指数函数、幂函数的求导公式是什么?
指数函数和幂函数的求导公式如下:1. 指数函数的求导公式:如果 y = a^x,其中 a 是常数且 a > 0,那么它的导数是 dy/dx = ln(a) * a^x。2. 幂函数的求导公式:如果 y = x^n,其中 n 是常数,那么它的导数是 dy/dx = n * x^(n-1)。Chen2023-08-05 17:38:403
什么是函数求导公式
解答:dx:是x的无穷小的增量;dy:是y的无穷小的增量;dy/dx:是y对x的导数,是dy对dx的微分的商,简称微商。意义:随着x的无穷小增量,引起y无穷小的增量,这两个增量的比率。也就是,y随x的无穷小变化所导致的相对变化率、牵连变化率。几何意义:在原函数上任意一点x处的切线的斜率。y":国内的教学,对y"一往情深,对dy/dx弃如敝屣。这样完全一边倒的教学法,就葬送了许多学生对微积分的基本悟性。y"唯一的好处就是书写简便,它埋葬了微商的特性,尤其是解微分方程的直觉。y"×dx:就是微分,y"在定义上是dy/dx,在表达形式上是一个函数y",y"×dx就是表示由于x的增量导致的y的增量的大小。也就是(dy/dx)dx,在形式上是f"(x)dx,在意义上是dy,这就是导数公式与微分公式的关系。北境漫步2023-08-05 17:38:301
指数函数求导公式
指数函数求导公式是微积分中的重要公式之一,用于计算指数函数的导数。指数函数的一般形式为y = a^x,其中a是常数且大于0,x是自变量。求导公式如下:dy/dx = (ln(a)) * a^x其中ln(a)表示以自然对数e为底的a的对数。这个公式可以用来求解任意底数为正实数的指数函数的导数。为了理解这个公式,我们可以通过一些推导和解释来说明。首先,我们将指数函数转化为自然指数函数的形式:y = a^x = e^(ln(a^x)) = e^(x * ln(a))然后,我们对等式两边同时求导数:dy/dx = d/dx (e^(x * ln(a)))为了求导,我们可以使用链式法则。链式法则可以表达为:如果y = f(g(x)),其中f(u)和g(x)都是可微函数,那么:dy/dx = f"(g(x)) * g"(x)在这个例子中,f(u) = e^u,其中u = x * ln(a)。我们已经知道f"(u) = e^u。接下来,我们需要计算g"(x)。根据导数的定义,我们有:g"(x) = d/dx (x * ln(a)) = ln(a)将这些结果代入链式法则,我们得到:dy/dx = f"(g(x)) * g"(x) = e^(x * ln(a)) * ln(a) = a^x * ln(a)因此,指数函数的导数公式为:dy/dx = (ln(a)) * a^x这个公式可以用于计算任意底数为正实数的指数函数的导数。需要注意的是,当底数a等于e时,公式简化为:dy/dx = e^x * ln(e) = e^x这就是自然指数函数e^x的导数公式。指数函数求导公式在微积分中具有广泛的应用,例如在金融、自然科学和工程学等领域中,常常需要计算指数函数的导数来解决实际问题。北有云溪2023-08-05 17:38:081
弱弱的问下..对数函数和指数函数的求导公式怎么用?
这是一个复合函数,复合函数求导的时候要对外层函数和内层函数分别求导相乘,y=In(2x^2+3x+1)相当于是y=In(g(x)),其中g(x)=2x^2+3x+1,求导时先对lng(X)求导,在对g(x)求导,前者的导数是1/(2x^2+3x+1)后面是(2x^2+3x+1)",两者相乘即是结果。没明白的话,多看看课本里面关于复合函数的求导法则,多联系就会明白的左迁2023-07-21 08:58:181
基础对数求导公式
比如基本对数函数y=lnx。则y"=1/x。具体推导过程:因为y=lnx,则x=e^y。则dx=e^y*dy,则dx=xdy。则y"=dy/dx=1/x。如果底数不是e,是其他的数a,可以先转换,比如logax=lnx/lna。则y=logax。y"=1/xlna。北营2023-07-21 08:57:442
对数函数求导公式推导过程
用的是极限中的一个结论:x趋近于0时ln(1+x)和x是等价无穷小。h趋近于0时,ln(1+h/x)和h/x是等价无穷小。例如:对数函数的推导需要利用反函数的求导法则指数函数的求导,定义法:f(x)=a^xf"(x)=lim(detaX->0)[(f(x+detaX)-f(x))/detax]=lim(detaX->0)[(a^(x+detaX)-a^x/)detax]=(a^x).........(x)=lim(h->0)[f(x+h)-f(x)]/h=lim(h->0)[loga(x+h)-logax]/h=lim(h->0)1/hloga[(x+h)/x]=1/xIna扩展资料:在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】参考资料来源:百度百科-对数函数铁血嘟嘟2023-07-21 08:57:431
基础对数求导公式
ln(x/2)的求导为复合函数的求导可以设t=x/2则[ln(x/2)]"=(lnt)"那么(lnt)"=(1/t)*t"=(2/x)*(1/2)=1/x小菜G的建站之路2023-07-21 08:57:432
对数函数求导公式
对数函数求导公式:(Inx)" = 1/x(ln为自然对数);(logax)" =x^(-1) /lna(a>0且a不等于1)。 对数的运算性质 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (6)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X 基本初等函数求导公式 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x log(a^k)(M^n)=(n/k)log(a)(M)(n属于R) 换底公式(很重要) log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828) lg常用对数以10为底水元素sl2023-07-21 08:57:401
