高中特殊三角函数值
这个么初中时不要求掌握的要求掌握的只有0——90度之间的函数值到高中才能学到0度和大于90度的三角函数值要是硬要求的话我给你说下得了因为0度时三角形就不是三角形了而是一条直线所以sin0°=对边/斜边=0(因为没有对边,即对边为0)cos0°=临边/斜边=1(临边和斜边其实就是同一条线)tan0°=对边/临边=0(因为没有对边,即对边为0)90度的因为上面已经得出0°的三角函数值又因为当α+β=90°时sinα=cosβ sinβ=cosα所以90°的三角函数值就可以得出sin90°=1cos90°=0tan90°=不存在(因为如果两个角是90°那么也构成不了三角形所以不存在什么对边临边)老师才讲过180°的没有讲上面那些应该够了吧看着一个团的选我吧嗯小菜G的建站之路2023-05-24 07:48:381
特殊三角函数指的是哪些三角函数的值呢?
特殊角指的是0度,30度,45度,60度,90度等在数学中用的比较多的角。Jm-R2023-05-24 07:48:382
特殊角的三角函数值高中
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=根号3/2,tan30°=根号3/3;sin45°=根号2/2,cos45°=根号2/2,tan45°=1;sin60°=根号3/2,cos60°=1/2,tan60°=根号3;sin90°=1,cos90°=0。三角函数:α=0°sinα=0cosα=1 tαnα=0cotα→∞secα=1cscα→∞。α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2。α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)。α=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2。α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2。α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2。α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1。α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞。α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞。铁血嘟嘟2023-05-24 07:48:381
三角函数有哪些特殊值?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。三角函数起源:早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。以上内容参考 百度百科-特殊三角函数数值拌三丝2023-05-24 07:48:381
三角函数特殊角是什么?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=根号3/2,tan30°=根号3/3;sin45°=根号2/2,cos45°=根号2/2,tan45°=1;sin60°=根号3/2,cos60°=1/2,tan60°=根号3;sin90°=1,cos90°=0。函数公式积化和差公式sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]sinα ·sinβ=(1/2)*[cos(α+β)-cos(α-β)]和差化积公式sinα+sinβ=2*sin[(α+β)/2]*cos[(α-β)/2]sinα-sinβ=2*cos[(α+β)/2]*sin[(α-β)/2]cosα+cosβ=2*cos[(α+β)/2]*cos[(α-β)/2]cosα-cosβ=-2*sin[(α+β)/2]*sin[(α-β)/2]大鱼炖火锅2023-05-24 07:48:381
特殊三角函数值指的是怎么样的一种三角函数值
特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。扩展资料: special trigonometric function函数名 正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边参考资料:百度百科:特殊三角函数苏萦2023-05-24 07:48:381
特殊三角函数值
sin30"=1/2,cos30"=√3 /2,tan30"=√3 /3,cot30"=√3sin45"=cos45"=√2 /2,tan45"=cot45"=1sin60"=√3 /2,cos60"=1/2,tan60"=√3,cot60"=√3 /3sin90"=1,cos90"=0,tan90"无意义,cot90"=0sin0"=0,cos0"=1,tan0"=0,cot0"无意义sin75"=sin(45"+30")=sin45"cos30"+cos45"sin30"=(√6 +√2)/4cos75"=cos(45"+30")=cos45"cos30"-sin45"sin30"=(√6 -√2 )/4tan75"=tan(45"+30")=(tan45"+tan30")/(1-tan45"·tan30)=2+√3cot75"=1/(tan75")=2-√3sin105"=sin(180"-75")=sin75"=(√6 +√2)/4cos105"=cos(180"-75")=-cos75"=(√2 -√6 )/4tan105"=tan(180"-75")=-tan75"=-2-√3,cot105"=-cot75"=-2+√3sin135"=sin(180"-45")=sin45"=√2 /2cos135"=cos(180"-45")=-cos45"=-√2 /2tan135"=tan(180"-45")=-tan45"=-1,cot135"=cot(180"-45")=-cot45"=-1sin165"=sin(90"+75")=cos75"=(√6 -√2)/4cos165"=cos(90"+75")=-sin75"=-(√6 +√2)/4tan165"=tan(90"+75")=-cot75"=-2+√3cot165"=cot(90"+75")=-tan75"=-2-√3</SPAN>苏萦2023-05-24 07:48:371
特殊三角函数值是怎么算出来的
比如:一个30°的直角三角形abc,∠c=90°,∠b=30°,随便设一个数值ac=1,ab=2,bc=√3根据正弦=对边/斜边,余弦=邻边/斜边,正切=对边/邻边,余切=邻边/对边,则sin30°=cos60°=ac/ab=1/2,cos30°=sin60°=bc/ab=√3/2,tan30°=cot60°=ac/bc其它特殊角类推陶小凡2023-05-24 07:48:372
特殊的三角函数值是什么?
特殊的三角函数值就是某角度的三角函数值能用根式表达的三角函数。不过常用的角度有15、30、45、60、75、90度。还有1,3,6,12,.....等等。肖振2023-05-24 07:48:372
特殊三角函数值包括哪些值?
