什么叫做韦达定理,其性质,用途是怎么样的
见上图。gitcloud2023-05-15 03:51:392
韦达定理 是怎么来的
用方程的移项康康map2023-05-15 03:51:394
请问什么是韦达定理?
韦达定理可以说成根与系数关系如二元一次方程:aX2+bX+c=0(a乘以x的平方加b乘以x加c等于0)根据韦达定理知(假设方程有两个不相等的根X1,X2)X1+X2=-(b/a)X1*X2=c/akikcik2023-05-15 03:51:392
韦达定理是什么
对一元二次方程的根与系数的关系的描述。如下:北有云溪2023-05-15 03:51:393
韦达定理是什么?
韦达定理说明了一元n次方程中根和系数之间的关系。 这里主要讲一下一元二次方程两根之间的关系。 一元二次方程ax^2+bx+c=0(a≠0且b^2-4ac≥0)中,两根x1,x2有如下关系:x1+x2=-b/a;x1*x2=c/a. 一元二次方程ax^2+bx+c=0(a≠0且△=b^2-4ac≥0)中 设两个根为x1和x2 则x1+x2=-b/a x1*x2=c/a 用韦达定理判断方程的根 若b^2-4ac>0则方程有两个不相等的实数根 若b^2-4ac=0则方程有两个相等的实数根 若b^2-4ac≥0则方程有实数根 若b^2-4ac<0则方程没有实数解韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑aix^i=0 它的根记作x1,x2…,xn 我们有 ∑xi=(-1)^1*a(n-1)/a(n) ∑xixj=(-1)^2*a(n-2)/a(n) … πxi=(-1)^n*a(0)/a(n) 其中∑是求和,π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元n次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。 (x1-x2)的绝对值为(根号下b^2-4ac)/(a的绝对值)人类地板流精华2023-05-15 03:51:391
韦达定理
关于x的一元二次方程ax^2+bx+c=0的解为x1,x2那么x1+x2=-b/ax1x2=c/akikcik2023-05-15 03:51:392
韦达定理是什么?
韦达定理:设一元二次方程 中,两根x₁、x₂有如下关系: , 韦达定理说明了一元二次方程中根和系数之间的关系。 法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。扩展资料:定理推广逆定理如果两数α和β满足如下关系:α+β= ,α·β= ,那么这两个数α和β是方程 的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。推广定理韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。定理:设 (i=1、2、3、??n)是方程: 的n个根,记 (k为整数),则有: 。 参考资料:百度百科---韦达定理FinCloud2023-05-15 03:51:391
韦达定理是怎样推出来的?
一元三次方程韦达定理是:设三次方程为ax^3+bx^2+cx+d=0三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0对比原方程ax^3+bx^2+cx+d=0 可知x1+x2+x3=-b/ax1*x2+x2*x3+x3*x1=c/ax1*x2*x3=-d/a实数根:虽然三个根都是实数根,但是求解过程中却遇到了虚数。虚数经过运算后,最终结果为实数。这个三次方程的根比较简单,求解过程中遇到的三次重根式可以化简。但是,绝大多数三次方程的根都是无理数,其三次重根式无法化简,那么这时就必须要用虚数才能用根号精确表示这些复杂的无理实根,即:用带虚数的根式来表示一个实数。由此可见,三次方程的根比二次方程的根的复杂度要高出很多。二次方程的根仅仅用单层二次根号就能精确表示出来,而三次方程的根不仅需要用到二、三次双重根号,有时甚至还需要用到虚数才能精确表示。大鱼炖火锅2023-05-15 03:51:391
一元三次方程韦达定理是什么?
一元三次方程韦达定理是:设三次方程为ax^3+bx^2+cx+d=0三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0对比原方程ax^3+bx^2+cx+d=0 可知x1+x2+x3=-b/ax1*x2+x2*x3+x3*x1=c/ax1*x2*x3=-d/a实数根:虽然三个根都是实数根,但是求解过程中却遇到了虚数。虚数经过运算后,最终结果为实数。这个三次方程的根比较简单,求解过程中遇到的三次重根式可以化简。但是,绝大多数三次方程的根都是无理数,其三次重根式无法化简,那么这时就必须要用虚数才能用根号精确表示这些复杂的无理实根,即:用带虚数的根式来表示一个实数。由此可见,三次方程的根比二次方程的根的复杂度要高出很多。二次方程的根仅仅用单层二次根号就能精确表示出来,而三次方程的根不仅需要用到二、三次双重根号,有时甚至还需要用到虚数才能精确表示。瑞瑞爱吃桃2023-05-15 03:51:391
韦达定理是什么定理?