带根号的求导公式
计算公式:成立条件:a≥0,n≥2且n∈N。成立条件:a≥0, b≥0, n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。成立条件:a≥0,b>0,n≥2且n∈N。扩展资料:根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若au207f=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。根号的非负性:在实数范围内,(1)偶次根号下不能为负数,其运算结果也不为负。(2)奇次根号下可以为负数。不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可参考资料:百度百科—根号tt白2023-07-21 08:41:292
135度角的三角函数值求导公式
解:sin135°=sin45°=√2/2cos135°=-cos45°=-√2/2tan135°=-tan45°=-1积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]墨然殇2023-07-20 08:41:521
反三角函数求导公式?
反三角函数求导是设arccotx=y,则coty=x两边求导,(-cscy)·y′=1,即y′=-1/cscy=-1/(1+coty),因此,y′=f′(x)=-1/(1+x)。1、反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。2、反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。 三角函数,正常情况下是y=sinx,也就是说我们知道一个角度,可以查表或者计算出所对应的值。3、反正弦函求导公式,设×=siny为直接函数,则y=arcsinx是它的反函数,我们知道,函数×=siny在区间-π/2<y<π/2内单调、可导,而且(siny)"=cosy>0瑞瑞爱吃桃2023-07-20 08:41:521
数学三角函数求导公式
tanα 61cotα=1sinα 61cscα=1cosα 61secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2αsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα 61tanβ tanα-tanβtan(α-β)=—————— 1+tanα 61tanβ 2tan(α/2)sinα=—————— 1+tan2(α/2) 1-tan2(α/2)cosα=—————— 1+tan2(α/2) 2tan(α/2)tanα=—————— 1-tan2(α/2)sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanαtan2α=————— 1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2αardim2023-07-20 08:41:481
高中数学三角函数求导公式
还不清楚三角函数求导公式的小伙伴快来看看吧!,下面由我为你精心准备了“高中数学三角函数求导公式",持续关注本站将可以持续获取更多的考试资讯! 高中数学三角函数求导公式 (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)墨然殇2023-07-20 08:41:231
三角函数求导公式是什么
三角函数求导公式有:tanα·cotα=1,sinα·cscα=1,cosα·secα=1,sinα/cosα=tanα=secα/cscα,cosα/sinα=cotα=cscα/secα,sin2α+cos2α=1,1+tan2α=sec2α,1+cot2α=csc2α等。 三角函数求导公式有哪些 (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)"=tanx·secx (cscx)"=-cotx·cscx (arcsinx)"=1/(1-x^2)^1/2 (arccosx)"=-1/(1-x^2)^1/2 (arctanx)"=1/(1+x^2) (arccotx)"=-1/(1+x^2) (arcsecx)"=1/(|x|(x^2-1)^1/2) (arccscx)"=-1/(|x|(x^2-1)^1/2) ④(sinhx)"=coshx (coshx)"=sinhx (tanhx)"=1/(coshx)^2=(sechx)^2 (coth)"=-1/(sinhx)^2=-(cschx)^2 (sechx)"=-tanhx·sechx (cschx)"=-cothx·cschx (arsinhx)"=1/(x^2+1)^1/2 (arcoshx)"=1/(x^2-1)^1/2 (artanhx)"=1/(x^2-1) (|x|<1) (arcothx)"=1/(x^2-1) (|x|>1) (arsechx)"=1/(x(1-x^2)^1/2) (arcschx)"=1/(x(1+x^2)^1/2) 三角函数求导公式证明过程 以(cosx)" = - sinx为例,推导过程如下: 设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。 同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。NerveM 2023-07-20 08:40:391
三角函数的求导公式?