特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。扩展资料: special trigonometric function函数名 正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边参考资料:百度百科:特殊三角函数阿啵呲嘚2023-05-24 07:48:371
特殊角的三角函数是什么?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=根号3/2,tan30°=根号3/3;sin45°=根号2/2,cos45°=根号2/2,tan45°=1;sin60°=根号3/2,cos60°=1/2,tan60°=根号3;sin90°=1,cos90°=0。单位圆定义:也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的方程是:对于圆上的任意点(x,y),x²+y²=1。kikcik2023-05-24 07:48:371
特殊三角函数值有哪些?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。三角函数起源:早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。以上内容参考 百度百科-特殊三角函数数值北境漫步2023-05-24 07:48:371
常见的特殊三角函数值公式大全
对于三角函数值是大家在学习数学的时候,一定要掌握的公式。下面是我为大家整理分享的,仅供大家参考。 特殊三角函数性质 特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。 特殊三角函数值:特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。 三角函数 α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2 α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2) a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2 α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2 α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3 α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2) α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2 α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1 α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞ α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1 α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞ 我推荐: 高三学渣逆袭计划作息时间表 黄金三角 α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4 tαnα=√(25-10√5)/5 cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5) α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4 tαnα=√(5-2√5) cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5 α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5 cscα=√5-1 secα=√(50+10√5)/5 cotα=√(5-2√5) α=72°(2π/5) sinα=√(10+2√5)/4 cosα=(√5-1)/4 tαnα=√(5+2√5) cscα=√(50-10√5)/5 secα=√5+1 cotα=√(25-10√5)/5 通过比较可发现与黄金三角形相关的三角函数值有很强的对称性 这些数值的证明可以借助黄金三角形中的比例 特殊角的三角函数(重要)西柚不是西游2023-05-24 07:48:371
特殊三角函数指什么?三角函数起源是怎样的?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。三角函数起源:早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。以上内容参考 百度百科-特殊三角函数数值真颛2023-05-24 07:48:371
高中特殊三角函数值
这个么初中时不要求掌握的要求掌握的只有0——90度之间的函数值到高中才能学到0度和大于90度的三角函数值要是硬要求的话我给你说下得了因为0度时三角形就不是三角形了而是一条直线所以sin0°=对边/斜边=0(因为没有对边,即对边为0)cos0°=临边/斜边=1(临边和斜边其实就是同一条线)tan0°=对边/临边=0(因为没有对边,即对边为0)90度的因为上面已经得出0°的三角函数值又因为当α+β=90°时sinα=cosβ sinβ=cosα所以90°的三角函数值就可以得出sin90°=1cos90°=0tan90°=不存在(因为如果两个角是90°那么也构成不了三角形所以不存在什么对边临边)老师才讲过180°的没有讲上面那些应该够了吧看着一个团的选我吧嗯水元素sl2023-05-24 07:48:362
特殊角三角函数值怎么算?
特殊角三角函数的值可以通过以下方式进行计算:1. 通过查表方式:一些特殊角的三角函数值已经被列成表格,可以通过查表的方式找到它们的值。2. 通过公式方式:例如,正弦函数的公式为sin(x)=sin(x+2kπ),其中k为整数,可以通过使用这个公式来计算特殊角的三角函数值。3. 通过计算器方式:计算器上通常有三角函数的按键,可以直接输入特殊角的角度值,然后按下对应的按键,即可得到三角函数的值。bikbok2023-05-24 07:48:363
特殊三角函数值表,
你好く林沫沫°の|360°|270°|0°|15°|30°|37°|45°sin|0|-1|0|(√6-√2)/4|1/2|3/5|√2/2cos|1|0|1|(√6+√2)/4|√3/2|4/5|√2/2tan|0|无值|0|2-√3|√3/3|3/4|1______________________________________________________________________|53°|60°|75°|90°|120°|135°sin|4/5|√3/2||(√6+√2)/4|1|√3/2|√2/2cos|3/5|1/2|(√6-√2)/4|0|-1/2|-√2/2tan|4/3|√3|2+√3|无值|-√3|-1______________________________________________________________________|180°sin|0cos|-1tan|0最重要的是要记公式了.公式虽然多,但掌握了其中的规律,就不难得记了倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商数关系tanα=sinα/cosαcotα=cosα/sinα平方关系sinα²+cosα²=11+tanα²=secα²1+cotα=cscα²以下关系,函数名不变,符号看象限sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα以下关系,奇变偶不变,符号看象限sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsin(90°+α)=cosαcos(90°+α)=sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanα积化和差公式sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)*[cos(α+β)-cos(α-β)]和差化积公式sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2]sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]cosα+cosβ=2*[cos(α+β)/2]*[cos(α-β)/2]cosα-cosβ=-22*[sin(α+β)/2]*[sin(α-β)/2]三倍角公式sin3α=3sinα-4sinα³cos3α=4cosα³-3cosα两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)==(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)好了,就是这么多了,在此祝你学习进步(开始那些公式对的整整齐齐的,好不容易打出来的,提交答案就变成那样了,我用|号将他们分开,每个|对应的就是上面的值)此后故乡只2023-05-24 07:48:362
特殊三角函数值?
