为分布律),表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。连续样本空间情形下的概率称为概率密度,当试验次数无限增加,直方图趋近于光滑曲线,曲线下包围的面积表示概率,该曲线即这次试验样本的概率密度函数。 分布函数:用于描述随机变量落在任一区间上的概率。如果将x看成数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示x落在区间(-∞上的概率。分布函数也称为概率累计函数。 区别 分布函数是概率密度函数从负无穷到正无穷上的积分; 在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;分布函数的函数值y则表示x落在区间(-∞上的概率。2023-07-17 02:44:021
什么是函数的概率密度
给定X是随机变量,如果存在一个非负函数f(x),使得对任意实数a,b(a<b)有P(a<X≤b)=∫f(x)dx,(积分下限是a,上限是b)则称f(x)为X的概率密度函数。这里指的是一维连续随机变量,多维连续变量也类似。2023-07-17 02:44:122
关于一个概率密度函数的求法
这个有公式的啊fy(y)=fx[h(y)]|h"(y)|fy(y)是所求密度函数fx(x)是原密度函数,x=h(y),是y(x)的反函数2023-07-17 02:44:211
概率密度函数怎么求?
概率密度函数:在数学中,连续型随机变里的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变里的输出值,在某个确定的取值点附近的可能性的函数。公式:其中入>0是分布的一个参数,常被称为率参数(rate par ameter)。即每单位时间内发生某事件的次数。指数分布的区间是[o, oo)。如果一个随机变里X呈指数分布,则可以写作:x~Exponential(入 )。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。2023-07-17 02:45:111
概率密度函数是什么意思?
0和y就是指定y时联合概率密度非零区域的左右边边界,如果求X的边缘概率密度就要用上下边界了。连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。扩展资料:由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。2023-07-17 02:45:311
概率密度函数如何求解?
具体解法如下:解题思路:由已知出发得到想要的信息再进一步解答。需要注意的是:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。扩展资料概率密度函数的相关性质:随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。连续型随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。参考资料来源百度百科-概率密度函数百度百科-概率密度2023-07-17 02:46:061
概率密度函数怎么求??
概率密度函数是针对连续性随机变量而言的,假设对于连续性随机变量x,其分布函数为f(x),概率密度为f(x)首先,对于连续性随机变量x,其分布函数f(x)应该是连续的,然而你给出的这个函数在x=-1,x=1点都不连续,所以是没有概率密度函数的,可能你在求解分布函数的时候求错了!如果f(x)求正确了,你可以按照下面的思路计算概率密度:由定义f(x)=∫[-∞,x]f(y)dy可知f"(x)=f(x),也就是分布函数的导数等于概率密度函数,所以你只需要在原来求出的分布函数基础上求导即可得到概率密度函数。希望对你有帮助,如果满意请采纳!2023-07-17 02:46:241
什么叫概率密度函数
在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。2023-07-17 02:46:321
概率密度函数是什么?
概率密度函数:在数学中,连续型随机变里的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变里的输出值,在某个确定的取值点附近的可能性的函数。公式:其中入>0是分布的一个参数,常被称为率参数(rate par ameter)。即每单位时间内发生某事件的次数。指数分布的区间是[o, oo)。如果一个随机变里X呈指数分布,则可以写作:x~Exponential(入 )。分布:在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。2023-07-17 02:47:451
概率密度函数公式
n的分布函数g(n)n的概率密度函数g(n)ε的分布函数f(ε)ε的概率密度函数f(ε)f(ε)=1,0<=ε<=1f(ε)=0,其他g(n)=p{n<=n}=p{3ε+1<=n}p=p{ε<=(n-1)/3}=f((n-1)/3)对其求导g(n)=1/3*f((n-1)/3)当1<=n<=4g(n)=1/3*1=1/3当n<1或n>4g(n)=1/3*0=02023-07-17 02:48:121
概率密度函数怎么计算啊?
