圆锥

圆锥体积公式

01 圆锥体积公式 是V=(1/3)π(r^2)h或1/3sh,π为圆周率,约等于3.14,r为底面圆的半径,h为圆锥的高,圆锥体积等于等底等高的圆柱体积的三分之一。 02 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3,根据圆柱体积公式V=Sh/3(V=πr2*h),得出圆锥体积公式V=1/3Sh。 03 圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。 04 关于圆锥的所有公式: S表=πr^2+πrR(r是底面半径,R是母线)。 S侧=πrR(r是底面半径,R是母线)。 V体=1/3Sh(S是底面积,h是圆锥高)弧长:nπR/180,扇行面积:nπR^2/360。
北营2023-05-13 08:33:451

圆锥体的体积怎么求?

圆锥的五个公式是:圆锥的底面积=圆的面积(π×r×r)或(π (d÷2)×(d÷2)(圆锥只有一个底面)。圆锥的体积:V=sh÷3(S是底面积,h是圆锥高)。圆锥全面积=πr²+πrl。侧面展开图面积=1/2×2πr×l=πrl(r是底面半径,l是母线)。侧面展开图弧长=底面圆周长=2πr=πd。圆锥的五个公式是:V=1/3πr²h,S表=S侧+S底,S侧=πRL,S扇=n/360πr²,L=nπR/180。圆锥是一种几何图形。其解析几何定义是:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。另外其立体几何定义是:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。圆锥的物体:圣诞帽。酒杯,灯罩,喇叭屋顶,陀螺,火箭头,子弹头生物,螺类玩具,陀螺用具,漏斗食品,蛋卷冰淇淋,路障,螺类动物是圆锥体的。如田螺、海螺、钉螺。在日常生活中,圆锥形物体有:雪糕筒,圣诞帽,有一些环保纸杯,圆锥形的大喇叭,漏斗,麦草堆,斗笠,羽毛球,漏斗,窝窝头,铅笔尖,妙脆角。
LuckySXyd2023-05-13 08:33:451

圆锥怎么求体积

圆锥的体积 [编辑本段] 一个圆锥所占空间的大小,叫做这个圆锥的体积. 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3 根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。 圆锥的表面积 [编辑本段] 一个圆锥表面的面积叫做这个圆锥的表面积. 圆锥的计算公式 [编辑本段] 圆锥的侧面积=高的平方*π*百分之扇形的度数 圆锥的侧面积=1/2*母线长*底面周长 圆锥的表面积=底面积+侧面积 S=πr的平方+πra (注a=母线) 圆锥的体积=1/3SHS 或 1/3πr的平方h 圆锥的其它概念 [编辑本段] 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高 圆锥的侧面积: 将圆锥的侧面积不成曲线的展开,是一个扇形
康康map2023-05-13 08:33:451

圆锥的体积公式

sh/3
gitcloud2023-05-13 08:33:454

圆锥的体积公式怎么算?

圆锥的体积公式是:V=1/3Sh或V=1/3πr²h,其中,S是底面积,h是高,r是底边半径
FinCloud2023-05-13 08:33:451

圆锥体体积公式是怎么来的

要用微分思想把它无限分割成小立方体,再积分.这跟三角形面积一个道理,以后微积分会学
墨然殇2023-05-13 08:33:457

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体体积的1/3 (V=1/3Sh) 圆柱体体积等于圆柱体底面积——圆的面积乘以高 (V=Sh) 圆的面积等于半径的平方乘以3.14 (S=πr²) 所以圆锥的体积为: V=1/3πr²h
Jm-R2023-05-13 08:33:451

圆锥的体积怎么求?