这个是一个极限值,比如一个直角三角形ABC中,角C=90度,那么sinA=a/c,当这个A很大,也就是说a与c靠的很近的话,a,c就趋近于相等,所以sinA=a/c=1康康map2023-05-24 07:48:363
初中数学特殊三角函数值
三角函数是一个比较难的部分,下面我就大家整理一下初中数学特殊三角函数值,仅供参考。 特殊三角函数值 cos30度=(根号3)/2 cos45度=(根号2)/2 cos60度=1/2 sin30度=1/2 sin45度= (根号2)/2 sin60度=(根号3)/2 tan30度=(根号3)/3 tan45度=1 tan60度=根3 图片版 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即cotA=b/a 正割(sec):斜边比邻边,即secA=c/b 余割(csc):斜边比对边,即cscA=c/a 三角和的公式 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 以上就是我为大家整理的初中数学特殊三角函数值 。kikcik2023-05-24 07:48:361
特殊三角函数值记忆口诀
1、正切函数值:一正二正弦,正切三正弦余切四正弦,余切五正弦。2、余切函数值:一余二余弦,余切三余弦正切四余弦,余切五余弦。3、正切余弦值:一正二余弦,正切三余弦值,正切四余弦值,余弦五余弦。4、余弦值:一余二余弦,余弦三余弦正切四余弦,余弦五余弦。5、余弦正弦值:一余二正弦,余弦三正弦余弦四正弦,余弦五余弦。6、正弦余弦值:一余二余弦,正弦三余弦正切五余弦。康康map2023-05-24 07:48:362
特殊三角函数公式
特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数、正割三角函数、和余割三角函数。特殊三角函数值:特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊三角函数相关公式:在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系tanα=sinα/cosαcotα=cosα/sinα三倍角公式sin(3α)=3sinα-4sin^3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos^3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan^3α)/(1-3tan^2α)=tanαtan(π/3+α)tan(π/3-α)Ntou1232023-05-24 07:48:351
特殊的三角函数值是多少?
特殊的三角函数值是如下:一、sin0°=0二、cos0°=1三、tan0°=0四、sin30°=1/2五、cos30°=根号3/2六、tan30°=根号3/3七、sin45°=根号2/2八、cos45°=根号2/2九、tan45°=1十、sin60°=根号3/2十一、cos60°=1/2十二、tan60°=根号3十三、sin90°=1十四、cos90°=0此后故乡只2023-05-24 07:48:351
特殊三角函数值公式
在三角函数中,有一些特殊角,这些角的三角函数值知道吗?下面就和我一起了解一下吧,供大家参考。 特殊三角函数值表 特殊三角函数值公式归纳 诱导公式公式一: sin(α+k·360°)=sinα(k∈Z). cos(α+k·360°)=cosα(k∈Z). tan(α+k·360°)=tanα(k∈Z). cot(α+k·360°)=cotα(k∈Z). sec(α+k·360°)=secα(k∈Z). csc(α+k·360°)=cscα(k∈Z). 诱导公式公式二: sin(180°+α)=-sinα. cos(180°+α)=-cosα. tan(180°+α)=tanα. cot(180°+α)=cotα. sec(180°+α)=-secα. csc(180°+α)=-cscα. 诱导公式公式三: sin(-α)=-sinα. cos(-α)=cosα. tan(-α)=-tanα. cot(-α)=-cotα. sec(-α)=secα. csc(-α)=-cscα. 诱导公式公式四: sin(180°-α)=sinα. cos(180°-α)=-cosα. tan(180°-α)=-tanα. cot(180°-α)=-cotα. sec(180°-α)=-secα. csc(180°-α)=cscα. 诱导公式公式五 sin(360°-α)=-sinα. cos(360°-α)=cosα. tan(360°-α)=-tanα. cot(360°-α)=-cotα. sec(360°-α)=secα. csc(360°-α)=-cscα. 诱导公式公式六: sin(90°+α)=cosα. cos(90°+α)=-sinα. tan(90°+α)=-cotα. cot(90°+α)=-tanα. sec(90°+α)=-cscα. csc(90°+α)=secα.CarieVinne 2023-05-24 07:48:351
特殊三角函数值有哪些?
特殊三角函数指的是正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数在某些特殊角度下的函数值。以下是特殊三角函数的函数值:- 正弦函数sin(0°) = 0,sin(30°) = 1/2,sin(45°) = √2/2,sin(60°) = √3/2,sin(90°) = 1- 余弦函数cos(0°) = 1,cos(30°) = √3/2,cos(45°) = √2/2,cos(60°) = 1/2,cos(90°) = 0- 正切函数tan(0°) = 0,tan(30°) = √3/3,tan(45°) = 1,tan(60°) = √3,tan(90°) 不存在- 余切函数cot(0°) 不存在,cot(30°) = √3,cot(45°) = 1,cot(60°) = 1/√3,cot(90°) = 0- 正割函数sec(0°) = 1,sec(30°) = 2/√3,sec(45°) = √2,sec(60°) = 2,sec(90°) 不存在- 余割函数csc(0°) 不存在,csc(30°) = 2,csc(45°) = √2,csc(60°) = 2/√3,csc(90°) = 1这些特殊角度的函数值是在使用度数角度单位时确定的,如果使用弧度角度单位,则函数值可能会有所不同。北有云溪2023-05-24 07:48:352
三角函数中,哪些是特殊三角函数?
