三角

如何求规定定义域上的三角函数的值域

如下为标准式: sin(x),cos(x)的定义域为R,值域为〔-1,1〕  tan(x)的定义域为x不等于π/2kπ,值域为R  cot(x)的定义域为x不等于kπ,值域为R这只是标准的定义.其中的X是变量.只要把变量X带入以上定义域中.求出真正的X就行!还是给你举个例子吧!sin(3X),求这个的定义域.的话.只要3X属于R,求出X也属于R求这个值域:如果X有定义域限制,比如说.X属于(π/2,π)]那就是说3X属于(3π/2,3π),那么画正弦函数图.就可以知道定义域在(-1,1)不知道你能理解不.不理解可以加QQ,再教你
FinCloud2023-06-27 09:50:321

求三角函数的值域

y^2=sin^2(x)/(5+4cosx), 令t=(5+4cosx),∵cosx∈[-1,1],∴t∈[1,9]则cosx=(t-5)/4,sin^2(x)=1- cos^2(x)=1-(t-5)^2/16,y^2=sin^2(x)/(5+4cosx)=[ 1-(t-5)^2/16]/t,16y^2=[ 16-(t-5)^2]/t,16y^2=(-t^2+10t-9)/t,16y^2=10-(t+9/t))因为函数t+9/t的图像是个“√”,它在(1,3)上递减,(3,+∞)上递增,∴t∈[1,9]时,函数t+9/t的最小值是6(t=3时取到),最大值是10(t=1或9时取到)从而可知10-(t+9/t))∈[0,4]即16y^2∈[0,4]y∈[-1/2,1/2]。
LuckySXyd2023-06-27 09:50:281

三角函数求值域问题,需要详细解析及答案

x∈【-π/4,π/4】-π/3≤2x+π/6≤2π/3当2x+π/6=π/2,即x=π/6时,sin(2x+π/6)取得最大值为1,f(x)max=√3当2x+π/6=-π/3,即x=-π/4时,sin(2x+π/6)取得最小值-√3/2,f(x)min=-3/2值域为【-3/2,√3】
真颛2023-06-27 09:50:281

高一三角函数问题 值域问题

原式=cos2x值域:【-1,1】
康康map2023-06-27 09:50:284

三角函数值域怎么求

y是x 的函数,可以记作y =f(x)(f表示对应法则)。 (2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f : A→B就叫做A到B的函数,记作y =f(x),其中x 83 A ,y83B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C82 B。 注意①由函数的近代定义可知,函数是数集间的映射。 ②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。 ③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。 2、函数的性质 (1)函数的单调性 设y =f(x)是给定区间上的一个函数, 是给定区间上的任意两个值,且x1<x2,如果都有f(x1)<f(x2),则称f(x)在这个区间上是增函数(也称f(x)在这个区间上单调递增);如果都有f(x1)>f(x2),则称f(x)在这个区间上是减函数(也称f(x)在这个区间上单调递减)。 如果函数y=f(x)在某个区间上是增函数或减函数,就说f(x)在这一区间上具有(严格)单调性,这一区间叫做f(x)的单调区间。 (2)函数的奇偶性 ①如果对于函数定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 ②如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 奇函数的图象关于原点成中心对称图形;偶函数的图象关于y轴成轴对称图形。 3、反函数(1)逆映射:设f : A→B是集合A到集合B上的一一映射,如果对于B中的每一个元素b,使b在A的原象a和它对应;这样所得的映射叫做映射f : A→B的逆映射,记作:f ^-1: A→B。 注:映射f : A→B也是映射f ^-1: A→B的逆映射,而且f ^-1: A→B 也是一一映射(从B到A上的一一映射)。 (2)如果确定函数y=f(x)的映射f : A→B是f(x)的定义域A到值域B上的一一映射,那么这个映射的逆映射f ^-1: A→B所确定的函数x=f^-1(y)叫做函数y=f(x)的反函数。 函数y=f(x)的定义域、值域分别是函数x=f^-1(y)的值域、定义域。 函数y=f(x)的反函数,习惯上写成y=f^-1(x)。 一般地,求函数y=f(x)的反函数的方法是先由y =f(x)解出x=f^-1(y),然后把x=f^-1(y)改写成y=f^-1(x)。 函数y=f(x)和其反函数y=f^-1(x)的图象关于直线y=x对称。 三角函数的图象和性质是平面三角的主体内容,它是代数中学过的函数的重要补充.本章复习的重点是进一步熟练和运用代数中已学过的研究函数的基本理论和方法,与三角变换配合由三角函数组成的较复杂函数的性质,在诸多性质中,三角函数的周期性和对应法则的“多对一”性,又是这里的特点所在,复习中不仅要注意知识、方法的综合性,还要注意它们在数学、生产、生活中的应用. 周期函数和最小正周期是函数性质研究的新课题,不仅要了解它们的意义,明确周期函数,函数值的变化规律,还要掌握周期性的研究对周期函数性质研究的意义,并会求函数的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期. 三角函数指的是,,,等函数,了解它们的图象的特征,会正确使用“五点法”作出它们的图象,并依据图象读出它们的性质,是本章的基础.对于性质的复习,不要平均使用力量,只要强调已学函数理论、方法的运用,强调数形结合的思想,而要把重点放在周期函数表达某些性质的规范要求上.例如,对于,怎么表述它的递增(减)区间,怎么表述它取最大(小)值时的取值集合,怎么由已知的函数值的取值范围,写出角的取值范围来,等等.还可对性质作些延伸,例如,研究它们的无数条对称轴的表示,无数个对称中心的表示等等. 正弦型函数是这里研究的又一个重点,除了会用“五点法”画出它的简图外,还要从图象变换的角度认识它与的图象的关系,对于三种基本的图象变换(平移变换,伸缩变换,对称变换)进一步进行复习和适当提交. 本章复习还要注意适当提交起点,注意把简单的三角变换与有关函数的性质结合起来,注意把三角函数和代数函数组合起来的综合性研究,注意在函数图象和单位圆函数线这两工具中的综合,择优使用.注意从数学或实际问题中概括出来的与正弦曲线有关的问题的研究,并注意立体几何、复数、解析几何等内容,对平面三角要求的必要准备的复习. 本章中数学思想最重要的是数形结合,另外换元的思想,等价变换和化归的思想,以及综合法、分析法、待定系数法等等,在复习中应有所体现. 反函数总是相对原函数而言的,原函数如果单调,反函数也单调(当然并不是单调性完全相同),原函数定义域就是反函数的值域,原函数的值域就是反函数的定义域。其他还有周期性,对称性,都要针对原函数来考虑。 煌枷窬⑺南笙
小菜G的建站之路2023-06-27 09:50:271