圆锥体的体积=底面积×高×1/3(圆锥的体积是等底等高圆柱体的三分之一)   圆柱体的表面积=高×底面周长+底面积   即S圆锥体=πr2+h2×dπ+πr2编辑本段圆锥的体积  一个圆锥所占空间的大小,叫做这个圆锥的体积.   一个圆锥的体积等于与它等底等高的圆柱的体积的1/3   根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:   V=1/3Sh(V=1/3SH)   S是底面积,h是高,r是底面半径。
左迁2023-05-13 08:33:451

圆锥的体积怎么算?举个例子

圆锥体积=底面积 X 高 X 1/3
苏萦2023-05-13 08:33:453

如何算圆柱、圆锥的侧面积

圆柱侧面积公式(1/2)(2πr)l=πrl,圆柱高为 h ,底面圆半径为r ,可表示为S侧=ch=兀dh=2兀rh。圆柱侧面积公式圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^) 圆锥侧面展开图是一个扇形,半径为l,弧长为2πr 圆锥侧面积=(1/2)(2πr)l=πrl 圆柱高为 h 底面圆半径为r 可表示为 S侧=ch=兀dh=2兀rh其他重要公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=παr2/360-b/2·[r2-(b/2)2]1/2=r(l-b)/2+bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体S1-上底面积
Ntou1232023-05-13 08:33:231

圆锥的侧面在哪里

圆锥的侧面在直角三角形的直角边所在直线为旋转轴,垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面,不垂直于轴的边都叫做圆锥的母线。生活中沙堆、漏斗、帽子、陀螺、斗笠、铅笔头、钻头、铅锤等都可以近似地看作圆锥。圆锥在日常生活中也是不可或缺的。
真颛2023-05-13 08:33:231

圆锥侧面积怎么算?

水元素sl2023-05-13 08:33:235

圆锥的侧面积公式是什么?

正圆锥的侧面积公式:S=πrl,S为侧面积。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。其他条件下,圆锥的侧面积可用以下公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数);2、圆锥的侧面积=1/2×母线长×底面周长;3、圆锥的侧面积=π×底面圆的半径×母线。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。因为圆锥侧面展开图是一个扇形,根据扇形的面积公式:扇形的面积等于圆心角,圆周率与扇形的半径的平方的积,除以360度;即扇形的面积是圆的面积分成360分之后,得到圆心角等于1度的扇形的面积,再乘以原扇形的圆心角。这样就可以得到圆锥侧面积最原始的公式。只要知道圆锥侧面展开图得到的扇形的圆心角以及圆锥的母线,圆锥的母线就是展开得到的扇形的半径,就可以求圆锥的侧面积了。圆锥体的特点1、侧面展开是一个扇形;2、只有下底为圆。所以从正上面看是一个圆;3、从侧面水平看是一个等腰三角形;4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥;5、圆锥体是轴对称的;6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形;7、所有母线的长度都相等;母线的长度大于锥体的高。
铁血嘟嘟2023-05-13 08:33:221

圆锥的侧面积

水元素sl2023-05-13 08:33:221

圆锥的侧面积公式

圆锥体的侧面积公式出现两种:S=1/2RL。(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL。 (R为圆锥体底面圆的半径,L为圆锥的母线长)都是正确的,只是途径不一样。求圆锥体的侧面积,先要把圆锥体变形。设想沿着圆锥一条母线剪断,然后展开,可以得到一个扇形,求它的面积就可以了。求扇形面积有两种方法,结果就有了以上两种不同的表达式。表达式 1利用积分原理。设想扇形是由若干n个等腰三角形拼成,这些三角形是足够小,使得其底边长 = R/n (R是圆锥体地面圆的周长,即扇形的弧长),高 = 侧边长L(L为扇形的半径,亦为圆锥体的母线)。则扇形面积S = n(三角形个数) X s(单位等腰三角形的面积)= n X (1/2 X R/n X L) = 1/2RL表达式 2利用弧长。扇形面积 / 圆总面积 = 弧长 / 圆周长扇形面积S = 圆总面积(扇形所属圆) X (弧长 / 圆周长)= 圆总面积 X (圆锥地面周长 / 扇形所属圆形周长)= πL2(L为母线长) X (2πR / 2πL)= πLR
NerveM 2023-05-13 08:33:221

圆锥的侧面积公式

圆锥体的侧面积公式出现两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)都是正确的,只是途径不一样.
LuckySXyd2023-05-13 08:33:221

圆锥的底面和侧面相交成一个什么线

圆锥的侧面与底面相交成一条线,成圆形.
善士六合2023-05-13 08:33:222

圆锥的侧面积公式分别是?