三角函数求导公式有:1、(sinx)" = cosx2、(cosx)" = - sinx3、(tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^24、-(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^25、(secx)"=tanx·secx6、(cscx)"=-cotx·cscx7、(arcsinx)"=1/(1-x^2)^1/28、(arccosx)"=-1/(1-x^2)^1/29、(arctanx)"=1/(1+x^2)10、(arccotx)"=-1/(1+x^2)11、(arcsecx)"=1/(|x|(x^2-1)^1/2)12、(arccscx)"=-1/(|x|(x^2-1)^1/2)13、(sinhx)"=coshx14、(coshx)"=sinhx15、(tanhx)"=1/(coshx)^2=(sechx)^216、(coth)"=-1/(sinhx)^2=-(cschx)^217、(sechx)"=-tanhx·sechx18、(cschx)"=-cothx·cschx19、(arsinhx)"=1/(x^2+1)^1/220、(arcoshx)"=1/(x^2-1)^1/221、(artanhx)"=1/(x^2-1) (|x|<1)22、(arcothx)"=1/(x^2-1) (|x|>1)23、(arsechx)"=1/(x(1-x^2)^1/2)24、(arcschx)"=1/(x(1+x^2)^1/2)扩展资料三角函数求导公式证明过程以(cosx)" = - sinx为例,推导过程如下:设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一。(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx。因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。FinCloud2023-07-20 08:40:371
三角函数求导公式
③ (sinx)" = cosx(cosx)" = - sinx(tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)"=tanx·secx(cscx)"=-cotx·cscx(arcsinx)"=1/(1-x^2)^1/2(arccosx)"=-1/(1-x^2)^1/2(arc...NerveM 2023-07-20 08:39:441
关于三角函数的所有公式 及求导公式
补充初等三角函数导数y=sinx---y"=cosxy=cosx---y"=-sinxy=tanx---y"=1/cos^2x=sec^2xy=cotx---y"=-1/sin^2x=-csc^2xy=secx---y"=secxtanxy=cscx---y"=-cscxcotxy=arcsinx---y"=1/√(1-x^2)y=arccosx---y"=-1/√(1-x^2)y=arctanx---y"=1/(1+x^2)y=arccotx---y"=-1/(1+x^2)倍半角规律如果角a的余弦值为1/2,那么a/2的余弦值为√3/2反三角函数三角函数的反函数,是多值函数。它们是反正弦Arcsinx,反余弦Arccosx,反正切Arctanx,反余切Arccotx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2评论00加载更多大鱼炖火锅2023-07-20 08:39:392
三角函数求导公式
三角函数求导公式包括y=c(c为常熟),导函数是y"=0;指数函数y=ex的导函数是y"=axlna等。 扩展资料 三角函数求导公式如下:y=c(c为常熟),导函数是y"=0;指数函数y=ex的导函数是y"=axlna;幂函数y=xn导函数是y"=nxn-1;正弦函数y=sinx导函数是y"=cosx;余弦函数y=cosx导函数是y"=-sinx;正切函数y=tanx导函数是y"=sec2x。北境漫步2023-07-20 08:39:381
三角函数求导公式
③ (sinx)" = cosx(cosx)" = - sinx(tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2-(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^2(secx)"=tanx·secx(cscx)"=-cotx·cscx(arcsinx)"=1/(1-x^2)^1/2(arccosx)"=-1/(1-x^2)^1/2(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)(arcsecx)"=1/(|x|(x^2-1)^1/2)(arccscx)"=-1/(|x|(x^2-1)^1/2)④(sinhx)"=coshx(coshx)"=sinhx(tanhx)"=1/(coshx)^2=(sechx)^2(coth)"=-1/(sinhx)^2=-(cschx)^2(sechx)"=-tanhx·sechx(cschx)"=-cothx·cschx(arsinhx)"=1/(x^2+1)^1/2(arcoshx)"=1/(x^2-1)^1/2(artanhx)"=1/(x^2-1) (|x|<1)(arcothx)"=1/(x^2-1) (|x|>1)(arsechx)"=1/(x(1-x^2)^1/2)(arcschx)"=1/(x(1+x^2)^1/2)ardim2023-07-20 08:39:362
三角函数求导公式有哪些
很多同学对于三角函数很不熟练,不知道该如何应对此类题目,以下是由我为大家整理的“三角函数求导公式有哪些”,仅供参考,欢迎大家阅读。 三角函数求导公式有哪些 (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)"=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)"=tanx·secx (cscx)"=-cotx·cscx (arcsinx)"=1/(1-x^2)^1/2 (arccosx)"=-1/(1-x^2)^1/2 (arctanx)"=1/(1+x^2) (arccotx)"=-1/(1+x^2) (arcsecx)"=1/(|x|(x^2-1)^1/2) (arccscx)"=-1/(|x|(x^2-1)^1/2) ④(sinhx)"=coshx (coshx)"=sinhx (tanhx)"=1/(coshx)^2=(sechx)^2 (coth)"=-1/(sinhx)^2=-(cschx)^2 (sechx)"=-tanhx·sechx (cschx)"=-cothx·cschx (arsinhx)"=1/(x^2+1)^1/2 (arcoshx)"=1/(x^2-1)^1/2 (artanhx)"=1/(x^2-1) (|x|<1) (arcothx)"=1/(x^2-1) (|x|>1) (arsechx)"=1/(x(1-x^2)^1/2) (arcschx)"=1/(x(1+x^2)^1/2) 拓展阅读:证明三角函数过程 以(cosx)" = - sinx为例,推导过程如下: 设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。 同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。此后故乡只2023-07-20 08:39:341
三角函数求导公式 什么是三角函数
1、三角函数求导公式:(sinx)"=cosx、(cosx)"=-sinx、(tanx)"=sec2x=1+tan2x。 2、三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。NerveM 2023-07-20 08:39:331
高数中,常见函数的求导公式有哪些?