三角函数的值域是?

sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在扩展资料:由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA即tanA=角A 的对边/角A的邻边同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA即sinA=角A的对边/角A的斜边同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA即cosA=角A的邻边/角A的斜边
真颛2023-06-27 09:50:271

怎么求三角函数的极值以及值域和定义域

解: 三角函数的定义域,必定保证三角函数有意义。如 y=tanx 定义域为 {x|x≠kπ+π/2},又如 y=1/sinx 定义域满足 sinx≠0,即 定义域为 {x|x≠kπ} 至于三角函数极值,则在定义域内,导函数y"=0时,x的取值为 x=a,极值为 y=f(a).三角函数值域,则先明确定义域,在定义域内,分别计算出极值和端点值,进行比较,即可得到值域。(对于连续可导函数有效,连续非可导函数,转化为几段函数,分别求取值域,再取交集)
阿啵呲嘚2023-06-27 09:50:261

求三角函数值域问题该怎么求,常用的

对任意x∈R,存在k∈Z和t∈[0,π/2],使x=kπ+t或x=kπ-t.则f(x)=|sinx|+2|cosx|=|sint|+2|cost|=sint+2cost,t∈[0,π/2]得f(x)的值域与g(t)=sint+2cost,t∈[0,π/2]的值域相同.而t∈[0,π/2]时:g(t)=(√5)sin(t+φ),其中tanφ=2,φ∈(π/3,π/2)t+φ∈[φ,π/2+φ]当t+φ=π/2时g(t)有最大值√5当t+φ=π/2+φ,即t=π/2时g(t)有最小值1得g(t)的值域是[1,√5]所以f(x)的值域是[1,√5]
kikcik2023-06-27 09:50:251

三角函数求定义域值域

正弦型函数的和余弦型函数的定义域为R,求y=Asin(wx+a)的值域为[-A,A]。求正切型函数y=Atan(wx+a)的定义域,wx+a≠k兀+兀/2,解出x即可。
西柚不是西游2023-06-27 09:50:242

怎么求三角函数的值域??

先把Y化为与y同名的三角函数(即化为正弦函数):Y=cos(x-π/3)=sin(π/2+(x-π/3))=sin(x+π/6)。考虑平移,sin(x+π/6)要平移为sinx,需要减去π/6,根据“加向左,减向右”的原则,需要向右平移π/6个单位,故而选A.或者你可以逆向考虑——sinx到sin(x+π/6)需要向左平移π/6个单位,那么反过来,sin(x+π/6)到sinx则需要向右平移π/6个单位。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
墨然殇2023-06-27 09:50:231

怎么求三角函数的值域和最值?

  三角函数最值求法归纳:   一、一角一次一函数形式   即将原函数关系式化为:y=Asin(wx+φ)+b或y=Acos(wx+φ)+b或y=Atan(wx+φ)+b的形式即可利用三角函数基本图像求出最值.   如:   二、一角二次一函数形式   如果函数化不成同一个角的三角函数,那么我们就可以利用三角函数内部的关系进行换元,以简化计算.最常见的是sinx+cosx和sinxcosx以及sinx-cosx之间的换元.例如:   三、利用有界性   即:利用-1<cosx<1和-1<sinx<1的性质进行计算:例如:   四、利用一元二次方程   即将原来的用三角函数表示y改写成用y表示某一个三角函数的形式,利用一元二次方程的有根的条件,即△的与0的大小关系,进行计算,这里可以参考《高中数学必修1 》中的基本初等函数的值域计算.   五、利用直线的斜率,如下面的例子:   六、利用向量求   首先,我们必须掌握求解的工具:   进而我们可以将原函数写成两个向量点乘的形式,利用向量的基本性质求解!
凡尘2023-06-27 09:50:221

怎么求三角函数的定义域和值域

分母不为零,根号里大于零
kikcik2023-06-27 09:50:224

三角函数的值域定义域怎么求

不论任何式子,你都要把其化为:y=Asin(wx+φ)或者y=Acos(wx+φ)的形式 之后根据题目的要求得出sin(wx+φ)或者cos(wx+φ)的取值范围(这中间注意最大最小值) 当然这个取值范围一定是[-1,1]之间的,不然就是你算错了 之后给你得出的取值范围上,分别乘以A的数据.这样值域就算出来了
kikcik2023-06-27 09:50:211

求三角函数的值域!!拜托了

自己的作业自己做。。。。。。
u投在线2023-06-27 09:50:204

三角函数值域求法

三角函数的值域,根据三角函数的定义,列出解析式,在定义域的范围内,求得值域。其结果是:正弦函数,[-1,1]余弦函数,[-1,1]正切函数,实数余切函数,实数正割函数,(-∞,-1]或[1,+∞)余割函数,(-∞,-1]或[1,+∞)
CarieVinne 2023-06-27 09:50:201

三角函数的值域是多少?