三角函数中,30度、45度和60度角叫“特殊角”,它们都能表达为简单的分数或者根式的形式。这些函数值的用处比较大,所以需要背熟。广义的,特殊角还包括了0度和90度。在任意角的三角函数中,还包括了180n±(以上特殊角)真颛2023-05-24 07:48:351
特殊的三角函数值是什么?
特殊角的三角函数值:sin0°=0,cos0°=1,tan0°=0;sin30°=1/2,cos30°=√3/2,tan30°=√3/3;sin45°=√2/2,cos45°=√2/2,tan45°=1;sin60°=√3/2,cos60°=1/2,tan60°=√3;sin90°=1,cos90°=0。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。扩展资料特殊三角函数相关公式1、倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=12、商的关系tanα=sinα/cosαcotα=cosα/sinα3、平方关系(sinα)^2+(cosα)^2=11+(tanα)^2=(secα)^21+(cotα)^2=(cscα)^2bikbok2023-05-24 07:48:351
什么是特殊三角函数值?
特殊角的三角函数值,不是特殊三角函数值。在锐角三角中,由于30°,45°和60°角的三角函数可以通过构造三角形计算出来,是一般的代数数,所以被称为“特殊角”,略加推广,还可以包括0°和90°。它们的值见下表:大鱼炖火锅2023-05-24 07:48:352
在三角函数中有哪些特殊值?
三角函数特殊值,一般指特殊三角函数值,一般指在0,30°,45°,60°,90°,120°,150°,180°等角下的正余弦值、正切值等。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。如下图:延伸:三角函数三角函数是六类基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。阿啵呲嘚2023-05-24 07:48:351
三角函数的傅立叶变换
因此题目的频域是两个幅度为A/2的冲激,关于虚轴对称,距离原点50。wpBeta2023-05-23 19:24:323
一组离散数据变成三角函数线性和的形式,傅里叶级数展开。求幅值和初相位。
fft函数可以解决这个问题使用matlab中fft函数,得到Ck三角形式是这样的最后题主使用三角公式就完事了水元素sl2023-05-23 19:24:312
对于离散傅里叶方法,图片里的关于离散三角函数可以对任何大于等于0 的l,k小于等于2m如果证明的?
中文译名 transformée de fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。 应用 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 概要介绍 * 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 c. c. lin墨然殇2023-05-23 19:24:301
函数方程是三角函数吗
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。点击查看全文高中数学三角函数国内20强高级数学教师,免费攻克数学难题根据数学相关内容为您推荐三角函数高中数学三角函数高效,准确 快速,简化,高中数学难题.16年教研总结,考霸高分的24个解题模型,今日仅限10份,赶快领取!青岛誉方达教育咨询有限公司广告高中数学函数试题,提高高中生成绩的方法高中数学函数试题,从高一到高三初期,我儿子就一直特别努力,可是成绩就是没提高,高中数学函数试题,试过了这个方法,他的成绩真的提高了烟台东艾教育咨询有限公司广告帐号已注销贡献了超过181个回答韦斯特兰2023-05-22 18:13:081
基本三角函数值
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。基本信息中文名 三角函数定律外文名 trigonometric function提出者 霍斯提出时间 公元前1世纪适用领域 几何学,代数学数值表三角函数值三角函数值角α0°30°45°60°90°120°135°150°180°270°360°弧度制oπ/6π/4π/3π/22π/33π/45π/6π3π/22πsinαo1/2√2/2√3/21√3/2√2/21/20-10cosα1√3/2√2/21/20-1/2-√2/2-√3/2-101tanαo√3/31√3--√3-1-√3/30-0.sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=(√6-√2)/4cos15=-0.759;cos15°=(√6+√2)/4tan15=-0.855;tan15°=2-√3sin30=-0.988;sin30°=1/2cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin75=-0.388;sin75°=cos15°cos75=0.922;cos75°=sin15°tan75=-0.421;tan75°=sin75°/cos75° =2+√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0北境漫步2023-05-22 18:13:074
三角函数是数学中属于初等函数中的超越函数的一类函数?
属于初等函数拌三丝2023-05-22 18:13:062
三角函数是数学中属于初等函数中的超越函数的一类函数?
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。真颛2023-05-22 18:13:031
三角函数的超越形式
三角函数的超越形式:y=f(x),y=cosx。变量之间的关系不能用有限次加、减、乘、除、乘方、开方运算表示的函数。如对数函数,反三角函数,指数函数,三角函数等就属于超越函数,它们属于初等函数中的初等超越函数。超越函数是指那些不满足任何以多项式作系数的多项式方程的函数。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。可桃可挑2023-05-22 18:13:031
三角函数为什么是超越函数,
超越函数是指那些不满足任何以多项式方程的函数,即函数不满足以变量自身的多项式为系数的多项式方程.换句话说,超越函数就是"超出"代数函数范围的函数,也就是说函数不能表示为有限次的加、减、乘、除和开方的运算。三角函数是属于初中数学中超越函数的一类函数!u投在线2023-05-22 18:13:021
三角函数的值域是什么?