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性,定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:(1)若在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形单调递增;(2)若在(a,b)内f"(x)<0,则f(x)在[a,b]上的图形单调递减;(3)若在(a,b)内f"(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。函数的导数就是一点上的切线的斜率。当函数单调递增时,斜率为正,函数单调递减时,斜率为负。导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。参考资料:百度百科——导数人类地板流精华2023-07-18 13:44:331
高中数学求导公式
高中数学求导公式如下:1、原函数:y=c(c为常数)导数: y"=02、原函数:y=x^n导数:y"=nx^(n-1)3、原函数:y=tanx导数: y"=1/cos^2x4、原函数:y=cotx导数:y"=-1/sin^2x5、原函数:y=sinx导数:y"=cosx6、原函数:y=cosx导数: y"=-sinx7、原函数:y=a^x导数:y"=a^xlna8、原函数:y=e^x导数: y"=e^x9、原函数:y=logax导数:y"=logae/x10、原函数:y=lnx导数:y"=1/x求导公式整理:y=f(x)=c (c为常数),则f"(x)=0f(x)=x^n (n不等于0) f"(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f"(x)=cosxf(x)=cosx f"(x)=-sinxf(x)=tanx f"(x)=sec^2xf(x)=a^x f"(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f"(x)=e^xf(x)=logaX f"(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f"(x)=1/x (x>0)f(x)=tanx f"(x)=1/cos^2 xf(x)=cotx f"(x)=- 1/sin^2 xf(x)=acrsin(x) f"(x)=1/√(1-x^2)f(x)=acrcos(x) f"(x)=-1/√(1-x^2)f(x)=acrtan(x) f"(x)=-1/(1 x^2)mlhxueli 2023-07-18 13:44:321
高中函数求导公式
高中函数求导公式如下:1、几个基本初等函数求导公式(C)"=0;(x^a)"=ax^(a-1);(a^x)"=(a^x)lna,a>0,a≠1;(e^x)"=e^x;[log<a>x]"=1/[xlna],a>0,a≠1;(lnx)"=1/x;(sinx)"=cosx;(cosx)"=-sinx。(tanx)"=(secx)^2;(cotx)"=-(cscx)^2;(arcsinx)"=1/√(1-x^2);(arccosx)"=-1/√(1-x^2);(arctanx)"=1/(1+x^2);(arccotx)"=-1/(1+x^2)。2、四则运算公式(u+v)"=u"+v";(u-v)"=u"-v";(uv)"=u"v+uv";(u/v)"=(u"v-uv")/v^2。3、复合函数求导法则公式y=f(t),t=g(x),dy/dx=f"(t)*g"(x)。4、参数方程确定函数求导公式x=f(t),y=g(t),dy/dx=g"(t)/f"(t)。5、反函数求导公式y=f(x)与x=g(y)互为反函数,则f"(x)*g"(y)=1。6、高阶导数公式f^<n+1>(x)=[f^<n>(x)]"。7、变上限积分函数求导公式[∫<a,x>f(t)dt]"=f(x)。余辉2023-07-18 13:44:321
八个基本函数求导公式
八个基本函数求导公式是:1、f(x)=cf"(x)=0;2、f(x)=x^af"(x)=ax^(a-1);3、f(x)=sinxf"(x)=cosx;4、f(x)=cosxf"(x)=-sinx;5、f(x)=a^xf"(x)=(a^x)lna;6、f(x)=e^xf"(x)=e^x;7、f(x)=logaxf”(x)=1/(xlnx);8、f(x)=lnxf"(x)=1/x。f(x)是一个以x为自变量的函数。导数也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。Chen2023-07-18 13:44:311
积分求导公式
积分求导公式为:F(x) = ∫(a,x) xf(t) dt。F"(x) = ∫(a,x) f(t) dt + x * [x" * f(x) - a" * f(a)]= (1/x)F(x) + x * [1 * f(x) - 0 * f(a)](下限a的导数是0,所以整体都会变为0)= (1/x)F(x) + xf(x)积分变上限函数和积分变下限函数统称积分变限函数,一般进行计算求导的时候都转换为变上限积分求导。如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数。若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数。如果上限x在区间[a,b]上任意变动,则对于每一个取定的x值,定积分有一个对应值,所以它在[a,b]上定义了一个函数,这就是积分变限函数。积分变限函数是一类重要的函数,它最著名的应用是在牛顿一莱布尼兹公式的证明中。事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。积分变限函数除了能拓展我们对函数概念的理解外,在许多场合都有重要的应用。Chen2023-07-18 13:44:291
函数求导公式及方法
四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设 , 都可导,则 (1) (2) ( 是常数) (3) (4) 反函数求导法则 若函数 在某区间 内可导、单调且 ,则它的反函数 在对应区间 内也可导,且 或 复合函数求导法则 设 ,而 且 及 都可导,则复合函数 的导数为或 上述表中所列公式与法则是求导运算的依据,请读者熟记. 如果有邮箱发课件给你!水元素sl2023-07-18 13:44:293
分式函数的求导公式是什么?