三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。相关信息:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。
小白2023-06-27 09:50:191

三角函数的值域怎么求?

问题一:如何求三角函数的值域 通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的 比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。 然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦 如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。 如果熟练的话,直接观察也就可以出答案的 tan的如法炮制 问题二:三角函数的值域怎么求 哪个三角函数的? 问题三:三角函数定义域值域怎么求的? 一般来说 sinx cosx 的值域为R,tanx为 x不等于2kπ+π/2. 其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx 是[-1,1] tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域 问题四:三角函数求定义域值域 如下为标准式: sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R 这只是标准的定义.其中的X是变量.只要把变量X带入以上定义域中.求出真正的X就行! 还是给你举个例子吧! sin(3X),求这个的定义域.的话. 只要3X属于R ,求出X也属于R 求这个值域: 如果X有定义域限制,比如说.X属于(π/2,π)] 那就是说3X属于 (3π/2,3π),那么画正弦函数图. 就可以知道定义域在(-1,1) 不知道你能理解不.不理解可以加QQ,再教你 问题五:如何求三角函数的值域 通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的 比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。 然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦 如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。 如果熟练的话,直接观察也就可以出答案的 tan的如法炮制 问题六:三角函数的值域怎么求 哪个三角函数的? 问题七:三角函数定义域值域怎么求的? 一般来说 sinx cosx 的值域为R,tanx为 x不等于2kπ+π/2. 其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx 是[-1,1] tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域
LuckySXyd2023-06-27 09:50:181

反三角函数的导数是什么?

1、反三角函数求导公式反正弦函数的求导:(arcsinx)"=1/√(1-x^2)反余弦函数的求导:(arccosx)"=-1/√(1-x^2)反正切函数的求导:(arctanx)"=1/(1+x^2)反余切函数的求导:(arccotx)"=-1/(1+x^2)2、反三角函数负数关系公式arcsin(-x)=-arcsin(x)arccos(-x)=π-arccos(x)arctan(-x)=-arctan(x)arccot(-x)=π-arccot(x)3、反三角函数倒数关系公式arcsin(1/x)=arccsc(x)arccos(1/x)=arcsec(x)arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)4、反三角函数余角关系公式arcsin(x)+arccos(x)=π/2arctan(x)+arccot(x)=π/2arcsec(x)+arccsc(x)=π/2
LuckySXyd2023-06-27 09:47:041

secx等于什么 解析三角函数secx的定义和值?

除此之外,secx的值还可以用三角函数的基本关系式来表示:通过这个式子,我们可以推导出很多secx的性质和应用。例如,当x = π / 2时(即90度),cosx = 0,因此secx不存在。这个结论在三角函数的计算中是非常重要的。- 当x = 60度时,cosx = 1 / 2,因此secx = 1 / cosx = 2。secx = 1 / cosx = 1 / (sin^2x + cos^2x)^0.5其中,x表示任意角度。cosx表示余弦函数,表示直角三角形中的邻边与斜边的比值。因此,secx表示直角三角形中的斜边与邻边的比值的倒数。
gitcloud2023-06-27 09:45:451

三角函数secx等于什么啊?

secx = 1/cosx
人类地板流精华2023-06-27 09:45:392

三角函数secx是什么?sec-x等于什么?谢谢大神!

1/cosx
kikcik2023-06-27 09:45:353

三角函数是多少?如:sin30,cos30,tan30?

拌三丝2023-06-27 09:19:033

怎么算30度45度60度三角函数值

正切值 对边比邻边tan30=3分之根号3tan45=1tan60=根号3正弦值 对边比斜边sin30=2分之1sin45=2分之根号2sin60=2分之根号3余弦值 领边比斜边COS30=2分之根号3COS45=2分之根号2COS60=2分之1
小白2023-06-27 09:18:583

三角函数的值等于多少 比如tan45度等于多少 要全面的

百度百科里面有全面解答,输入“三角函数值”
真颛2023-06-27 09:18:569

三角函数30度的值是什么?

sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在扩展资料:由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA即tanA=角A 的对边/角A的邻边同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA即sinA=角A的对边/角A的斜边同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA即cosA=角A的邻边/角A的斜边
水元素sl2023-06-27 09:18:481

sin30度的三角函数公式是什么?

30度直角三角形对边是斜边的一半。所以1比2等于0.5 sin30°=0.5
大鱼炖火锅2023-06-27 09:18:422

三角函数sin30°的值是多少?

义是什么呢?关注sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0
LuckySXyd2023-06-27 09:18:247

三角形中sin30度(邻比斜)=多少

三角形中sin30度(对边比斜边)=1/2 (不是邻比斜)30度对边比邻边,即 tan30° =√ 3 / 3
西柚不是西游2023-06-27 09:18:221

30度角的三角函数值是多少?

30°角的正弦函数值是sin30°=1/2,余弦函数是 cos30°=√3/2,正切函数是tan30°=√3/3。
Ntou1232023-06-27 09:17:573

在平面直角坐标系xOy中已知A(2,-2),在Y轴确定点p使三角形AOP为等腰三角形则符合条件的点有几个

解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.
善士六合2023-06-27 08:23:171

如图在平面直角坐标系中xoy中,a的坐标是一逗号零点b在y轴上,将三角形oab沿,x

通过查看图,A点在X的负半轴上,B点在X的正半轴上. (1)、依题意,求得A、B、C三点坐标分别为(-1,0)、(5,0)、(0,-5),所以抛物线y=x^2-4x-5 (2)、设E(X1,Y),F为(X2,Y),依题意有X1^2-4X1-5=X2^2-4X2-5,整理得X1-X2=4,所以在点E的运动过程中,当矩形EFGH为正方形时,该正方形边长为4. (3)、直线BC的解析式求得为Y=X-5,过点M作MN垂直BC或BC的延长线于N,则MN解析式为Y=-X+k,
铁血嘟嘟2023-06-27 08:21:471

什么是河口三角洲?印度的“硅谷”在哪? 澳大利亚的大自流盆地是怎么形成的? 大陆架是什么?