侧面积:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)。S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)。将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长, 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2,没展开时是一个曲面,圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。圆锥可以通过一个直角三角形沿一条直角边旋转而成,直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心,直角三角形另一条直角边为圆锥的底面半径,记作r,直角三角形的斜边在圆锥上我们称之为母线,记作L。扩展资料:圆锥的高是圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线是圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的表面积由侧面积和底面积两部分组成,侧面积=(1/2)(2πr)l=πrl。全面积是侧面积+πR²(R为圆锥体底面圆的半径)。根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:V=1/3sh(其中S是圆柱的底面积,h是圆柱的高,r是圆柱的底面半径)。参考资料来源:百度百科—圆锥
康康map2023-05-13 08:33:222

圆锥侧面积公式

圆锥侧面积公式为S圆锥侧=(1/2)(2πr)l=πrl。设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^);圆锥侧面展开图是一个扇形,半径为l,弧长为2πr。因此,得出圆锥侧面积=(1/2)(2πr)l=πrl。 圆锥的侧面就是一个扇形。所以圆锥的侧面积就是扇形的面积。计算扇形面积:1.非弧度算法。把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。 所以扇形面积是(顶角)/360°乘以圆的面积。 2.弧度算法。 同理,把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。因为360°在弧度表示法中为2pie,所以为(顶角(弧度))/2pie乘以圆的面积,带入圆面积公式并整理,得(顶角(弧度))/2pie*(pie*r平方)=顶角乘以半径的平方再除以2。由于顶角(弧度)乘以半径为顶角所对弧的长度(弧度定义),所以,顶角乘以半径的平方再除以2=弧长乘以半径除以2。
Jm-R2023-05-13 08:33:221

圆锥的侧面积怎么求

圆锥的侧面积公式:S=1/2αl²=πrl圆锥可以通过一个直角三角形沿一条直角边旋转而成,这种构造方式恰可以从直角三角形上看到圆锥的几个重要组成部分:1、直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心;2、直角三角形另一条直角边为圆锥的底面半径,记作r;3、直角三角形的斜边在圆锥上我们称之为母线,记作L。母线是圆锥侧面这个曲面上能找到唯一一组线段(只有它们是直的,其他的都是曲线。)扩展资料:圆锥的组成:1、圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;2、圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。3、圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。4、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。参考资料来源:百度百科-圆锥
CarieVinne 2023-05-13 08:33:221

圆锥的侧面积怎么算?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。以上内容参考:百度百科-圆锥
北境漫步2023-05-13 08:33:221

圆锥的侧面积公式是什么?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
tt白2023-05-13 08:33:221

圆锥的侧面积怎么求?

S=πrl圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)S=πrl圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
可桃可挑2023-05-13 08:33:222

圆锥的侧面积怎样求?

圆锥侧面积公式如下:圆锥:圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
北境漫步2023-05-13 08:33:221

圆锥的侧面积怎样计算?

圆锥侧面积计算公式:。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。设圆锥的高为h,设圆锥的表面积为st,侧面积为sc,侧面积(也就是扇形的面积)可以用以下公式计算:扩展资料:计算公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数)==1/2×母线长×底面周长=π×底面圆的半径×母线;2、圆锥的表面积=底面积+侧面积 S=πr²+πrl (注l=母线);3、圆锥的体积=1/3底面积乘高 或 1/3πr^2*h。参考资料:百度百科—圆锥
拌三丝2023-05-13 08:33:221

圆锥的侧面积怎么求???