韦达定理的公式为:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1·X2=c/a,1/X1+1/X2=(X1+X2)/X1·X2,用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,若b²-4ac<0 则方程没有实数根,若b²-4ac=0 则方程有两个相等的实数根,若b²-4ac>0 则方程有两个不相等的实数根。韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0它的根记作X1,X2…,Xn我们有右图等式组其中∑是求和,Π是求积。如果二元一次方程在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。两端比较系数即得韦达定理。(x1-x2)的绝对值为√(b^2-4ac)/|a|法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。韦达定理在方程论中有着广泛的应用Jm-R2023-05-15 03:51:392
什么是韦达定理?
韦达定理的公式为:一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,设两个根为x1,x2 则X1+X2= -b/aX1·X2=c/a,1/X1+1/X2=(X1+X2)/X1·X2,用韦达定理判断方程的根一元二次方程ax²+bx+c=0 (a≠0)中,若b²-4ac<0 则方程没有实数根,若b²-4ac=0 则方程有两个相等的实数根,若b²-4ac>0 则方程有两个不相等的实数根。韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0它的根记作X1,X2…,Xn我们有右图等式组其中∑是求和,Π是求积。如果二元一次方程在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:其中是该方程的个根。两端比较系数即得韦达定理。(x1-x2)的绝对值为√(b^2-4ac)/|a|法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。韦达定理在方程论中有着广泛的应用NerveM 2023-05-15 03:51:392
什么是三次方程的韦达定理?
一元三次方程韦达定理是:设三次方程为ax^3+bx^2+cx+d=0三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0对比原方程ax^3+bx^2+cx+d=0 可知x1+x2+x3=-b/ax1*x2+x2*x3+x3*x1=c/ax1*x2*x3=-d/a实数根:虽然三个根都是实数根,但是求解过程中却遇到了虚数。虚数经过运算后,最终结果为实数。这个三次方程的根比较简单,求解过程中遇到的三次重根式可以化简。但是,绝大多数三次方程的根都是无理数,其三次重根式无法化简,那么这时就必须要用虚数才能用根号精确表示这些复杂的无理实根,即:用带虚数的根式来表示一个实数。由此可见,三次方程的根比二次方程的根的复杂度要高出很多。二次方程的根仅仅用单层二次根号就能精确表示出来,而三次方程的根不仅需要用到二、三次双重根号,有时甚至还需要用到虚数才能精确表示。阿啵呲嘚2023-05-15 03:51:381
韦达定理
韦达定理的公式2019-10-30 02:38:48金才翔1、韦达定理公式:ax^2+bx+c=0x=(-b±√(b^2-4ac))/2ax1+x2=-b/a x1x2=c/a。2、达定理说明了一元二次方程中根和系数之间的关系。扩展资料:韦达定理介绍:根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。韦达定理最重要的贡献是对代数学的推进,最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。参考资料来源:凡尘2023-05-15 03:51:381
韦达定理是什么
韦达定理说明了一元二次方程中根和系数之间的关系。韦达定理的内容为:一元二次方程ax2+bx+c=0(a≠0且Δ=b2-4ac≥0)中,设两个根为x1和x,则x1+x2=-b/a,x1·x2=c/a。韦达定理的逆定理说明,可以通过两个实数的和与积的关系来构造一元二次方程。CarieVinne 2023-05-15 03:51:381
韦达定理是什么?
韦达定理说明了一元n次方程中根和系数之间的关系。 这里主要讲一下一元二次方程两根之间的关系。 一元二次方程ax^2+bx+c=0(a≠0且b^2-4ac≥0)中,两根x1,x2有如下关系:x1+x2=-b/a;x1*x2=c/a. 一元二次方程ax^2+bx+c=0(a≠0且△=b^2-4ac≥0)中 设两个根为x1和x2 则x1+x2=-b/a x1*x2=c/a 用韦达定理判断方程的根 若b^2-4ac>0则方程有两个不相等的实数根 若b^2-4ac=0则方程有两个相等的实数根 若b^2-4ac≥0则方程有实数根 若b^2-4ac<0则方程没有实数解韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑aix^i=0 它的根记作x1,x2…,xn 我们有 ∑xi=(-1)^1*a(n-1)/a(n) ∑xixj=(-1)^2*a(n-2)/a(n) … πxi=(-1)^n*a(0)/a(n) 其中∑是求和,π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元n次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。 (x1-x2)的绝对值为(根号下b^2-4ac)/(a的绝对值)真颛2023-05-15 03:51:381
韦达定理推导过程
韦达定理推导过程:设方程ax^2+bx+c=0的两根分别为x=m和x=n,这就说明,ax^2+bx+c可以分解因式成a(x-m)(x-n)的形式,即ax^2+bx+c=a(x-m)(x-n)=ax^2-a(m+n)x+amn。比较两边系数,可知,-a(m+n)=b,amn=c;故m+n=-b/a,mn=c/a。韦达定理:一元二次方程两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数。韦达定理常被用于,不求方程的根,而计算或推理出与方程的根密切相关的对称式求值中。已知a,b是方程x^2+1=7x,求(a^3-b^3)(a-b)。解:由已知条件,利用韦达定理可知,a+b=7,ab=1,那么,(a^3-b^3)(a-b)=(a-b)^2*(a^2+ab+b^2)=[(a+b)^2-4ab][(a+b)^2-ab]=(7^2-4)(7^2-1)=45*48=2160。韦斯特兰2023-05-15 03:51:381
数学中韦达定理是什么?