口三角洲是指河口段的扇状冲积平原。河流入海时,因流速减低,所挟带的大量泥沙,在河口段淤积延伸,填海造陆,洪水时漫流淤积,逐渐形成扇面状的堆积体。印度硅谷 亚洲硅谷 班加罗尔 班加罗尔,位于印度南部,在坎纳达语中,是“煮豆村”的意思。它现有人口约330万,是印度第五大城市。这里环境优美,有“花园城市”之称。比“花园城市”称号更有名的,就是这里享誉世界的印度“硅谷”。去过那里的人称,如果你晚上来到最繁华的大街,你会以为是身在美国。 澳大利亚大自流盆地,大浅碟形凹陷盆地。又称澳大利亚大盆地,位于澳大利亚大陆中部偏东,即中央低地区北部1/3的地区范围内。介于东部高地与西部高原之间,自卡奔塔利亚湾向南,直至达令河上源和艾尔湖盆地,包括昆士兰州的1/3地区、新南威尔士州和南澳大利亚州的大部以及北部地方的一部分区域 ,面积 175万平方千米,地下广布着承压水层。东部边缘大致以大分水岭西麓为界,地势较高,西、北、南三边较低。在澳大利亚古陆岩层上,覆盖着基岩不透水层、侏罗纪砂岩承压含水层和白垩纪页岩不透水层,露头在东部多雨地带,形成受水区。地下水流循含水层以每年11~16米的速度流向西部少雨地区。承压水通过钻井或天然泉眼涌出地表,自流盆地因此得名。第一个人工钻井于1878年在新南威尔士州的伯克附近钻成,1970年前后,共有自流钻井4500孔,另有需使用抽水机的半自流钻井 2 万孔 ,70 年代末,前者已减为约2900孔。地下水的矿化度一般是离东部受水区越远就越高。大部分地区地下水的钠离子含量太高,不宜于农业灌溉,但大部分尚可供牲畜饮用。有些井的水温很高,须待降温后方能使用。地下水到达地面的水量不大,全盆地年总涌流量仅1.99亿立方米,但对干旱半干旱地区畜牧业作用极大。 大陆架是大陆向海洋的自然延伸,通常被认为是陆地的一部分。又叫“陆棚”或“大陆浅滩”。它是指环绕大陆的浅海地带。 大陆架含义在国际法上,指邻接一国海岸但在领海以外的一定区域的海床和底土。沿岸国有权为勘探和开发自然资源的目的对其大陆架行使主权权利。 大陆架有丰富的矿藏和海洋资源,已发现的有石油、煤、天然气、铜、铁等20多种矿产;其中已探明的石油储量是整个地球石油储量的三分之一。
可桃可挑2023-06-26 09:27:171

三角形余弦定理公式大全

  高中数学是一个非常让人头痛的学科,但是还有有许多同学摆正态度积极学习,为了更好的帮助他们提高成绩。下面是由我为大家整理的“三角形余弦定理公式大全”,仅供参考,欢迎大家阅读。    三角形余弦定理公式大全   余弦定理(第二余弦定理)   余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。   直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值   我本段   余弦定理性质   对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质--   a^2 = b^2+ c^2 - 2·b·c·cosA   b^2 = a^2 + c^2 - 2·a·c·cosB   c^2 = a^2 + b^2 - 2·a·b·cosC   cosC = (a^2 + b^2 - c^2) / (2·a·b)   cosB = (a^2 + c^2 -b^2) / (2·a·c)   cosA = (c^2 + b^2 - a^2) / (2·b·c)   (物理力学方面的平行四边形定则中也会用到)   第一余弦定理(任意三角形射影定理)   设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有   a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。   我本段   余弦定理证明   平面向量证法   ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b)   ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)   (以上粗体字符表示向量)   又∵cos(π-θ)=-Cosθ   ∴c2=a2+b2-2|a||b|cosθ(注意:这里用到了三角函数公式)   再拆开,得c2=a2+b2-2*a*b*CosC   即 cosC=(a2+b2-c2)/2*a*b   同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。   平面几何证法   在任意△ABC中   做AD⊥BC.   ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a   则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c   根据勾股定理可得:   AC^2=AD^2+DC^2   b^2=(sinB*c)^2+(a-cosB*c)^2   b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2   b^2=(sinB2+cosB2)*c^2-2ac*cosB+a^2   b^2=c^2+a^2-2ac*cosB   cosB=(c^2+a^2-b^2)/2ac   我本段   作用   (1)已知三角形的三条边长,可求出三个内角   (2)已知三角形的两边及夹角,可求出第三边。   (3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)   判定定理一(两根判别法):   若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取   减号的值   ①若m(c1,c2)=2,则有两解   ②若m(c1,c2)=1,则有一解   ③若m(c1,c2)=0,则有零解(即无解)。   注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。   判定定理二(角边判别法):   一当a>bsinA时   ①当b>a且cosA>0(即A为锐角)时,则有两解   ②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)   ③当b=a且cosA>0(即A为锐角)时,则有一解   ④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)   ⑤当b   二当a=bsinA时   ①当cosA>0(即A为锐角)时,则有一解   ②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)   三当a   解三角形公式 例如:已知△ABC的三边之比为5:4:3,求最大的内角。   解 设三角形的三边为a,b,c且a:b:c=5:4:3.   由三角形中大边对大角可知:∠A为最大的角。由余弦定理   cos A=0   所以∠A=90°.   再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长。   解 由余弦定理可知   BC2=AB2+AC2-2AB×AC·cos A   =4+9-2×2×3×cos60   =13-12x0.5   =13-6   =7   所以BC=√7. (注:cos60=0.5,可以用计算器算)   以上两个小例子简单说明了余弦定理的作用。   其他   从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。   解三角形时,除了用到余弦定理外还常用正弦定理。    30° 45° 60°   Sin 1/2 √2/2 √3/2   Cos √3/2 √2/2 1/2   Tan √3/3 1 √3    拓展阅读:三角形的三边关系是什么   三角形三边关系是三角形三条边关系的定则,具体内容是在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。   三角形三边关系是三角形三条边关系的定则,具体内容是在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。   设三角形三边为a,b,c则a+b>c,a>c-b,b+c>a,b>a-c,a+c>b,c>b-a   直角三角形   性质1:直角三角形两直角边的平方和等于斜边的平方。   性质2:在直角三角形中,两个锐角互余。   性质3:在直角三角形中,斜边上的中线等于斜边的一半。   性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
u投在线2023-06-23 11:48:321