扇形面积=半径*弧长/2转化成圆锥侧面积就是圆锥的侧面积=圆锥的母线*圆锥底面圆的周长/2
可桃可挑2023-05-13 08:33:222

圆锥的侧面积怎么求

圆锥的侧面积公式:S=1/2αl²=πrl圆锥可以通过一个直角三角形沿一条直角边旋转而成,这种构造方式恰可以从直角三角形上看到圆锥的几个重要组成部分:1、直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心;2、直角三角形另一条直角边为圆锥的底面半径,记作r;3、直角三角形的斜边在圆锥上我们称之为母线,记作L。母线是圆锥侧面这个曲面上能找到唯一一组线段(只有它们是直的,其他的都是曲线。)扩展资料:圆锥的组成:1、圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;2、圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。3、圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。4、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。参考资料来源:百度百科-圆锥
余辉2023-05-13 08:33:221

圆锥的侧面积公式

圆锥体的侧面积公式出现两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)都是正确的,只是途径不一样。
陶小凡2023-05-13 08:33:221

圆锥体的侧面积公式是什么?

正圆锥的侧面积公式:S=πrl,S为侧面积。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。其他条件下,圆锥的侧面积可用以下公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数);2、圆锥的侧面积=1/2×母线长×底面周长;3、圆锥的侧面积=π×底面圆的半径×母线。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。因为圆锥侧面展开图是一个扇形,根据扇形的面积公式:扇形的面积等于圆心角,圆周率与扇形的半径的平方的积,除以360度;即扇形的面积是圆的面积分成360分之后,得到圆心角等于1度的扇形的面积,再乘以原扇形的圆心角。这样就可以得到圆锥侧面积最原始的公式。只要知道圆锥侧面展开图得到的扇形的圆心角以及圆锥的母线,圆锥的母线就是展开得到的扇形的半径,就可以求圆锥的侧面积了。圆锥体的特点1、侧面展开是一个扇形;2、只有下底为圆。所以从正上面看是一个圆;3、从侧面水平看是一个等腰三角形;4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥;5、圆锥体是轴对称的;6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形;7、所有母线的长度都相等;母线的长度大于锥体的高。
九万里风9 2023-05-13 08:33:221

圆锥的侧面积?

设圆锥的母线、底面半径分别是l,r,则它的侧面积S=πrl.
凡尘2023-05-13 08:33:227

圆锥的侧面积怎么求?

S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)。S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)。圆锥的侧面积=(圆周率×母线长×圆心角度数)÷180 。侧面积的定义则为:1、立体图形的侧面展开图的面积(以区别于底面积);2、物体的侧表面或围成的图形表面的大小,叫作它们的侧面积。侧面积:物体侧面的面积,叫做物体的侧面积。扩展资料:圆锥组成:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。圆锥的侧面积就是弧长为圆锥底面的周长×母线/2。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
凡尘2023-05-13 08:33:221

圆锥的侧面积怎么算

圆锥侧面积的公式:圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr。所以圆锥侧面积=(1/2)(2πr)l=πrl。第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl。圆锥组成:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
wpBeta2023-05-13 08:33:221

圆锥的侧面积怎么求

圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。资料拓展圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
LuckySXyd2023-05-13 08:33:221

圆锥的侧面积公式是什么?弧度与非弧度都讲下。

圆锥的侧面就是一个扇形。所以圆锥的侧面积就是扇形的面积。计算扇形面积:1)非弧度算法。把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。所以扇形面积是【(顶角)/360°】乘以圆的面积2)弧度算法。同理,把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。因为360°在弧度表示法中为2pie,所以为【(顶角(弧度))/2pie】乘以圆的面积,带入圆面积公式并整理,得【(顶角(弧度))/2pie】*(pie*r平方)=顶角乘以半径的平方再除以2。由于顶角(弧度)乘以半径为顶角所对弧的长度(弧度定义),所以,顶角乘以半径的平方再除以2=弧长乘以半径除以2。
铁血嘟嘟2023-05-13 08:33:221

圆锥的侧面积怎么算?

圆锥侧面积公式如下:圆锥:圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
bikbok2023-05-13 08:33:221

圆锥的侧面积怎么算?