Y的概率密度函数为当1<y<3时,P(y)=1/2,y取其他值时,P(y)=0。解:令Y的分布函数为FY(y)。因为Y=2X+1,则FY(y)=F(Y≤y)=F(2X+1≤y)=F(X≤(y-1)/2)。当(y-1)/2≤0时,即y≤1时,F(Y≤y)=F(X≤(y-1)/2)=0。当0<(y-1)/2<1时,即1<y<3时,F(Y≤y)=F(X≤(y-1)/2)=∫(0,(y-1)/2)dx=(y-1)/2。当(y-1)/2≥1时,即y≥3时,F(Y≤y)=F(X≤(y-1)/2)=1。所以Y的概率密度函数为当y≤1时,P(y)=(0)"=0。当1<y<3时,P(y)=((y-1)/2)"=1/2。当y≥3时,P(y)=(1)"=0。因此随机变量Y服从(1,3)上的均匀分布。扩展资料:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。参考资料来源:百度百科-概率密度2023-07-17 02:48:181
怎么求概率密度函数?怎样求概率密度函数?
1,先求分布函数: Y肯定是分布在(1,e)上的,X=ln(Y)服从均匀分布 F(X)=P(x<=X)=X; // X在(0,1)上服从均匀分布 P(ln(y)<=X)=X; // 代入x=ln(y),注意是小写的 P(y<=e^X)=X;// 内部条件变换为以y为变量的 P(y<=Y)=ln(Y);// 代入X=ln(Y),注意是大写的 即F(Y)=P(y<=Y)=ln(Y)。 2,再求概率密度: f(y)=F"(Y)=1/Y;// 概率密度为分布函数的导数 3,检查Y变量的取值 没有重叠,没有超出,原解正确2023-07-17 02:48:351
什么是密度函数呀?
密度函数指概率密度函数。密度函数是一段区间的概率除以区间长度,值为正数,可大可小;而分布函数则是可以使用数学分析方法研究随机变量的一种曲线。密度函数一般只针对连续型变量,而分布函数则是既针对连续型也针对离散型随机变量。求解分布函数的时候要进行分类讨论和定积分计算,求解密度函数的时候需要进行求导。概率密度和分布函数的区别是概念不同、描述对象不同、求解方式不同。1、概念不同:概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小;分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。2、描述对象不同:概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型。3、求解方式不同:已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。对离散型随机变量而言,如果知道其概率分布(分布列),也可求出其分布函数;当然,当知道其分布函数时也可求出概率分布。2023-07-17 02:49:531
概率密度函数
连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。注意事项:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。2023-07-17 02:50:091
概率密度函数是怎样的?
概率密度函数(probability density function, PDF)是用来描述一个随机变量的概率分布的函数。它满足以下性质:非负性:对于任意的x,f(x) >= 0总和为1:∫f(x)dx = 1 (对连续型随机变量)概率为面积:P(a <= X <= b) = ∫b a f(x)dx (对连续型随机变量)不同的概率分布对应不同的概率密度函数,如正态分布对应高斯分布。2023-07-17 02:50:252
概率密度函数性质是什么?
性质:这里指的是一维连续随机变量,多维连续变量也类似。随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。2023-07-17 02:50:421
随机变量的概率密度函数怎么求
代入公式。在[a,b]上的均匀分布,期望=(a+b)/2,方差=[(b-a)^2]/2。代入直接得到结论。如果不知道均匀分布的期望和方差公式,只能按步就班的做:期望:EX=∫{从-a积到a} xf(x) dx=∫{从-a积到a} x/2a dx=x^2/4a |{上a,下-a}=0E(X^2)=∫{从-a积到a} (x^2)*f(x) dx=∫{从-a积到a} x^2/2a dx=x^3/6a |{上a,下-a}=(a^2)/3方差:DX=E(X^2)-(EX)^2=(a^2)/3扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件参考资料来源:百度百科-数学期望2023-07-17 02:52:371
概率密度函数怎么做
具体解法如下:解题思路:由已知出发得到想要的信息再进一步解答。需要注意的是:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。扩展资料概率密度函数的相关性质:随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。连续型随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。参考资料来源百度百科-概率密度函数百度百科-概率密度2023-07-17 02:52:501
Y的概率密度函数表达式是什么?