三角形的余弦定理是什么啊?

正余弦函数的图像是:性质1、单调区间正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减。余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减。2、奇偶性正弦函数是奇函数,余弦函数是偶函数。3、对称性正弦函数关于x=π/2+2kπ轴对称,关于(kπ,0)中心对称。余弦函数关于x=2kπ对称,关于(π/2+kπ,0)中心对称。4、周期性正弦余弦函数的周期都是2π。三角形余弦定理的公式对于边长为a、b、c而相应角为A、B、C的三角形,有:a2=b2+c2-bc·cosAb2=a2+c2-ac·cosBc2=a2+b2-ab·cosC也可表示为:cosC=(a2+b2-c2)/abcosB=(a2+c2-b2)/accosA=(c2+b2-a2)/bc这个定理也可以通过把三角形分为两个直角三角形来证明。如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。
北境漫步2023-06-23 11:48:251

形容花三角梅开得很美的诗句

1、客玉溪近现代:张力夫空中飘眇荡音符,三角梅开缀满途。黎庶祥和岂天赐,名城事业赖人扶。仙湖碧水留云鹤,宝塔青山融画图。足迹神州千万里,当嗟气象此间殊。译文:天空中飘眇荡音符,三角梅开缀满途。黎民吉祥和能上天的恩赐,名城事业赖人扶。神仙湖碧水留云鹤,宝塔青山融画地图。足迹神州千里,当喂气象这间不同。2、红梅宋代:王十朋桃李莫相妒,夭姿元不同。犹余雪霜态,未肯十分红。译文:桃李不要嫉妒我红梅,红梅和桃李开花的样子原来就不同,红梅经历了风雪,身上还有雪的痕迹。它却还是不承认自己的色彩很红艳。3、早梅唐代:齐己万木冻欲折,孤根暖独回。前村深雪里,昨夜一枝开。风递幽香出,禽窥素艳来。明年如应律,先发望春台。译文:万木禁受不住严寒快要摧折,梅树汲取地下暖气生机独回。皑皑的白雪笼罩着山村乡野,昨夜一枝梅花欺雪傲霜绽开。微风吹拂梅香四溢别有情味,素雅芳洁的姿态令禽鸟惊窥。明年如果梅花还能按时绽放,希望它开在众人爱赏的春台。4、汉宫春·梅宋代:晁冲之潇洒江梅,向竹梢疏处,横两三枝。东君也不爱惜,雪压霜欺。无情燕子,怕春寒、轻失花期。却是有,年年塞雁,归来曾见开时。清浅小溪如练,问玉堂何似,茅舍疏篱。伤心故人去后,冷落新诗。微云淡月,对江天、分付他谁。空自忆,清香未减,风流不在人知。译文:水边的梅花是多么潇洒,在竹梢稀疏的地方。横斜着挺出三两枝。春风也不知道爱惜,任凭雪压霜欺。燕子无情无意,只因怕冷,轻易地失去她开花的日期。惟有南归的鸿雁,年年南飞时能看见她的芳姿。清浅的小溪,如一条白白的丝练,请问那些华丽的堂宇,又如何能赶得上这茅屋疏篱?最令人伤心的是,自从知己朋友离去之后,便很少有吟唱梅花的清绝的歌诗。只有微云轻轻飘浮,淡淡的月光隐约迷离。面对此景此情,我的孤高芳洁又都是为了谁?但那高洁的江梅,依旧倚风自笑,并未减淡她的清香,因为风流高逸是自身的品质,本来就不在乎别知与不知。
人类地板流精华2023-06-23 11:41:593

复数模的三角形不等式?

对任意两个复数Z1、Z2有:||Z1|-|Z2||≤|Z1±Z2|≤|Z1|+|Z2|
瑞瑞爱吃桃2023-06-22 16:30:484

三角函数是什么意思

1角的概念的推广4.2弧度制4.3任意角的三角函数4.4同角三角函数的基本关系式4.5正弦、余弦的诱导公式4.6两角和与差的正弦、余弦、正切4.7二倍角的正弦、余弦、正切4.8正弦函数、余弦函数的图象和性质4.9函数y=Asin(ωx+φ) 的图象 4.10正切函数的图象和性质4.11已知三角函数值求角
bikbok2023-06-22 16:29:123

三角函数的定义是什么?

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。六种基本函数函数名:正弦函数,余弦函数,正切函数,余切函数,正割函数,余割函数正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y同角三角函数(函数关系拓展)(1)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)(2)积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα(3)倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1恒等变形公式两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
康康map2023-06-22 16:29:062

三角函数的基本关系式

同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
水元素sl2023-06-22 16:29:061

三角函数公式初中sin cos tan是什么?