求已知函数的导数,最重要的是能够熟练地运用导数的基本公式及函数的求导法则.复合函数求导法则的运用是求导运算的重点和难点,其关键是要搞清楚复合函数的结构(分清中间变量与自变量).在求导过程中,逐次由外层向内层一层一层地求导.特别要注意每次是对哪个中间变量求导.对于已知函数既有四则运算,又有复合运算时,要根据所给函数表达式的结构,决定先用四则运算法则,还是先用复合运算法则.此后故乡只2023-07-18 13:44:292
请列举出大学微积分需要用到的所有求导公式
不知道u是关于x的函数吗?如果不是,对y=u/x求导,y"=u/-x^2;如果u是关于x的函数,则对y=u/x求导,y"=u"/x-u/x^2苏州马小云2023-07-18 13:44:293
常见函数求导公式
导数是微积分中的重要基础概念,导数实质上就是一个求极限的过程,常见的导数公式有y=c(c为常数)y"=0y=x^ny"=nx^(n-1)y=a^xy"=a^xlna,y=e^xy"=e^x、y=logaxy"=logae/x,y=lnxy"=1/x。三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。再也不做站长了2023-07-18 13:44:281
基本求导公式是什么?
基本求导公式:1、y=c(c为常数)、y"=0。2、y=x^n、y"=nx^(n-1)。3、y=a^x、y"=a^xlna、y=e^x、y"=e^x。4、y=logax、y"=logae/x、y=lnx、y"=1/x。5、y=sinx、y"=cosx。6、y=cosx、y"=-sinx。7、y=tanx、y"=1/cos^2x。8、y=cotx、y"=-1/sin^2x。注意事项:1、不是所有的函数都可以求导;2、可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。运算法则1、减法法则:(f(x)-g(x))"=f"(x)-g"(x)2、加法法则:(f(x)+g(x))"=f"(x)+g"(x)3、乘法法则:(f(x)g(x))"=f"(x)g(x)+f(x)g"(x)4、除法法则:(g(x)/f(x))"=(g"(x)f(x)-f"(x)g(x))/(f(x))^2再也不做站长了2023-07-18 13:44:271
24个基本求导公式
24个基本求导公式如下:1、C"=0(C为常数)。2、(xAn)"=nxA(n——1)。3、(sinx)"=cosx。4、(cosx)"=——sinx。5、(Inx)"=1/x。6、(enx)"=enx。7、 (logaX)"=1/(xlna)。8、 (anx)"=(anx)*ina。9、(u±V)"=u"±V"。10、 (uv)"=u"v+uv"。11、 (u/v)"=(u"v——uv")/v。12、 f(g(x))"=(f(u))"(g(x))"u=g(x)。导函数:如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f"(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f"(x)为区间【a,b】上的导函数,简称导数。条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。北营2023-07-18 13:44:271
反三角函数求导公式及证明方法
反三角函数是一类初等函数,指三角函数的反函数。下面我整理了反三角函数求导公式及证明方法,供大家参考!1 反三角函数求导公式是什么 为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2Ntou1232023-07-16 12:31:511
反三角函数求导公式大全 反三角函数定义域
大家都听过三角函数,那么什么是反三角函数呢?反三角函数是一种基本初等函数。下面,就和我一起来看下反三角函数求导公式有哪些。 反三角函数求导公式大全 反三角函数求导公式:两角和公式 sin(A B) = sinAcosB cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB sinAsinB tan(A B) =tanA tanB/1-tanAtanB? tan(A-B) =tanA-tanB/1 tanAtanB? cot(A B) =cotAcotB-1/cotBcotA?cot(A-B) = cotAcotB 1/cotB-cotA?? 反三角函数求导公式:倍角公式 tan2A = 2tanA/1-tan2A ? Sin2A=2SinA·CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 反三角函数求导公式:三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(π/3 a)·tan(π/3-a) 反三角函数求导公式:半角公式 反三角函数定义域 y=arcsin(x),定义域[-1,1] y=arccos(x),定义域[-1,1] y=arctan(x),定义域(-∞, ∞) y=arccot(x),定义域(-∞, ∞) sin(arcsin x)=x,定义域[-1,1] 什么是反三角函数 反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件: 1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性; 2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的); 3、为了使研究方便,常要求所选择的区间包含0到π/2的角; 4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。u投在线2023-07-16 12:31:411
反函数求导公式
反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。 反函数性质 (1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (2)一个函数与它的反函数在相应区间上单调性一致; (3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (4)一段连续的函数的单调性在对应区间内具有一致性; (5)严增(减)的函数一定有严格增(减)的反函数; (6)反函数是相互的且具有唯一性; (7)定义域、值域相反对应法则互逆(三反) 原函数 已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。拌三丝2023-07-16 12:31:241
反函数求导公式原理是什么?