供参考。康康map2023-05-15 03:51:383
韦达定理是什么?
求根公式为:ax²+bx+c=0,a≠0x1=[-b-√(b²-4ac)]/(2a)x2=[-b+√(b²-4ac)]/(2a)韦达定理为:x1+x2=-b/ax1*x2=c/a发展历史:法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。 韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。真颛2023-05-15 03:51:381
韦达定理是什么?
韦达定理:设一元二次方程 中,两根x₁、x₂有如下关系:两根之和:,两根之积:。逆定理:如果两数α和β满足如下关系:α+β= ,α·β= ,那么这两个数α和β是方程 的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。扩展资料:定理意义韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。 韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。 利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。参考资料:百度百科-----韦达定理北境漫步2023-05-15 03:51:381
什么是韦达定理
好熟悉啊。。。FinCloud2023-05-15 03:51:384
韦达定理是什么???
一元二次方程aX^2+bX+C=0﹙Δ≥0﹚中,两根X1,X2有如下关系:X1+ X2=-b/aX1·X2=c/a.韦斯特兰2023-05-15 03:51:382
什么是韦达定理
韦达定理(Vieta"s Theorem)的内容 一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为X1和X2 则X1+X2= -b/a X1*X2=c/a 不能用于线段 用韦达定理判断方程的根 若b^2-4ac>0 则方程有两个不相等的实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac豆豆staR2023-05-15 03:51:381
韦达定理变形公式10个是什么?
韦达定理变形公式有:韦达定理公式变形:x1²+x2²=(x1+x2)²-2x1x2。1/x1²+1/x2²=(x1²+x2²)/x1x2。x1³+x2³=(x1+x2)(x1²-x1x2+x2²)。简介韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。NerveM 2023-05-15 03:51:381
韦达定理公式是什么
设一元二次方程中,两根x₁、x₂有如下关系:根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。扩展资料韦达定理主要应用于求解一元二次方程的两个根的相关问题,这个定理的出现为解决类似问题节约了时间。韦达定理(),简单来说,就是可以通过一元二次方程的相关系数直接求解根,而上述公式中,a为二次方前面的系数,b为一次方前面的系数,c为常数项,这是比较直接、比较实用的一个方法。尤其对于那些已知两个根,需要推导出方程的题,更能够看出韦达定理的优势。韦达定理在更高次方程中也是可以使用的,在求解的过程中会涉及到求和公式。参考资料来源:百度百科-韦达定理无尘剑 2023-05-15 03:51:381
韦达定理是什么
X1·X2=c/a,X1+X2=-b/aardim2023-05-15 03:51:388
三次方程韦达定理是什么?
一元三次方程韦达定理是:设三次方程为ax^3+bx^2+cx+d=0。三个根分别为x1,x2,x3,则方程又可表示为a(x-x1)(x-x2)(x-x3)=0。即ax^3-a(x1+x2+x3)x^2+a(x1*x2+x2*x3+x3*x1)-ax1*x2*x3=0。对比原方程ax^3+bx^2+cx+d=0,可知:x1+x2+x3=-b/a。x1*x2+x2*x3+x3*x1=c/a。x1*x2*x3=-d/a。定理意义韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项),韦达定理与根的判别式的关系更是密不可分。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系;无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理;判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。ardim2023-05-15 03:51:381
初中韦达定理公式 韦达定理的公式是什么
1、X1+X2= -b/a,X1*X2=c/a。 2、公式描述:公式中的一元二次方程为ax2+bx+c=0,x1、x2为方程的两个根。 3、韦达定理说明了一元二次方程中根和系数之间的关系。 4、法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。无尘剑 2023-05-15 03:51:381
韦达定理公式 韦达定理公式介绍
1、韦达定理公式: ax^2+bx+c=0x=(-b±√(b^2-4ac))/2ax1+x2=-b/a x1x2=c/a。 2、韦达定理介绍:根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。 3、韦达定理最重要的贡献是对代数学的推进,最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。再也不做站长了2023-05-15 03:51:381
什么叫韦达定理?