Y的概率密度函数为当1<y<3时,P(y)=1/2,y取其他值时,P(y)=0。解:令Y的分布函数为FY(y)。因为Y=2X+1,则FY(y)=F(Y≤y)=F(2X+1≤y)=F(X≤(y-1)/2)。当(y-1)/2≤0时,即y≤1时,F(Y≤y)=F(X≤(y-1)/2)=0。当0<(y-1)/2<1时,即1<y<3时,F(Y≤y)=F(X≤(y-1)/2)=∫(0,(y-1)/2)dx=(y-1)/2。当(y-1)/2≥1时,即y≥3时,F(Y≤y)=F(X≤(y-1)/2)=1。所以Y的概率密度函数为当y≤1时,P(y)=(0)"=0。当1<y<3时,P(y)=((y-1)/2)"=1/2。当y≥3时,P(y)=(1)"=0。因此随机变量Y服从(1,3)上的均匀分布。扩展资料:单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。参考资料来源:百度百科-概率密度2023-07-17 02:53:061
正态分布的概率密度函数是多少?
这是标准正态分布密度函数(如图):如果是计算概率,那就要用分布函数,但是它的分布函数是不能写成正常的解析式的。一般的计算方法就是,将标准正态分布函数的分布函数在各点的值计算出来制成表,实际计算时通过查表找概率。非标准正态分布函数可以转换成标准正态分布再算。正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。2023-07-17 02:53:231
概率密度函数的常见定义
对于一维实随机变量X,设它的累积分布函数是 ,如果存在可测函数 满足: ,那么X是一个连续型随机变量,并且 是它的概率密度函数。连续型随机变量的概率密度函数有如下性质:如果概率密度函数fX(x)在一点x上连续,那么累积分布函数可导,并且它的导数:由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。2023-07-17 02:53:441
如何求概率密度f(x)
概率密度函数仅对连续型(或者分段连续)的随机变量有意义,如果有连续型随机变量的分布函数F(x),对其求导即为其概率密度函数f(x)2023-07-17 02:54:121
夏朝的建立者是谁?
夏朝建立者是启。夏朝(约前2070年/2030年—约前1600年。)是中国传统史书中记载的第一个中原部族世袭制朝代。一般认为夏朝是多个部落联盟或复杂酋邦形式的国家。根据史书记载,禹传位于子启,改变了原始部落的禅让制,开创中国近四千年世袭的先河。因此中国历史上的“家天下”,从夏朝的建立开始。舜把王位禅让给禹,禹在涂山召集部落会盟,再次征讨三苗。据《左传》记载“执玉帛者万国”参加了涂山会盟,可见夏部落的号召力。依据史书记载,夏、商、周三代皆为封建王朝,君主与诸侯分而治之,而夏朝是第一个世袭的氏族封建王朝。夏时期的文物中有一定数量的青铜和玉制的礼器,其年代约在新石器时代晚期、青铜器时代初期。扩展资料:益继位后,有些部族并没有臣服益,而拥护启,并对益的部族展开战争,最后启胜而夺得权位。之后益率领着东夷联盟讨伐启。经过几年的斗争后,启确立了他在部族联盟中的首领地位“,但其共同观点是“公天下”变成了“家天下”。从此,禅让制被世袭制所取代。这标志着漫长的原始社会被私有制社会所替代,应该说是历史的一个进步。但是,一种新制度的建立,必然会遭到部分反对。夏朝是城邦联盟到封建国家的过渡期,因此没有明确的疆域。夏氏族与其他城邦的关系很多就像是宗主国与朝贡国一样,但又有些方国是受夏室分封的,就如同诸侯国,故仅能以势力范围来表示其影响力。参考资料来源:百度百科-夏朝2023-07-17 02:51:411
桃花源记背景是什么?