首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这函数在a点可导并且导数f"(a)≠0,那么反函数x=g(y)在点b=f(a)可导,且g"(b)=1/f"(a)=1/f"(g(b)).证明:在所给条件下,函数x=g(y)也严格单调且连续.于是,当y≠b,y→b时,有g(y)≠g(b),g(y)→g(b).因而:lim[(g(y)→g(b))/(y-b)]=lim1/[(y-b)/(g(y)→g(b))]=lim1/[(f(x)-f(a))/(x-a)]=1/f"(a)=1/f"(g(b)).豆豆staR2023-07-16 12:31:192
指数函数求导公式是什么
1、指数函数求导公式是(a^x)"=(lna)(a^x)。 2、指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 3、在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。小白2023-07-06 08:15:061
指数函数导数 指数函数的求导公式是什么
1、指数函数的求导公式:(a^x)=(lna)(a^x) 2、部分导数公式: (1)y=c(c为常数) y=0 (2)y=x^n y=nx^(n-1) (3)y=a^x;y=a^xlna;y=e^x y=e^x (4)y=logax y=logae/x;y=lnx y=1/x (5)y=sinx y=cosx (6)y=cosx y=-sinx (7)y=tanx y=1/cos^2x (8)y=cotx y=-1/sin^2x (9)y=arcsinx y=1/√1-x^2 (10)y=arccosx y=-1/√1-x^2 (11)y=arctanx y=1/1+x^2 (12)y=arccotx y=-1/1+x^2 3、求导证明: y=a^x 两边同时取对数,得:lny=xlna 两边同时对x求导数,得:y/y=lna 所以y=ylna=a^xlna,得证。 4、注意事项 不是所有的函数都可以求导; 可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。u投在线2023-07-06 08:15:051
复杂的指数函数求导公式
这个不是隐函数求导问题,一般称为“幂指函数”的求导问题,用的就是如上的对数求导法。 这里“u^v”既不是指数函数也不是幂函数,而是幂指函数,如果看成 u^v=e^(vlnu),这时它就是指数函数的复合函数。余辉2023-07-06 08:15:041
指数函数求导公式
kikcik2023-07-06 08:15:041
指数函数求导公式是什么 什么是指数函数
1、指数函数求导公式是(a^x)"=(lna)(a^x)。 2、指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。 3、在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。北境漫步2023-07-06 08:15:021
复合函数求导公式
复合函数求导公式:①设u=g (x),对f (u)求导得:f" (x)=f" (u)*g" (x);②设u=g (x),a=p (u),对f (a)求导得:f" (x)=f" (a)*p" (u)*g" (x);什么是复合函数:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果MxnDu≠0,那么对于MxnDu内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。复合函数怎么求导:总的公式f"[g(x)]=f"(g) Xg"(x),比如说:求1n(x+2)的导函数。[In(x+2)]"=[1/(x+2)][注: 此时将(x+2)看成一个整体的未知数x]X1[注: 1即为(x+2)的导数]。主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。meira2023-07-03 11:08:351
复合函数求导公式的过程是怎么推导的?