三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。苏州马小云2023-05-22 07:48:161
三角函数值域怎么求
函数值域的求法: 1、配方法:转化为二次函数,利用二次函数的特征来求值。2、逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围。3、换元法:通过变量代换转化为能求值域的函数,化归思想。4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域。 5、基本不等式法:利用平均值不等式公式来求值域。6、单调性法:函数为单调函数,可根据函数的单调性求值域。 7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。希望对你有帮助,请采纳豆豆staR2023-05-22 07:48:151
三角函数的原函数
1、倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=12、商数关系tanα=sinα/cosαcotα=cosα/sinα3、平方关系sinα²+cosα²=11+tanα²=secα²1+cotα²=cscα²4、求导关系sec"=sectantan"=sec^25、原函数tan=(-ln|cos|)"cot=(ln|sin|)"sec=(ln|sec+tan|)"csc=(ln|csc-cot|)"sec^2=(tan)"csc^2=(-cot)"sectan=sec"csc*cot=(-csc)"hi投2023-05-21 12:53:281
求函数发展,三角函数发展,向量发展相关历史,500字左右研究材料??
函数是数学的重要的基础概念之一。进一步学习的,包括、微分学、积分学、乃至等高等学校开设的课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行观点教育的好素材。函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中。函数是中学数学的主体内容。它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,中的、、是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。后续内容的极限、初步知识等都是函数的内容。数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于的关系式,的内容也都属于类型的整标函数。中学的其他数学内容也都与函数内容有关。函数在中学教材中是分三个阶段安排的。第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论、、、等最简单的函数,通过计算函数值、研究、、、的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象。新课本函数一章以及本书的第四章的内容是中学函数教学的第二阶段,也就是函数概念的再认识阶段,即用集合、映射的思想理解函数的一般定义,加深对函数概念的理解,在此基础上研究了、、等的概念、图象和性质,从而使学生在第二阶段函数的学习中获得较为系统的函数知识,并初步培养了学生的函数的应用意识,为今后学习打下良好的基础。第二阶段的主要内容在本章教学中完成。第三阶段的函数教学是在高中三年级数学的限定选修课中安排的,理科限定选修内容有极限、导数、积分,文科和实科限定选修内容有极限与导数,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识。凡尘2023-05-21 08:45:472
中国古代有三角函数吗
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。[1]古希腊历史早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。善士六合2023-05-21 08:45:463
三角函数sin^2(α)+cos^2(α)=1恒等变形
sin^2(α)+cos^2(α)=1,·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1Jm-R2023-05-20 17:37:593
求高一所有三角函数公式
正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半角公式: sin(α/2)=正负√((1-cosα)/2) cos(α/2)=正负√((1+cosα)/2) tan(α/2)=正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2 cos^2(α)=(1+cos(2α))/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0真颛2023-05-20 17:37:592
三角函数恒等变形时正弦用对应也替换,余弦值能用对应边替换吗
三角函数恒等变形时正弦用对应也替换,余弦值能用对应边替换1. 基本问题说明一般地,很少会把三角恒等变换问题作为单独一个题目出现在考试中——即使有,也多见于单元测验或模块测评中。但是,三角函数的多数问题,如求值问题、求角问题、参数问题等,一般都需要先进行三角恒等变换,也即三角恒等变换作为一个中间问题广泛存在于各种三角函数题型中,以达成简化式子、方便计算或变形/变换的目标。换句话说,三角恒等变换是求解很多三角函数有关题目的关键一环。而且,这些题目的难度很多时候会体现在三角恒等变换上,因为其中涉及的技巧多且应用灵活。因此,本文特把“三角恒等变换”作为一个独立的三角函数基本问题来论述。这样,一方面可突出该基本问题的重要性,另一方面可系统地归纳与总结相关的一般方法、技巧与结论,有助于更完整、全面地掌握它们。2. 解决问题的一般解法三角恒等变换的本质是得到所需形式的代数式——既可能是化简也可能是变形、甚至还可能是化繁(当然,多数情况下最终会得到一个更简化的结果)。因此,三角恒等变换首先就要明确变换的目标,正所谓有的放矢。做好这点甚至比下述技巧更重要,往往起到事半功倍之效果。切忌在还未弄清已知与未知之间的关系或联系,也未确定大致变换思路时,就开始盲目套公式和运算!九万里风9 2023-05-20 17:37:581
三角函数恒等变形的同角三角函数间的基本关系式:
sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α) sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα tanα·cotα=1sinα·cscα=1cosα·secα=1人类地板流精华2023-05-20 17:37:581
三角函数恒等变形公式是什么?
三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα人类地板流精华2023-05-20 17:37:571
三角函数的公式是什么?
·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]北营2023-05-20 17:37:573
求 三角函数恒等变形 答案
cosacosb=1/2(cos(a-b)+cos(a-b)也就是积化和公式拌三丝2023-05-20 17:37:563
三角函数恒等变形公式
这个需要编辑公式,楼上的给我个邮件,我发给你哦bikbok2023-05-20 17:37:563
三角函数恒等变形公式是什么?