桃花源记背景:陶渊明虽远在江湖,仍旧关心国家政事。元熙二年(420年)六月,刘裕废晋恭帝为零陵王,改年号为“永初”。次年,刘裕采取阴谋手段,用棉被闷死晋恭帝。这些不能不激起陶渊明思想的波澜。他从固有的儒家观念出发,产生了对刘裕政权的不满,加深了对现实社会的憎恨。但他无法改变、也不愿干预这种现状,只好借助创作来抒写情怀,塑造了一个与污浊黑暗社会相对立的美好境界,以寄托自己的政治理想与美好情趣。《桃花源记》就是在这样的背景下创作的。桃花源记的作品鉴赏《桃花源记》通过对桃花源的安宁和乐、自由平等生活的描绘,表现了作者追求美好生活的理想和对现实生活的不满。陶渊明作诗,擅长白描,文体省净,语出自然。《桃花源记》也具有这种艺术风格。它虽是虚构的世外仙境,但由于采用写实手法,虚景实写,给人以真实感,仿佛实有其人,真有其事。全文以武陵渔人行踪为线索,像小说一样描述了溪行捕鱼、桃源仙境、重寻迷路三段故事。此文艺术构思精巧,借武陵渔人行踪这一线索,把现实和理想境界联系起来。采用虚写、实写相结合手法,也是其一个特点。增添了神秘感。语言生动简练、隽永,看似轻描淡写,但其中的描写使得景物历历在目,令人神往。文章有详有略,中心突出。2023-07-17 02:51:511
夏朝是谁建立的?
u200d《战国策》记载:“启与支党攻益(禹晚年培养的接班人),而夺之天下,是禹名传天下于益,其实令启自取之。”汉代《史记》写道:“益让帝禹之子启。”司马迁记述的是益主动禅让给了启,而《战国策》记载,启暴力夺位。这个根据当时的历史特点来决定的。因为《战国策》的时代离夏朝应该也有2000年左右,《史记》比《战国策》更后。u200du200d关于禅让制也是有很多不同的说法的。儒家主导的看法就是上古君主都很贤明,会选择有能力的继承者,而竹书纪年则表明禅让制就是上古的政治斗争。如果禅让制没有想象的那么美好,自然禹改禅让制为世袭制也不是多大的罪过,反而让社会避免了高频率的政权交替。历史叙述具有主观性。2023-07-17 02:52:063
相命肆农耕……于何劳智慧? 这些诗句描绘了怎样的社会情景?
安闲,快乐2023-07-17 02:52:124
中国夏朝是谁建立的?
对于这个问题,中国学术届有争议,目前公认的是启建立的夏! 一、支持“夏”是由禹建立的观点 在《中国古代史》(高等院校文科教材上册,福建人民出版社,1985年版)中,朱绍侯先生认为:“夏王朝的建立,从禹开始。”大禹在确立王权的过程中,有继续“征伐三苗”,取得“夏后”地位。在取得王权后,在嵩阳建阳城(河南登封县告成城)建都,之后,对不服从的部落进行了打击,杀防风氏。为巩固王权,禹又沿颍水南下,在淮水中游的涂山,大会夏、夷诸多邦国或部落首领,这称之为“涂山之会”,是所谓“禹合诸侯于涂山,执玉帛者万国”,原来众多部落的首领,到此时,已大都转化为世袭贵族,分别成为各个邦国的君长。他们前来参加大会,对禹朝贡,行臣服的礼节,成为王朝统治下的诸侯。这次大会,乃是夏王朝正式建立的重要标志。 二、夏朝是启建立的观点 在《中国古代史新编》一书中,(陕西人民出版社,赵文润主编)在“夏朝的建立”这部分内容里,作者赵文润先生对国家的概念作了三方面的概括:(一)国家赖以存在的地域规模大体稳定;(二)经过原始社会末期部落之间的战争,产生了一个比较稳定的最高统治集团;(三)这一集团使赋予他权力的居民成为被统治者并向居民征收贡赋。赵先生认为,“大禹治水”,“使黄河中下游形成一个先进的经济共同体雏形。”在“禅让制”的权力交接过程中,“禹以皋陶为继承人;皋陶卒,禹又以伯益为继承人。禹崩,禹子启贤,而益威望不够,于是诸部落酋长以启为天子。中原部落联盟酋长一职由禅让变为父死子继,这是把一国变成一家私有的开始,也是中国的第一个国家——夏王朝诞生的标志。赵先生认为,禹传子位,并非禹本意,禹作为部落联盟首领时,仍未将一国据为己有,而推举的皋陶早卒,伯益威望才能又不及启,启才轻而易举取得王位,从此,原始社会“公天下”的历史结束,是启开创了“家天下”的历史,夏朝理应是“启”建立的。2023-07-17 02:52:121