lim△y/△u=f"(u)根据具有极限的函数与无穷小的关系,有△y/△u=f"(u)+α即△y=(f"(u)+α)△u当△x一>0时lim△y/△x=lim(f"(u)+α)△u/△x=lim(f"(u)+α)lim△u/△x=f"(u)φ"(x)北有云溪2023-07-03 11:08:343
复合函数求导公式 如何求导函数
复合函数如何求导呢?求导公式有哪些呢?下面我整理了一些相关信息,供大家参考! 复合函数怎么求导 总的公式f"[g(x)]=f"(g)×g"(x) 比如说:求ln(x+2)的导函数 [ln(x+2)]"=[1/(x+2)] 【注:此时将(x+2)看成一个整体的未知数x"】 ×1【注:1即为(x+2)的导数】 主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。 复合函数证明方法 先证明个引理 f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f"(x0)=H(x0) 证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U"(x0)(x0去心邻域);H(x)=f"(x0),x=x0 因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f"(x0)=H(x0) 所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f"(x)=H(x0) 所以f(x)在点x0可导,且f"(x0)=H(x0) 引理证毕。 设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0) 证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0) 又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ"(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0) 于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0) 因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且 F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0) 证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx) 证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f"(u)或Δy/Δu=f"(u)+α(lim(Δu->0)α=0) 当Δu≠0,用Δu乘等式两边得,Δy=f"(u)Δu+αΔu 但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。 又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得 dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f"(u)Δu+αΔu]/Δx=f"(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx 又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0 则lim(Δx->0)α=0 最终有dy/dx=(dy/du)*(du/dx)豆豆staR2023-07-03 11:08:331
复合函数的求导公式是怎样的?
复合函数导数公式如下:含义:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠0,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的v值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。论证说明:f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f"(x0)=H(x0)。证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U"(x0)(x0去心邻域);H(x)=f"(x0),x=x0。因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f"(x0)=H(x0)。所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f"(x)=H(x0)。所以f(x)在点x0可导,且f"(x0)=H(x0)。引理证毕。延伸论证说明:设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f"(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ"(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)。于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)。因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F"(x0)=f"(u0)φ"(x0)=f"(φ(x0))φ"(x0)。黑桃花2023-07-03 11:08:291
复合函数求导公式什么 复合函数怎么求导
1、复合函数求导公式:①设u=g(x),对f(u)求导得:f(x)=f(u)*g(x),设u=g(x),a=p(u),对f(a)求导得:f(x)=f(a)*p(u)*g(x)。 2、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u,有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。Ntou1232023-07-03 11:08:281
tanx的n次方求导公式
tanx=sinx/cosx。因为tanx"=(cosx^bai2+sinx^2)/cosx^2=1/cosx^2。tanx""=(1/cosx^2)"=-sin2x/cosx^4。所以得知tanx的n次方导数为tanx=sinx/cosx。在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差,所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。tt白2023-06-30 08:57:571
arctanx的导数是什么 反函数求导公式
反函数与原函数关于y=x的对称点的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f"(x)互为倒数(即原函数,前提要f"(x)存在且不为0)。 arctanx求导方法 设x=tany tany"=secx^y arctanx"=1/(tany)"=1/sec^y sec^y=1+tan^y=1+x^2 所以(arctanx)"=1/(1+x^2) 反函数的导数与原函数的导数关系 设原函数为y=f(x),则其反函数在y点的导数与f"(x)互为倒数(即原函数,前提要f"(x)存在且不为0) 反函数求导法则 如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=fu22121(x)y=fu22121(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且 [fu22121(x)]′=1f′(y)或dydx=1dxdy [fu22121(x)]′=1f′(y)或dydx=1dxdy 这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。 例:设x=siny,y∈[u2212π2,π2]x=sinu2061y,y∈[u2212π2,π2]为直接导数,则y=arcsinxy=arcsinu2061x是它的反函数,求反函数的导数. 解:函数x=sinyx=sinu2061y在区间内单调可导,f′(y)=cosy≠0f′(y)=cosu2061y≠0 因此,由公式得 (arcsinx)′=1(siny)′ (arcsinu2061x)′=1(sinu2061y)′ =1cosy=11u2212sin2yu2212u2212u2212u2212u2212u2212u2212u2212√=11u2212x2u2212u2212u2212u2212u2212√ =1cosu2061y=11u2212sin2u2061y=11u2212x2可桃可挑2023-06-30 08:45:291
对数函数求导公式有哪些
对数函数是高中数学的重点之一,那么对数函数求导公式是什么呢?快来和我一起看看吧。下面是由我为大家整理的“对数函数求导公式有哪些”,仅供参考,欢迎大家阅读。 对数函数求导公式 对数求导的公式:(logax)"=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x, log(a^k)(M^n)=(n/k)log(a)(M)(n属于R), 换底公式(很重要) log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga, ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828), lg常用对数以10为底。 拓展阅读:对数函数的性质与定义 函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量。下面是对数函数的性质与定义,希望对考生复习有帮助。 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。NerveM 2023-06-29 09:29:341
y=arcsinx求导公式的推导过程
函数的导数等于反函数导数的倒数,y=arcsinx,则x=siny,求导为cosy,而,cosy平方+siny平方=1,于是cosy=根号(1-siny平方),即根号(1-x^2),所以y=arcsinx求导后为1/根号(1-x^2)康康map2023-06-28 09:35:161
arcsinx和arccosx求导公式
(arccosx)"=(π/2-arcsinx)"=-(arcsin X)"=-1/√(1-x^2)水元素sl2023-06-28 09:35:141
请问arctanx的求导公式是什么?