三角函数公式初中sin、cos、tan的意思:1、tan就是正切的意思,直角三角函数中,锐角对应的边跟另一条直角边的比。2、cos就是余弦的意思,锐角相邻的那条直角边与斜边的比。3、sin就是正弦的意思,锐角对应的边与斜边的边。三角函数简介:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
wpBeta2023-06-22 16:29:051

初中三角函数公式表

COS30度=0.866 tan45度=1 cot我就不会
善士六合2023-06-22 16:29:019

三角函数公式大全

两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina*cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2)cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a) pi=3.1415926....cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a) 余弦定理可表示为:正弦定理可表示为:朋友,请采纳正确答案,你们只提问,不采纳正确答案,回答都没有劲!!!朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
wpBeta2023-06-22 16:28:593

直角三角形三角函数公式是什么?

直角三角形三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。cos公式的其他资料:它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角。(2)已知两边和它们的夹角,求第三边和其他两个角。
阿啵呲嘚2023-06-22 16:28:581

三角函数的定义

三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。(抄于百度百科)
西柚不是西游2023-06-22 16:28:581

三角函数共有几个?

六个三角函数分别是:1、正弦函数 y=sinx。2、余切函数 y=cosx。3、正切函数 y=tanx。4、余切函数 y=cotx。5、正割函数 y=secx。6、余割函数 y=cscx。简介三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
凡尘2023-06-22 16:28:571

三角函数有哪几种?

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。基本初等内容它有六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数 versinθ =1-cosθ余矢函数 vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α)·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/2cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。·三角函数作为微分方程的解:对于微分方程组 y=-y"";y=y"""",有通解Q,可证明Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。·特殊三角函数值a 30` 45` 60` 90`sina 1/2 √2/2 √3/2 1cosa √3/2 √2/2 1/2 0tga √3/3 1 √3 不存在ctga √3 1 √3/3 0
u投在线2023-06-22 16:28:561

三角函数的定义是什么?

直角三角形三角函数定义在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:基本函数英文缩写表达式语言描述三角形正弦函数sinesina/c∠A的对边比斜边余弦函数cosinecosb/c∠A的邻边比斜边正切函数tangenttana/b∠A的对边比邻边余切函数cotangentcotb/a∠A的邻边比对边正割函数secantsecc/b∠A的斜边比邻边余割函数cosecantcsc
ardim2023-06-22 16:28:552

三角函数公式有哪些?

三角函数加减法公式有如下:sin(α+β)=sinαcosβ+cosαsinβ。sin(α-β)=sinαcosβ-cosαsinβ。cos(α+β)=cosαcosβ-sinαsinβ。cos(α-β)=cosαcosβ+sinαsinβ。三角函数公式相关:三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
真颛2023-06-22 16:28:551

什么是三角函数?三角函数的定义?

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。三角函数包含六种基本函数:正弦、余弦、正切、余切、正割、余割。如:在直角三角形ABC中,a、b、c分别是角A、角B、角C的对边,角C为直角。则定义以下运算方式:sin角A=角A的对边长/斜边长,sinA记为角A的正弦。希望我的回答能够帮到你。
gitcloud2023-06-22 16:28:531

三角函数的所有公式

三角函数所有公式大全:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotαtanα·cotα=1sinα·cscα=1cosα·secα=1cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosαsin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαsin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]记忆三角函数公式1、“奇变偶不变,符号看象限”:“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。2、符号判断口诀:“一全正;二正弦;三正切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。“ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。
bikbok2023-06-22 16:28:532

三角函数几条基本公式sin cos tan诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotα推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαsin(3π/2-α)=-cosαcos(3π/2+α)=sinαcos(3π/2-α)=-sinαtan(3π/2+α)=-cotα诱导公式记忆口诀:“奇变偶不变,符号看象限”。
再也不做站长了2023-06-22 16:28:531

三角函数的概念公式

三角函数的解释设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
拌三丝2023-06-22 16:28:531

三角函数的定义是什么?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。扩展资料:诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
余辉2023-06-22 16:28:501

三角函数公式

http://www.wen8.net/science/maths/3jiaohs.htm去看看,很全的。
bikbok2023-06-22 16:28:492

三角函数的定义域是什么?

三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
陶小凡2023-06-22 16:28:491

三角函数加减法公式是什么?

应该是三角函数的和差化积公式吧?没有加减法公式。
拌三丝2023-06-22 16:28:484

三角函数的定义

三角函数的解释 设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
hi投2023-06-22 16:28:471

三角函数是什么啊?

三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。以上内容参考:百度百科——三角函数
大鱼炖火锅2023-06-22 16:28:471

sin三角函数公式有哪些,怎么计算?

一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。参考资料:三角函数公式百度百科
Chen2023-06-22 16:28:471

三角函数的定义是什么

三角函数的定义:当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言:对边(opposite)a=BC;斜边(hypotenuse)h=AB;邻边(adjacent)b=AC。 三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
水元素sl2023-06-22 16:28:461

三角函数的转换公式

三角函数转换公式1、诱导公式:sin(-α)= -sinα;cos(-α) = cosα;sin(π/2-α)= cosα;cos(π/2-α) =sinα;  sin(π/2+α) = cosα;cos(π/2+α)= -sinα;sin(π-α) =sinα;cos(π-α) = -cosα;  sin(π+α)= -sinα;cos(π+α) =-cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:  sin(AB) = sinAcosBcosAsinB  cos(AB) = cosAcosBsinAsinB  tan(AB) = (tanAtanB)/(1tanAtanB)  cot(AB) = (cotAcotB1)/(cotBcotA) ue1173、倍角公式  sin2A=2sinAu2022cosA  cos2A=cosA2-sinA2=1-2sinA2=2cosA2-1  tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 5、和差化积  sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]  sinθ-sinφ = 2 cos[(θ+φ)/2]sin[(θ-φ)/2]  cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2]  cosθ-cosφ = -2 sin[(θ+φ)/2]sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差  sinαsinβ= -1/2*[cos(α-β)-cos(α+β)]  cosαcosβ =1/2*[cos(α+β)+cos(α-β)]  sinαcosβ =1/2*[sin(α+β)+sin(α-β)]  cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]万能公式
墨然殇2023-06-22 16:28:465

数学三角函数的所有公式

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 和差化积2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b) 2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角
hi投2023-06-22 16:28:452

三角函数的定义

题库内容:三角函数的解释设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
Chen2023-06-22 16:28:451

三角函数包括哪些?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。扩展资料奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
hi投2023-06-22 16:28:431

三角函数是什么?