三角函数恒等变形公式是cos(α +β )=cosα ·cosβ 。三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。推导方法:90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。西柚不是西游2023-05-20 17:37:551
三角函数恒等变形公式是什么?
cos(α +β )=cosα ·cosβ 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。北营2023-05-20 17:37:551
三角函数恒等变形公式
只用熟记两角和差公式(这个推导麻烦),其他的都可以用它推导。1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]大鱼炖火锅2023-05-20 17:37:551
三角函数的参数方程是什么
X=COS(wT+a1),Y=cos(wT+a2),wT+a1=arccos X,T=(arccosX-a1)/w=(arccosY-a2)/w,即arccosX-arccosY=a1-a2.西柚不是西游2023-05-20 17:37:541
三角函数积化和差公式是什么?
和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]u投在线2023-05-19 11:01:464
三角函数和差化积与积化和差的公式。
首先,我们知道sin(ab)=sina*cosbcosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(ab)sin(a-b)=2sina*cosb所以,sina*cosb=(sin(ab)sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(ab)-sin(a-b))/2同样的,我们还知道cos(ab)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosbsina*sinb所以,把两式相加,我们就可以得到cos(ab)cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(ab)cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(ab)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(ab)sin(a-b))/2cosa*sinb=(sin(ab)-sin(a-b))/2cosa*cosb=(cos(ab)cos(a-b))/2sina*sinb=-(cos(ab)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的ab设为x,a-b设为y,那么a=(xy)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinxsiny=2sin((xy)/2)*cos((x-y)/2)sinx-siny=2cos((xy)/2)*sin((x-y)/2)cosxcosy=2cos((xy)/2)*cos((x-y)/2)cosx-cosy=-2sin((xy)/2)*sin((x-y)/2)真颛2023-05-19 11:01:451
三角函数积化和差的公式?
积化和差口诀:积化和差得和差,余弦在后要相加;异名函数取正弦,正弦相乘取负号。积化和差最后的结果是和或者差;若两项相乘,后者为cos项,则积化和差的结果为两项相加。积化和差跟和差化积是逆向的不需再记口诀了,口诀记多了容易混。和差化积公式口诀:正弦+正弦,正弦在前。正弦-正弦,正弦在后。余弦+余弦,余弦并肩。余弦-余弦,余弦靠边。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]同角三角函数(1)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)(2)积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotαu投在线2023-05-19 11:01:451
三角函数中和差化积公式有哪些
兄弟拉你一把sinA+sinB=2cos(A+B)/2*Sin(A-B)/2- =2sin(A+B)/2*cos(A-B)/2cosA+cosB=+2cos(A+B)/2*cos(A-B)/2- =-2sin(A+B)/2*sin(A-B)/2tanA+cotA=2/sin2AtanA-cotA=-2cot2AcosA*sinB=1/2[sin(A+B)-sin(A-B)]cosA*cosB=1/2[cos(A+B)+cos(A-B)]sinA*sinB=-1/2[cos(A+B)-cos(A-B)]tanA/2=sinA/(1+cosA)=(1-cosA)/sinA以后忘了可以自己推一下,记得基本转换就可以了可桃可挑2023-05-19 11:01:442
三角函数的和差化积公式
cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]可桃可挑2023-05-19 11:01:444
三角函数和差化积公式怎么来的?
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)九万里风9 2023-05-19 11:01:441
三角函数和差化积公式是什么?
cosa+b=cosacosb-sinasinbcosa-b=cosacosb+sinasinbJm-R2023-05-19 11:01:432
三角函数cos是什么意思?
cos是余弦函数的意思。英文全称:cosine在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)在锐角三角函数中,如果有直角三角形,直角边a,b,斜边c,与a,c的夹角θ,那么定义这样一个符号cosθ=a/c。在一般三角函数中,如果有一个坐标平面,上有一点M(x,y),OM和x正半轴夹角θ,我们就定义cosθ=x/OM,为统一,记OM=r,我们就说cosθ=x/r。可以用相似三角形定理说明cosθ只与θ有关,因此x/r是恒定的。扩展资料:cos公式:1、cos(-a)=cos(a)2、cos(2π-a)=sin(a)3、cos(π-a)=-cos(a)4、cos(π+a)=-cos(a)5、cos(a+b)=cos(a)cos(b)-sin(a)sin(b)6、cos(a-b)=cos(a)cos(b)+sin(a)sin(b)7、cos(a)+cos(b)=2cos(a+b)cos(a-b)8、cos(a)-cos(b)=-2sin(a+b)sin(a-b)9、cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)]10、cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)参考资料来源:百度百科-余弦再也不做站长了2023-05-19 11:01:214
三角函数中的符号都代表什么意思?