底面圆周长c=2πR圆锥母线长L圆锥侧面积S也就是圆锥的侧面展开图形的面积圆锥的侧面展开图为扇形,其半径为L,弧长为底面圆周长c所以S=(cL)/2=πRL
mlhxueli 2023-05-13 08:33:221

圆锥的侧面积公式

发的发vduubscvjjjucn
LuckySXyd2023-05-13 08:33:213

圆锥的侧面积公式是什么?

圆锥侧面积公式为:S侧=πrl,l为母线。圆锥的表面积由侧面积和底面积两部分组成。全面积S=S侧+S底。圆锥是一种几何图形,有两种定义。几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)组成圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。拓展资料圆锥体积公式一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:V=1/3Sh,其中S是圆柱的底面积,h是圆柱的高,r是圆柱的底面半径。
真颛2023-05-13 08:33:211

圆锥的侧面积怎么算?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
wpBeta2023-05-13 08:33:211

圆锥的侧面积怎么求?

圆锥侧面积公式是S=πrl。其中r为底面半径,l为圆锥母线。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体。圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥的底面周长 ,圆锥的底面半径为r,母线长为l,则它的侧面积为:S=πrl。圆锥的全面积为圆锥的侧面积和底面积的和,即S=πrl+πr²。利用圆锥的侧面积可求圆锥上两点间的最短距离。资料拓展圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
u投在线2023-05-13 08:33:211

圆锥的侧面积公式是什么呢?

圆锥的侧面积公式是S=πrL。r是圆锥底面的半径,L是圆锥的母线长,圆锥的侧面积是扇形,扇形的弧长是圆锥的底面周长2πr,展开后扇形的半径为母线L,所以扇形的面积为S=Lr/2=πrL。圆的面积是πr²。扇形的弧长l=(α/2π)*2πr=αr,α是扇形角度,r是圆半径。扇形面积s=(α/2π)*πr²=(rl)/2。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
豆豆staR2023-05-13 08:33:211

圆锥的侧面积怎么算?

圆锥的侧面展开图形是扇形 圆锥侧面积=n/360×π×R²=1/2LR (n指度数,L指弧长,R为母线长) 圆锥的表面积=圆锥的侧面积+底面圆的面积 ******* 圆锥体的侧面积=πRL 圆锥体的表面积=πRL+πR^2 π为圆周率3.14 R为圆锥体底面圆的半径 L为圆锥的母线长(注意:不是圆锥的高) 圆锥的体积=1/3*πR^2h (h:圆锥体的高)
tt白2023-05-13 08:33:211

圆锥的侧面积怎么算?

圆锥侧面积计算公式:。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。设圆锥的高为h,设圆锥的表面积为st,侧面积为sc,侧面积(也就是扇形的面积)可以用以下公式计算:扩展资料:计算公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数)==1/2×母线长×底面周长=π×底面圆的半径×母线;2、圆锥的表面积=底面积+侧面积 S=πr²+πrl (注l=母线);3、圆锥的体积=1/3底面积乘高 或 1/3πr^2*h。参考资料:百度百科—圆锥
左迁2023-05-13 08:33:211

圆锥侧面积公式是什么?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
墨然殇2023-05-13 08:33:219

圆锥的侧面积公式

圆锥的侧面展开之后,其实是一个扇形,所以侧面积的公式为2πR*L/2=πR*L其中,R为圆锥底面圆的半径,L为母线长。
kikcik2023-05-13 08:33:211

圆锥的侧面积公式

圆锥侧面积公式为S圆锥侧=(1/2)(2πr)l=πrl。设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^);圆锥侧面展开图是一个扇形,半径为l,弧长为2πr。因此,得出圆锥侧面积=(1/2)(2πr)l=πrl。 圆锥的侧面就是一个扇形。所以圆锥的侧面积就是扇形的面积。计算扇形面积:1.非弧度算法。把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。所以扇形面积是(顶角)/360°乘以圆的面积。 2.弧度算法。同理,把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。因为360°在弧度表示法中为2pie,所以为(顶角(弧度))/2pie乘以圆的面积,带入圆面积公式并整理,得(顶角(弧度))/2pie*(pie*r平方)=顶角乘以半径的平方再除以2。由于顶角(弧度)乘以半径为顶角所对弧的长度(弧度定义),所以,顶角乘以半径的平方再除以2=弧长乘以半径除以2。
bikbok2023-05-13 01:01:021

圆锥的侧面是什么形

圆锥的侧面展开后是扇形,不展开是曲面图形。圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体,垂直于轴的边旋转而成的曲面叫做圆锥的底面。
豆豆staR2023-05-13 01:01:021

圆锥的侧面积是什么?