三角函数目录·三角函数恒等变形公式·部分高等内容·特殊三角函数值·三角函数的计算三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。基本初等内容它有六种基本函数(初等基本表示):函数名正弦余弦正切余切正割余割正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1
tt白2023-06-22 16:28:431

什么是三角函数?

单位圆与三角函数的关系:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。三角函数的起源:早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
mlhxueli 2023-06-22 16:28:421

三角函数公式sin,cos,tan有哪些?

三角函数公式初中sin、cos、tan有如下:1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等。sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系。sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系。sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
小菜G的建站之路2023-06-22 16:28:411

三角函数的定义是什么

三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。(抄于百度百科)
九万里风9 2023-06-22 16:28:412

三角函数有哪些

  三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ、余切函数cotθ、正割函数secθ、余割函数cscθ、正矢函数versinθ、余矢函数vercosθ。θ是三角形的一个角度,其性质只是一个符号而已,代表一个任意的角度值。  三角函数简介   三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。  三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。  三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
u投在线2023-06-22 16:28:411

三角函数公式有哪些?

一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。参考资料:三角函数公式百度百科
tt白2023-06-22 16:28:401

三角函数公式是什么?

公式为sinA=a/c,cosA=b/c,tanA=a/b。在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。扩展资料:在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。如:sin 30= 1/2sin 45=根号2/2sin 60= 根号3/2cos 30=根号3/2cos 45=根号2/2cos 60=1/2tan 30=根号3/3tan 45=1tan 60=根号3参考资料:百度百科—三角函数
meira2023-06-22 16:28:401

什么是三角函数

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具常见的三角函数包括正弦函数、余弦函数和正切函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒常见的双曲函数
u投在线2023-06-22 16:28:391

三角函数包括哪些?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。扩展资料奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
真颛2023-06-22 16:28:391

三角函数的概念以及公式

概念:三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。特殊值表:常用:sin30:tan30=1/2:√3/3=√3/2=cos30 sin45:tan45=√2/2:1=√2/2=cos45 sin60:tan60=√3/2:√3=1/2=sin60 即sina:tana=cosa说明对任意锐角a都成立 tana=sina/cosa sina:tana=sina:sina/cosa=cosa 所以对于任意锐角a都成立
NerveM 2023-06-22 16:28:381

什么是三角函数 三角函数是什么

1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 2、常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx).在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数.不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式.
瑞瑞爱吃桃2023-06-22 16:28:381

三角函数的公式大全

三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形abc中,角a的正弦值就等于角a的对边比斜边,余弦等于角a的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)cost=a/(a^2+b^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]赞同50|评论
CarieVinne 2023-06-22 16:28:372