韦达定理: 英文名称:Viete theorem 韦达定理说明了一元n次方程中根和系数之间的关系. 这里讲一元二次方程两根之间的关系. 一元二次方程aX^2+bX+C=0﹙Δ≥0﹚中,两根X1,X2有如下关系:X1+ X2=-b/a,X1·X2=c/a. 下面用韦达定理判断方程的根 若b^2-4ac≥0则方程有实数根 若b^2-4ac>0 则方程有两个不相等的实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac肖振2023-05-15 03:51:381
韦达定理公式是什么?
韦达定理公式是ax的平方加bx加c。韦达定理说明了一元二次方程中根和系数之间的关系,法国数学家弗朗索瓦韦达于1615年在著作论方程的识别与订正中建立了方程根与系数的关系,提出了这条定理。由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。韦达定理的内容一元二次方程的根的判别式为a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项,韦达定理与根的判别式的关系更是密不可分,根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理,判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征,韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间,利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学,解析几何,平面几何,方程论中均有体现。陶小凡2023-05-15 03:51:371
什么是韦达定理
根与系数的关系,又称韦达定理。所谓的韦达定理是指一元二次方程根和系数之间的关系。一个一元二次方程的根可由求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。一般式,设它的两个根是和,则和与方程的系数a,b,c之间有如下关系:根与系数关系要满足两个条件:扩展资料:韦达介绍韦达全名叫弗朗索瓦·韦达(FrançoisViète,1540~1603),是一位法国杰出数学家。他是历史上第一个系统地用字母来表示已知数、未知数及其乘幂的数学家,此举给代数理论研究带来了巨大便利。试想一下没有这些字母表示,纯粹靠文字叙述这些表达式该是多么令人糟心!当然,他最为中学生所熟悉的工作就是讨论了方程根的多种有理变换,发现了方程根与系数的关系——韦达定理,因此在欧洲被尊称为“代数学之父”。参考资料来源:百度百科-韦达定理大鱼炖火锅2023-05-15 03:51:371
什么是韦达定理
韦达定理(又叫一元二次方程的根与系数的关系,简称根系关系.)指出,一元二次方程的两根的和等于它的一次项系数除以二次项系数所得的商的相反数;两根的积等于它的常数项除以二次项系数所得的商.假设一元二次方程 ax²+bx+C=0(a不等于0),方程的两根x1,x2和方程的系数a、b、c就满足:x1+x2=-b/a,x1x2=c/a。如果两数α和β满足如下关系:α+β=-b/a,α·β=c/a,那么这两个数α和β是方程 ax²+bx+C=0的根。通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。达定理的历史1、法国数学家韦达(François Viète,1540-1603)在1615年出版的《方程的理解与修正》中给出一系列根与系数关系的定理,其中第一个定理是关于一元二次方程的。在韦达生活的时代,西方人还没有接受负数的概念,韦达所说的根与系数关系只适用于有两个不相等正根的一元二次方程,因此,韦达所发现的根与系数关系与我们今天所说的韦达定理相去甚远,但韦达是历史上第一个以定理的形式讨论方程根与系数关系的数学家。2、荷兰数学家吉拉尔(A.Girard,1595-1632)在1629年出版《代数新发明》一书,书中讨论了一般次方程根与系数的关系,他认为方程的根也可以是负数和虚数,并提出:一个n次方程应该有n个根,这就是后人所说的代数基本定理。3、瑞士大数学家欧拉(Leonhard Euler,1707-1783)在代数基础》中首次给出了一元二次方程根与系数关系的严格证明。4、苏格兰数学家华里斯(W.Wallace,1768-1843)在为《大英百科全书》所写的“代数学”词条中,在欧拉基础上,补充了韦达定理在推导求根公式时的应用。wpBeta2023-05-15 03:51:371
韦达定理是什么
韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。 韦达定理证明了一元n次方程中根和系数之间的关系。这里讲一元二次方程两根之间的关系。一元二次方程aX²+bX+C=0﹙a≠0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1·X2=c/a韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》。可桃可挑2023-05-15 03:51:371
韦达定理是什么?
韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 韦达定理在方程论中有着广泛的应用。韦达定理(Vieta"s Theorem)的内容 韦达定理的物理应用一一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 设两个根为x1,x2 则X1+ X2= -b/a X1·X2=c/a 用韦达定理判断方程的根 若b^2-4ac≥0则方程有实数根 若b^2-4ac>0 则方程有两个不相等的实数根 若b^2-4ac=0 则方程有两个相等的实数根 若b^2-4ac<0 则方程没有实数解 韦达定理的推广 韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0 它的根记作X1,X2…,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=(-1)^2*A(n-2)/A(n) … ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 (x1-x2)的绝对值为√(b^2-4ac)/|a|编辑本段证明及结论 二次函数与一元二次方程的解由一元二次方程求根公式为:X = (-b±√b^2-4ac)/2a (注意:a指二次项系数,b指一次项系数,c指常数) 可得X1= (-b+√b^2-4ac)/2a ,X2= (-b-√b^2-4ac)/2a 1. X1﹢X2=(-b+√b^2-4ac)/2a+(-b-√b^2-4ac)/2a 所以X1﹢X2=-b/a 2. X1X2= [(-b+√b^2-4ac﹚÷2a]×[(-b-√b^2-4ac﹚÷2a] 所以X1X2=c/a (补充:X1^2+X2^2=(X1+X2)^2-2X1·X2) (扩充)3.X1-X2=(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a 又因为X1.X2的值可以互换,所以则有 X1-X2=±【(-b+√b^2-4ac)/2a-(-b-√b^2-4ac)/2a】 所以X1-X2=±(√b^2-4ac)/a 韦达定理推广的证明 设X?,X?,……,xn是一元n次方程∑AiXi =0的n个解。 则有:An(x-x?)(x-x?)……(x-xn)=0 所以:An(x-x?)(x-x?)……(x-xn)=∑AiXi (在打开(x-x?)(x-x?)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixj) … A0=[(-1) ]×An×ΠXi 所以:∑Xi=[(-1) ]×A(n-1)/A(n) ∑XiXj=[(-1) ]×A(n-2)/A(n) … ΠXi=[(-1) ]×A(0)/A(n) 其中∑是求和,Π是求积。编辑本段有关韦达定理的例题 例1 已知p+q=198,求方程x^2+px+q=0的整数根. (94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得 x1+x2=-p,x1x2=q. 于是x1·x2-(x1+x2)=p+q=198, 即x1·x2-x1-x2+1=199. ∴运用提取公因式法(x1-1)·(x2-1)=199. 注意到(x1-1)、(x2-1)均为整数, 解得x1=2,x2=200;x1=-198,x2=0. 例2 已知关于x的方程x-(12-m)x+m-1=0的两个根都是正整数,求m的值. 解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得 x1+x2=12-m,x1x2=m-1. 于是x1x2+x1+x2=11, 即(x1+1)( x2+1)=12. ∵x1、x2为正整数, 解得x1=1,x2=5;x1=2,x2=3. 故有m=6或7. 例3 求实数k,使得方程kx^2+(k+1)x+(k-1)=0的根都是整数. 解:若k=0,得x=1,即k=0符合要求. 若k≠0,设二次方程的两个整数根为x?、x?,且X?≤X?,由韦达定理得 ∴x?x?-X?-x?=2, (x?-1)( x?-1)=3. 因为x?-1、x?-1均为整数, 所以X?=2,X=4;X?=—2,X?=0. 所以k=1,或k=-1/7 例4 已知二次函数y=-x²+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1. (97四川省初中数学竞赛试题) 证明:由题意,可知方程-x²+px+q=0的两根为α、β. 由韦达定理得 α+β=p,αβ=-q. 于是p+q=α+β-αβ, =-(αβ-α-β+1)+1 =-(α-1)(β-1)+1>1(因α>1>β).可桃可挑2023-05-15 03:51:379
l两点间距离公式,韦达定理
两点之间距离公式:设两点(x₁,y₁),(x₂,y₂),距离公式:d=√[(x₁-x₂)²+(y₁-y₂)²]设一元二次方程ax²+bx+c=0 (a≠0)两根为x₁,x₂,韦达定理:x₁+x₂=-b/a,x₁x₂=c/a。扩展资料:韦达定理发展简史法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。 韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。参考资料:百度百科-韦达定理小菜G的建站之路2023-05-12 10:29:151