首先建立一个平面直角坐标系在任意的一个象限内由原点发出一条射线在射线上取任意一点P(x,y)设OP长为r此射线与x轴正半轴夹角αsinα表示正弦为y/rcosα表示余弦为x/rtanα表示正切为y/xcotα表示余切为x/ysecα表示正割为r/x即1/cosαcscα表示余割为r/y即1/sinα以上。ardim2023-05-19 11:00:471
三角函数符号是?
sin,cos,tan,cot,sec,csc。毛罗利科早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。相关信息:正弦是最重要也是最古老的一种三角函数。早期的三角学,是伴随着天文学而产生的。古希腊天文学派希帕霍斯为了天文观测的需要,制作了一个“弦表”,即在圆内不同圆心角所对弦长的表。相当于圆心角一半的正弦表的两倍。这就是正弦表的前身,可惜没有保存下来。善士六合2023-05-19 11:00:461
三角函数的六个数学符号(Sin,Cos )怎么读
sin:sài yīn ----对应的英语单词sine [sain] cos:kuǒ sài yīn ----对应的英语单词cosine [kou"sain] tan: tǎn jǐan tī ----对应的英语单词tangent ["tandЗent] cot :kuǒ tǎn jǐan tī ----对应的英语单词cotangent [kou"tandЗent] sec:sī kǎn tě ----对应的英语单词secant ["si:kant] csc:kuǒ sī kǎn tě ----对应的英语单词cosecant [kou"si:kant]阿啵呲嘚2023-05-19 11:00:451
三角函数符号有哪些?
三角函数符号有sin、cos、tan、cot、sec、csc等等。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。小菜G的建站之路2023-05-19 11:00:441
三角函数符号读法
正弦sine,音标是[saɪn] 。余弦cosine,音标是["kəʊsaɪn] 。正切tangent,音标是["tændʒənt]。余切cotangent,音标是["kəʊ"tændʒənt]。毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent” (正切)及“secant”(正割)表示相应之概念 ,其后他分别以符号“sin.”,“tan.”,“ sec.”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。扩展资料:一、符号来历正弦是最重要也是最古老的一种三角函数。早期的三角学,是伴随着天文学而产生的。古希腊天文学派希帕霍斯为了天文观测的需要,制作了一个“弦表”,即在圆内不同圆心角所对弦长的表。相当于现在圆心角一半的正弦表的两倍。这就是正弦表的前身,可惜没有保存下来。希腊的数学转入印度,阿耶波多作了重大的改革。一方面他定半径为3438,含有弧度制的思想。另一方面他计算半弦(相当于现在的正弦线)而不是希腊人的全弦。他称半弦为jiva,是猎人弓弦的意思。后来印度的书籍被译成阿拉伯文,jiva被音译成jiba,但此字在阿拉伯文中没有意义,辗转传抄,又被误写成jaib,意思是胸膛或海湾。12世纪,欧洲人从阿拉伯的文献中寻求知识。1150年左右,意大利翻译家杰拉德将jaib意译为拉丁文sinus,这就是现存sine一词的来源。英文保留了sinus这个词,意义也不曾变。sinus并没有很快地被采用。同时并存的正弦符号还有Perpendiculum(垂直线),表示正弦的符号并不统一。计算尺的设计者冈特在他手画的图上用sin表示正弦,后来,英国的奥特雷德也使用了sin这一缩写,同时又简写成S。与此同时,法国的埃里冈在《数学教程》中引入了一整套数学符号,包括sin,但仍然没有受到同时代人的注意。直到18世纪中叶,逐渐趋于统一用sin。余弦符号ces,也在18世纪变成现在cos。二、万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))参考资料来源:百度百科-三角函数符号水元素sl2023-05-19 11:00:442
8个三角函数名称及符号
三角函数符号有sin、cos、tan、cot、sec、csc等等。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。 符号:sin、cos、tan、cot、sec、csc。 正弦函数sin(A)=a/c。 余弦函数cos(A)=b/c。 正切函数tan(A)=a/b。 余切函数cot(A)=b/a。 其中a为对边,b为邻边,c为斜边。 符号: 毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。 而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。铁血嘟嘟2023-05-19 11:00:441
三角函数的读法
正切tan (tangent) 读:碳金塔余切cot或stg 读:靠金塔正弦sin (sine) 读:赛因余弦cos (cosine) 读:靠赛因肖振2023-05-19 11:00:443
三角函数的符号是什么?
三角函数符号有sin、cos、tan、cot、sec、csc等等。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。苏州马小云2023-05-19 11:00:431
三角函数符号是什么?
三角函数符号有sin、cos、tan、cot、sec、csc等等。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。meira2023-05-19 11:00:431
三角函数有哪几种符号?