圆锥的侧面积是展开后扇形的面积。圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径)。圆锥的侧面积=母线的平方×π×(360分之扇形的度数)==1/2×母线长×底面周长=π×底面圆的半径×母线。圆锥的表面积=底面积+侧面积S=πr²+πrl(l=母线)。圆锥的组成有:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
FinCloud2023-05-13 01:01:021

圆锥的侧面积公式是什么??、、

πrl
ardim2023-05-13 01:01:0213

圆锥侧面积计算公式

设圆锥的底面半径为r,高为h,母线长为l
Ntou1232023-05-13 01:01:0214

圆锥的侧面积和全面积公式是什么?

侧面积: S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长) S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长) 全面积: 侧面积+πR²(R为圆锥体底面圆的半径)
人类地板流精华2023-05-13 01:01:021

圆锥的侧面积公式是怎样的?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
wpBeta2023-05-13 01:01:021

圆锥的侧面积怎么求?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。
meira2023-05-13 01:01:022

圆锥的侧面积公式

圆锥侧面积公式为S圆锥侧=(1/2)(2πr)l=πrl。设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^);圆锥侧面展开图是一个扇形,半径为l,弧长为2πr。因此,得出圆锥侧面积=(1/2)(2πr)l=πrl。 圆锥的侧面就是一个扇形。所以圆锥的侧面积就是扇形的面积。计算扇形面积:1.非弧度算法。把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。 所以扇形面积是(顶角)/360°乘以圆的面积。 2.弧度算法。 同理,把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。因为360°在弧度表示法中为2pie,所以为(顶角(弧度))/2pie乘以圆的面积,带入圆面积公式并整理,得(顶角(弧度))/2pie*(pie*r平方)=顶角乘以半径的平方再除以2。由于顶角(弧度)乘以半径为顶角所对弧的长度(弧度定义),所以,顶角乘以半径的平方再除以2=弧长乘以半径除以2。
九万里风9 2023-05-13 01:01:021

圆锥侧面积公式是什么

圆锥的侧面展开图即为一扇形,扇形面积计算公式:S=1/2LR(其中R:扇形的半径L:扇形的弧长)在圆锥中R即为母线长,L是底面园的周长2πr所以圆锥侧面积计算公式:S=πrR(图示)
凡尘2023-05-13 01:01:022

圆锥的侧面展开图是一个什么图形

扇形
bikbok2023-05-13 01:01:0212

圆锥的侧面积计算公式

  圆锥的侧面积计算公式是S=πRL。   圆锥是一个立体图形,它是由一个直角三角形把它的任意直角边作为转轴,斜边作为圆锥的母线,三百六十度旋转得出的图形,它的底边是由另一直角边旋转得到的圆形。将圆锥沿着母线剪开,展开后就将圆锥化成了一个平面上的扇形。已知求扇形面积的公式是2分之1*扇形弧长*扇形半径,假如设圆锥的底圆半径是R,母线长是L,那么圆锥的侧面积就等于2分之1乘以2πR乘以L,化简可得圆锥的侧面积计算公式就是S=πRL。
阿啵呲嘚2023-05-13 01:01:021

圆锥的侧面积怎么算?