《桃花源记》描述的是怎样的场景
《桃花源记》描述的是远离俗世和尘嚣,自给自足、悠闲恬淡的田园生活。桃林的尽头就是溪水的发源地,于是便出现一座山,山上有个小洞口,洞里仿佛有点光亮。于是他下了船,从洞口进去了。起初洞口很狭窄,仅容一人通过。又走了几十步,突然变得开阔明亮了。(呈现在他眼前的是)一片平坦宽广的土地,一排排整齐的房舍。还有肥沃的田地、美丽的池沼,桑树竹林之类的。田间小路交错相通,鸡鸣狗叫到处可以听到。人们在田野里来来往往耕种劳作,男女的穿戴跟桃花源以外的世人完全一样。老人和小孩们个个都安适愉快,自得其乐。村里的人看到渔人,感到非常惊讶,问他是从哪儿来的。渔人详细地做了回答。村里有人就邀请他到自己家里去(做客)。设酒杀鸡做饭来款待他。村里的人听说来了这么一个人,就都来打听消息。他们自己说他们的祖先为了躲避秦时的战乱,领着妻子儿女和乡邻来到这个与人世隔绝的地方,不再出去,因而跟外面的人断绝了来往。他们问渔人现在是什么朝代,他们竟然不知道有过汉朝, 更不必说魏晋两朝了。渔人把自己知道的事一一详尽地告诉了他们,听完以后,他们都感叹惋惜。其余的人各自又把渔人请到自己家中,都拿出酒饭来款待他。渔人停留了几天,向村里人告辞离开。村里的人对他说:“我们这个地方不值得对外面的人说啊!”渔人出来以后,找到了他的船,就顺着旧路回去,处处都做了标记。到了郡城,到太守那里去,报告了这番经历。太守立即派人跟着他去,寻找以前所做的标记,终于迷失了方向,再也找不到通往桃花源的路了。2023-07-17 02:51:261
谁建立的夏朝?
夏朝(约公元前21世纪-公元前16世纪):中国史书记载的第一个世袭王朝,也是公认的中国第一个王朝。这是一个由许多部落联盟组成的国家。出土的夏朝文物,包括一定数量的青铜和玉器礼器,年代为新石器时代晚期至青铜时代早期。 据史料记载,玉川位于子琪,改变了原始部落的退位制度,开创了中国近四千年传承的先河,成为中国历史上的“天下之家”。2023-07-17 02:51:263
桃花源记描绘了一幅怎样的生活图景
百姓安居乐业,与喧嚣的尘世相隔绝2023-07-17 02:51:023
夏朝的建立者
夏朝建立者是启。夏朝(约前2070年/2030年—约前1600年)是中国传统史书中记载的第一个中原部族世袭制朝代。一般认为夏朝是多个部落联盟或复杂酋邦形式的国家。依据史书记载,夏、商、周三代皆为封建王朝,君主与诸侯分而治之,而夏朝是第一个世袭的氏族封建王朝。夏时期的文物中有一定数量的青铜和玉制的礼器,其年代约在新石器时代晚期、青铜器时代初期。政治特点夏朝军事制度的具体情况因史料匮乏,难以考证,只得从战争史中窥视夏朝的军事制度。《甘誓》启与有扈氏的战争的叙述中提到夏后召令六卿,六卿是六路军队之将领的统称,六卿各领一军,夏后拥有最高军权,指挥六卿,可见夏时已有军权集中的制度。夏代,社会上下开始形成阶级,艺术品亦随之分化。广众的下层人民使用的器物造型实用,纹饰简单,向朴素的审美方向发展。而上层贵族王亲垂青的礼器向着纹饰复杂、造型万变的方向演变。下层器皿纹饰以简单的几何图纹居多,或有牲畜纹、鱼纹等一些与农业生产相关的题材。2023-07-17 02:50:481