三角函数符号有sin、cos、tan、cot、sec、csc等等。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。善士六合2023-05-19 11:00:431
三角函数符号读法
正弦sine,音标是[saɪn] 。余弦cosine,音标是["kəʊsaɪn] 。正切tangent,音标是["tændʒənt]。余切cotangent,音标是["kəʊ"tændʒənt]。毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent” (正切)及“secant”(正割)表示相应之概念 ,其后他分别以符号“sin.”,“tan.”,“ sec.”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。扩展资料:一、符号来历正弦是最重要也是最古老的一种三角函数。早期的三角学,是伴随着天文学而产生的。古希腊天文学派希帕霍斯为了天文观测的需要,制作了一个“弦表”,即在圆内不同圆心角所对弦长的表。相当于现在圆心角一半的正弦表的两倍。这就是正弦表的前身,可惜没有保存下来。希腊的数学转入印度,阿耶波多作了重大的改革。一方面他定半径为3438,含有弧度制的思想。另一方面他计算半弦(相当于现在的正弦线)而不是希腊人的全弦。他称半弦为jiva,是猎人弓弦的意思。后来印度的书籍被译成阿拉伯文,jiva被音译成jiba,但此字在阿拉伯文中没有意义,辗转传抄,又被误写成jaib,意思是胸膛或海湾。12世纪,欧洲人从阿拉伯的文献中寻求知识。1150年左右,意大利翻译家杰拉德将jaib意译为拉丁文sinus,这就是现存sine一词的来源。英文保留了sinus这个词,意义也不曾变。sinus并没有很快地被采用。同时并存的正弦符号还有Perpendiculum(垂直线),表示正弦的符号并不统一。计算尺的设计者冈特在他手画的图上用sin表示正弦,后来,英国的奥特雷德也使用了sin这一缩写,同时又简写成S。与此同时,法国的埃里冈在《数学教程》中引入了一整套数学符号,包括sin,但仍然没有受到同时代人的注意。直到18世纪中叶,逐渐趋于统一用sin。余弦符号ces,也在18世纪变成现在cos。二、万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))参考资料来源:百度百科-三角函数符号hi投2023-05-19 11:00:431
三角函数符号的三角函数符号
毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions), 但当时并无函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent” (正切)及“secant”(正割)表示相应之概念 ,其后他分别以符号“sin.”,“tan.”,“ sec.”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。后来的 符号多有变化,下列的表便显示了它们之发展变化。使用者 年代 正弦 余弦 正切 余切 正割 余割 备注罗格蒙格努斯 1622 S.R. T. (Tang) T. cpl Sec Sec. Compl吉拉尔 1626 tan sec.杰克 1696 s. cos. t. cot. sec. cosec.欧拉 1753 sin. cos. tag(tg). cot. sec. cosec谢格内 1767 sin. cos. tan. cot. Ⅰ巴洛 1814 sin cos. tan. cot. sec cosec Ⅰ施泰纳 1827 tg Ⅱ皮尔斯 1861 sin cos. tan. cotall sec cosec奥莱沃尔 1881 sin cos tan cot sec csc Ⅰ申弗利斯 1886 tg ctg Ⅱ万特沃斯 1897 sin cos tan cot sec csc Ⅰ舍费尔斯 1921 sin cos tg ctg sec csc Ⅱ注:Ⅰ-现代(欧洲)大陆派三角函数符号。Ⅱ-现代英美派三角函数符号我国现正采用Ⅱ类三角函数符号。1729年,丹尼尔.伯努利是先以符号表示反 三角函数,如以AS表示反正弦。1736年欧拉以At 表示反正切,一年後又以Asinb/c表示 于单位圆上正弦值相等于b/c的弧。1772年,C.申费尔以arc. tang. 表示反 正切;同年,拉格朗日采以arc. sin 1/1+α表示反正弦函数。1776年,兰伯特则以arc. sin表示 同样意思。1794年,鲍利以Arc.sin表示反正弦函数。其後这些记法逐渐得到普及,去掉符号中之小 点,便成现今通用之符号,如arc sin x,arc cos x 等。于三角函数前加arc表示反三角函数,而有时则 改以于三角函数前加大写字母开头Arc,以表示反三角函数之主值。另一较常用之反三角函数符号如sin-1x ,tan-1x等,是赫谢尔于1813年开 始采用的,把反三角函数符号与反函数符号统一起来,至今亦有应用。 〔若对各三角函数的符号演变史感兴趣,可参梁 宗巨(1995),《数学历史典故》,页100-108,台北:九章出版社。〕Ntou1232023-05-19 11:00:431
三角函数都有哪些符号?
三角函数符号有sin、cos、tan、cot、sec、csc等等。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。符号:毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan.”,“sec.”,“sin. com”,“tan. com”,“sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。小白2023-05-19 11:00:431
三角函数有哪几种象限符号?
1、三角函数的象限符号见下图2、记忆与理解3、知识拓展在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:变化规律正弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大);余弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大);正切值在 随角度增大(减小)而增大(减小);余切值在 随角度增大(减小)而减小(增大);正割值在 随着角度的增大(或减小)而增大(或减小);余割值在 随着角度的增大(或减小)而减小(或增大)。可桃可挑2023-05-19 11:00:421
三角函数的符号问题
-1就是-1次方 就是它的倒数 等于cot水元素sl2023-05-19 11:00:423
三角函数符号是什么?
三角函数在各个象限的符号是sina、cosa、tana,三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。cot(kπ+α)=cotα。cot(π/2-α)=tanα。cot(π/2+α)=-tanα。cot(-α)=-cotα。cot(π+α)=cotα。cot(π-α)=-cotα。cot是三角函数里的余切三角函数符号,此符号在以前写作ctg。cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ(当θ=kπ,k∈Z时,cotθ不存在)。角A的邻边比上角A的对边。有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。符号:sin、cos、tan、cot、sec、csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。LuckySXyd2023-05-19 11:00:411
三角函数在每个象限的符号分别是什么?
三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。扩展资料:诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像tt白2023-05-19 11:00:411
三角函数符号读法
随便读 只要别人能听懂就行 一个外音译过来的东西 懂就OKkikcik2023-05-19 11:00:414