圆锥的底面圆半径r,底面直径d,圆周率π,母线l,底面积s,圆锥的体积V,高h,扇形侧面展开图圆心角n。底面周长为2πr=πd侧面展开图弧长=底面圆周长=2πr=πd侧面展开图面积=1/2×2πr×l=πrl圆锥全面积=πr²+πrl扇形面积:nπr²/360扇形弧长:nπr/180 (可以计算侧面展开图圆心角n)圆锥体积:V=sh÷3拓展资料:小学、初中常见的几何体有圆柱、正方体和长方体,圆柱的底面圆半径r,圆周率π,高h,S表示面积, V表示体积,c表示周长。圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积用字母表示:圆柱体积: V=sh圆柱侧面积:S=ch/2πrh/πdh圆柱表面积:s=ch+2πr²正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高
黑桃花2023-05-13 01:01:011

圆锥的侧面积公式

圆锥体的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线
韦斯特兰2023-05-13 01:01:012

圆锥的侧面是怎么定义的

圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。圆锥的表面积由侧面积和底面积两部分组成。
可桃可挑2023-05-13 01:01:011

圆锥的侧面积公式?

πrl
bikbok2023-05-13 01:01:013

圆锥形的侧面积怎么求

求圆锥形的侧面积,圆锥的侧面积=母线的平方×π×(360分之扇形的度数),圆锥的侧面积=1/2×母线长×底面周长,圆锥的侧面积=π×底面圆的半径×母线。h为圆锥的高,st为圆锥的表面积,sc为侧面积。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。
Chen2023-05-13 01:01:011

圆锥的侧面积公式

底面周长乘以高再乘以三分之一
凡尘2023-05-13 01:01:012

圆锥侧面积公式是什么?

1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180 4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。〖圆和圆的相关量字母表示方法〗圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。【圆的平面几何性质和定理】[编辑本段]一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。 圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。 ⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 ⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③S三角=1/2*△三角形周长*内切圆半径④两相切圆的连心线过切点(连心线:两个圆心相连的线段)〖有关切线的性质和定理〗 圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。 切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。 切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/1804.扇形面积S=nπr^2;/360=rl/2 5.圆锥侧面积S=πrl【圆的解析几何性质和定理】[编辑本段]〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 圆的离心率e=0,在圆上任意一点的曲率半径都是r。〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 其实不用这样算 太麻烦了 只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为
bikbok2023-05-13 01:01:011

圆锥的侧面积角度

因为侧面积S=兀rl=n兀r^2/180所以只须代入
康康map2023-05-13 01:01:012

圆锥的侧面积怎么求?

meira2023-05-13 01:01:011

圆锥的侧面积怎么算?

圆锥侧面积计算公式:。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。设圆锥的高为h,设圆锥的表面积为st,侧面积为sc,侧面积(也就是扇形的面积)可以用以下公式计算:扩展资料:计算公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数)==1/2×母线长×底面周长=π×底面圆的半径×母线;2、圆锥的表面积=底面积+侧面积 S=πr²+πrl (注l=母线);3、圆锥的体积=1/3底面积乘高 或 1/3πr^2*h。
豆豆staR2023-05-13 01:01:011

圆锥的侧面积公式 是??×l×r 吗

圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径)圆锥侧面积=1/2×母线长×圆锥底面的周长,两个等式可以转化的
NerveM 2023-05-13 01:01:011

圆锥的侧面是什么面?

圆锥侧面是个扇形面(曲面),圆锥的底面是一个圆;圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形;从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有且只有一条高。圆锥和圆柱的区别:圆柱有两个底面和一个侧面,底面是完全相同的两个圆,侧面是一个曲面,沿高展开是一个长方形或正方形;圆锥的底面是一个圆,它的侧面是一个曲面。圆柱有无数条高,所有的高都相等;从圆锥的顶点到底面圆心的距离就是圆锥的高,圆锥只有一条高。圆柱与圆锥的计算公式:圆柱的表面积=圆柱的侧面积+两个底面的面积,用公式表示:S=S侧+2S底;圆柱的侧面积=底面周长×高,用公式表示:S侧=Ch;圆柱的体积=底面积×高,用公式表示:V=S底h。圆锥的体积等于和它等底等高的圆柱的体积的1/3;圆锥的体积=圆柱的体积×1/3=底面积×高×1/3,用公式表示:V锥=1/3V圆柱=1/3S底h。 
墨然殇2023-05-13 01:01:011

圆锥的侧面积公式

S=母线长*底面周长/2圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径)
可桃可挑2023-05-13 01:01:0014

圆锥的侧面积怎样计算?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。以上内容参考:百度百科-圆锥
mlhxueli 2023-05-13 01:01:001

圆锥的侧面积公式是什么?