常见的三角函数公式

同角三角函数的基本关系  倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα·secα=1  商的关系:   sinα/cosα=tanα=secα/cscα  平方关系:平常针对不同条件的常用的两个公式一个特殊公式  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]  =sin(a+θ)*sin(a-θ)坡度公式  我们通常把坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,  即 i=h / l,坡度的一般形式写成 l : m形式,如i=1:5.如果把坡面与水平面的夹角记作  a(叫做坡角),那么 i=h/l=tan a.锐角三角函数公式  正弦: sinα=∠α的对边/∠α 的斜边  余弦:cosα=∠α的邻边/∠α的斜边  正切:tanα=∠α的对边/∠α的邻边  余切:cotα=∠α的邻边/∠α的对边二倍角公式  正弦  sin2A=2sinA·cosA  余弦  正切  tan2A=(2tanA)/(1-tan^2(A))三倍角公式 三倍角公式  sin3α=4sinα·sin(π/3+α)sin(π/3-α)  cos3α=4cosα·cos(π/3+α)cos(π/3-α)  tan3a = tan a · tan(π/3+a)· tan(π/3-a)  三倍角公式推导   sin(3a)  =sin(a+2a)  =sin2acosa+cos2asina  =2sina(1-sina)+(1-2sina)sina  =3sina-4sin^3a  cos3a  =cos(2a+a)  =cos2acosa-sin2asina  =(2cosa-1)cosa-2(1-cos^a)cosa  =4cos^3a-3cosa  sin3a=3sina-4sin^3a  =4sina(3/4-sina)  =4sina[(√3/2)-sina]  =4sina(sin60°-sina)  =4sina(sin60°+sina)(sin60°-sina)  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]  =4sinasin(60°+a)sin(60°-a)  cos3a=4cos^3a-3cosa  =4cosa(cosa-3/4)  =4cosa[cosa-(√3/2)^2]  =4cosa(cosa-cos30°)  =4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}  =-4cosasin(a+30°)sin(a-30°)  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]  =-4cosacos(60°-a)[-cos(60°+a)]  =4cosacos(60°-a)cos(60°+a)  上述两式相比可得  tan3a=tanatan(60°-a)tan(60°+a)  现列出公式如下:   sin2α=2sinαcosα tan2α=2tanα/(1-tanα ) cos2α=cosα-sinα=2cosα-1=1-2sinα   可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中三倍角公式  sin3α=3sinα-4sinα=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式  sin^2(α/2)=(1-cosα)/2  cos^2(α/2)=(1+cosα)/2  tan^2(α/2)=(1-cosα)/(1+cosα)  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan(α/2)]  cosα=[1-tan(α/2)]/[1+tan^2(α/2)]  tanα=2tan(α/2)/[1-tan&s(α/2)]其他  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式  sin4A=-4*(cosA*sinA*(2*sinA^2-1))  cos4A=1+(-8*cosA^2+8*cosA^4)  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))  cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角公式  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式  sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))  cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))  tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)  为方便描述,令sinθ=s,cosθ=c  考虑n为正整数的情形:  cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>比较两边的实部与虚部  实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*  (虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …   对所有的自然数n:  1. cos(nθ):  公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。  2. sin(nθ):  (1)当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也 就是sinθ)表示。  (2)当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。  (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 半角公式两角和公式 两角和公式  cos(α+β)=cosαcosβ-sinαsinβ  cos(α-β)=cosαcosβ+sinαsinβ  sin(α+β)=sinαcosβ+cosαsinβ  sin(α-β)=sinαcosβ -cosαsinβ  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)  cot(A+B) = (cotAcotB-1)/(cotB+cotA)  cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和公式  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)和差化积  sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2] 和差化积公式sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]  cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]  cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差  sinαsinβ=-[cos(α+β)-cos(α-β)] /2  cosαcosβ=[cos(α+β)+cos(α-β)]/2  sinαcosβ=[sin(α+β)+sin(α-β)]/2  cosαsinβ=[sin(α+β)-sin(α-β)]/2双曲函数  sh a = [e^a-e^(-a)]/2  ch a = [e^a+e^(-a)]/2  th a = sin h(a)/cos h(a)  公式一:  设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)= sinα  cos(2kπ+α)= cosα  tan(2kπ+α)= tanα  cot(2kπ+α)= cotα  公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)= -sinα  cos(π+α)= -cosα  tan(π+α)= tanα  cot(π+α)= cotα  公式三:  任意角α与 -α的三角函数值之间的关系:  sin(-α)= -sinα  cos(-α)= cosα  tan(-α)= -tanα  cot(-α)= -cotα  公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)= sinα  cos(π-α)= -cosα  tan(π-α)= -tanα  cot(π-α)= -cotα  公式五:  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)= -sinα  cos(2π-α)= cosα  tan(2π-α)= -tanα  cot(2π-α)= -cotα  公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)= cosα  cos(π/2+α)= -sinα  tan(π/2+α)= -cotα  cot(π/2+α)= -tanα  sin(π/2-α)= cosα  cos(π/2-α)= sinα  tan(π/2-α)= cotα  cot(π/2-α)= tanα  sin(3π/2+α)= -cosα  cos(3π/2+α)= sinα  tan(3π/2+α)= -cotα  cot(3π/2+α)= -tanα  sin(3π/2-α)= -cosα  cos(3π/2-α)= -sinα  tan(3π/2-α)= cotα  cot(3π/2-α)= tanα  (以上k∈Z)  A·sin(ωt+θ)+ B·sin(ωt+φ) =  √{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }  √表示根号,包括{……}中的内容三角函数的诱导公式(六公式)  公式一:   sin(-α) = -sinα  cos(-α) = cosα  tan (-α)=-tanα  公式二:  sin(π/2-α) = cosα  cos(π/2-α) = sinα  公式三:  sin(π/2+α) = cosα  cos(π/2+α) = -sinα  公式四:  sin(π-α) = sinα  cos(π-α) = -cosα  公式五:  sin(π+α) = -sinα  cos(π+α) = -cosα  公式六:  tanA= sinA/cosA  tan(π/2+α)=-cotα  tan(π/2-α)=cotα  tan(π-α)=-tanα  tan(π+α)=tanα  诱导公式 记背诀窍:奇变偶不变,符号看象限万能公式 万能公式  sinα=2tan(α/2)/[1+(tan(α/2))]  cosα=[1-(tan(α/2))]/[1+(tan(α/2)]  tanα=2tan(α/2)/[1-(tan(α/2))]其它公式 三角函数其它公式  (1) (sinα)^2+(cosα)^2=1(平方和公式)  (2)1+(tanα)^2=(secα)^2  (3)1+(cotα)^2=(cscα)^2  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可  (4)对于任意非直角三角形,总有  tanA+tanB+tanC=tanAtanBtanC  证:  A+B=π-C  tan(A+B)=tan(π-C)  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)  整理可得  tanA+tanB+tanC=tanAtanBtanC  得证  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论  (5)cotAcotB+cotAcotC+cotBcotC=1  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC  其他非重点三角函数   csc(a) = 1/sin(a)  sec(a) = 1/cos(a)  (seca)^2+(csca)^2=(seca)^2(csca)^2  幂级数展开式  sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…… x∈ R  cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… x∈ R  arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)  arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)  arctan x = x - x^3/3 + x^5/5 -…… (x≤1)  无限公式  sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……  cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……  tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]  secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]  (sinx)x=cosx/2cosx/4cosx/8……  (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π  arctan x = x - x^3/3 + x^5/5 -…… (x≤1)  和自变量数列求和有关的公式  sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)  cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2)sin(nx/2)]/sin(x/2)  tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)  sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx  cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)
meira2023-06-22 16:28:361

三角函数是什么?

三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
北营2023-06-22 16:28:361

三角函数是什么

拌三丝2023-06-22 16:28:365

三角函数的定义是什么?

高中数学中关于三角函数的定义。供参考,请笑纳。
tt白2023-06-22 16:28:342
 首页 上一页  59 60 61 62 63 64 65 66 67 68 69  下一页  尾页