圆锥的侧面积公式:S=侧表面积+圆面积=πγL+πγ²圆锥的侧表面积公式:M=πγL=πγ√γ²+h²参考资料:实用五金手册 (第8版)
西柚不是西游2023-05-13 01:01:003

圆锥的侧面积怎么求?

圆锥的侧面积公式:S=1/2αl²=πrl圆锥可以通过一个直角三角形沿一条直角边旋转而成,这种构造方式恰可以从直角三角形上看到圆锥的几个重要组成部分:1、直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心;2、直角三角形另一条直角边为圆锥的底面半径,记作r;3、直角三角形的斜边在圆锥上我们称之为母线,记作L。母线是圆锥侧面这个曲面上能找到唯一一组线段(只有它们是直的,其他的都是曲线。)扩展资料:圆锥的组成:1、圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;2、圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。3、圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。4、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。参考资料来源:百度百科-圆锥
肖振2023-05-13 01:01:002

圆锥的侧面积公式

约分后为S锥侧表=πRL(L为三角形的斜边)如底边半径为4,高为3,侧面积求法4*π*5因为勾3股4玄5(5为斜边长)
北境漫步2023-05-13 01:01:005

圆锥的侧面是什么形状?

有两个面,底面和侧面。圆锥体的组成:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高; 圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。扩展资料:一、等底等高的圆柱和圆锥的关系:1、圆锥体积是圆柱的1/3;2、圆柱体积是圆锥的3倍;3、圆锥体积比圆柱少2/3;4、圆柱体积比圆锥多2倍。二、圆锥体积公式的推导过程:1、找来等底等高的空圆锥和空圆柱各一只。2、将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。3、通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。参考资料来源:百度百科-圆锥体
再也不做站长了2023-05-13 01:01:001

圆锥的侧面积怎么求?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
mlhxueli 2023-05-13 01:01:001

圆锥的侧面积公式推导过程

圆锥的侧面积公式推导过程:设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^),圆锥侧面展开图是一个扇形,半径为l,弧长为2πr,圆锥侧面积=(1/2)(2πr)l=πrl。圆锥是一个立体图形,它是由一个直角三角形把它的任意直角边作为转轴,斜边作为圆锥的母线,三百六十度旋转得出的图形,它的底边是由另一直角边旋转得到的圆形。将圆锥沿着母线剪开,展开后就将圆锥化成了一个平面上的扇形。已知求扇形面积的公式是2分之1*扇形弧长*扇形半径,假如设圆锥的底圆半径是R,母线长是L,那么圆锥的侧面积就等于2分之1乘以2πR乘以L,化简可得圆锥的侧面积计算公式就是S=πRL。
此后故乡只2023-05-13 01:01:001

圆锥的侧面在哪里

  圆锥的侧面在直角三角形的直角边所在直线为旋转轴,垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面,不垂直于轴的边都叫做圆锥的母线。生活中沙堆、漏斗、帽子、陀螺、斗笠、铅笔头、钻头、铅锤等都可以近似地看作圆锥。圆锥在日常生活中也是不可或缺的。
LuckySXyd2023-05-13 01:01:001

圆锥的侧面是三角形对还是错

◆这种说法错误.我们知道圆锥的侧面是个曲面,而三角形则是平面图形,因此不能说圆锥的侧面是三角形.如果我们沿圆锥的一条母线剪开,把其侧面展成平面图形后,则是个扇形;此外,圆锥的两种视图(主视图,左视图)都是三角形.
wpBeta2023-05-13 01:01:001

什么是圆锥的侧面

就是指从圆锥顶端到底面的外表面,
mlhxueli 2023-05-13 01:01:002
 首页 上一页  7 8 9 10 11 12 13 14 15  下一页  尾页