arctanx求导推导:y=arctanx,x=tany,dx/dy=secy=tany+1,dy/dx=1/(dx/dy)=1/(tany+1)=1/(1+x)。求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。基本函数的求导公式:1、y=c(c为常数) y"=0;2、y=x^n y"=nx^(n-1);3、y=a^x y"=a^xlna;4、y=e^x y"=e^x;5、y=logax y"=logae/x;6、y=lnx y"=1/x;7、y=sinx y"=cosx;8、y=cosx y"=-sinx;9、y=tanx y"=1/cos^2x;10、y=cotx y"=-1/sin^2x;11、y=arcsinx y"=1/√1-x^2;12、y=arccosx y"=-1/√1-x^2;13、y=arctanx y"=1/1+x^2;14、y=arccotx y"=-1/1+x^2。hi投2023-06-27 09:46:521
arctanx的求导公式是什么?
设x=tany那么tany"=sex^y那么arctanx"=1/(tany)"=1/sec^y所以sec^y=1+tan^y=1+x^2则(arctanx)"=1/(1+x^2)LuckySXyd2023-06-27 09:46:442
高分求复变量的对数函数的求导公式的推导(急!!!)
一般的e^z定义为无穷级数∑x^n/n!, 在全平面绝对一致收敛, 逐项求导就行了.凡尘2023-06-11 08:36:304
求反双曲正弦/余弦的求导公式
d(sinhx)/dx=coshx d(coshx)/dx=sinhx 双曲正弦函数:(sinhx)"=coshx 双曲余弦函数:(coshx)"=sinhx 双曲正割函数:(tanhx)"=(coshx)^-2 双曲余割函数:(cothx)"=-(sinhx)^-2 反双曲正弦函数:(arcsinhx)"=(1+x^2)^-0.5 反双曲余弦函数:(arccoshx)"=±(x^2-1)^-0.5 反双曲正割函数:(arctanhx)"=(1-x^2)^-1 反双曲余割函数:(arccothx)"=(1-x^2)^-1水元素sl2023-06-06 07:57:451
求反双曲正弦/余弦的求导公式
d(sinhx)/dx=coshxd(coshx)/dx=sinhx 双曲正弦函数:(sinhx)"=coshx 双曲余弦函数:(coshx)"=sinhx 双曲正割函数:(tanhx)"=(coshx)^-2双曲余割函数:(cothx)"=-(sinhx)^-2反双曲正弦函数:(arcsinhx)"=(1+x^2)^-0.5反双曲余弦函数:(arccoshx)"=±(x^2-1)^-0.5反双曲正割函数:(arctanhx)"=(1-x^2)^-1反双曲余割函数:(arccothx)"=(1-x^2)^-1北营2023-06-06 07:57:441
函数求导公式及推导过程
1 常用的函数求导公式 (1)设y=c(常数),则y"=0 因为y=c的图象是平行于x轴的直线,其上任一点的切线即为直线本身,所以切线的斜率都是0.此公式可叙述成“常数函数的导数为零” (2)(xn)"=nxn-1(n为正整数) 正整数幂函数的导数等于幂指数n与自变量的(n-1)次幂的乘积 (3)(sinx)"=cosx 正弦函数的导数等于余弦函数 (4)(cosx)"=-sinx 余弦函数的导数等于正弦函数前面添一个负号 1 函数求导公式推导过程人类地板流精华2023-06-06 07:57:371
lnx求导公式推导
lnx求导公式推导过程为:由基本的求导公式可以知道y=lnx,那么y"=1/x,如果由定义推导的话,(lnx)"=lim(dx->0)ln(x+dx)-lnx/dx=lim(dx->0)ln(1+dx/x)/dx,dx/x趋于0,那么ln(1+dx/x)等价于dx/x,所以lim(dx->0)ln(1+dx/x)/dx=lim(dx->0)(dx/x)/dx=1/x,即y=lnx的导数是y"=1/x。LuckySXyd2023-06-06 07:56:471
高等数学 利用幂函数求导公式,求下列函数的导数:
过程如图,CarieVinne 2023-06-06 07:56:003
基本函数的求导公式 证明
这些都是基本函数的求导,分别在高等数学的教科书中的导数的概念,基本函数的求导,反函数和复合函数的求导法则的相关章节中有详细的推导过程和结论,自己找来看一下吧。基本概念,很容易理解。u投在线2023-06-06 07:55:581
高数常用的求导公式
gitcloud2023-06-06 07:55:571
高等数学分式的求导公式
分母平方 分子求导乘分母减去分母求导乘分子肖振2023-06-06 07:55:552
求高数常见函数的求导公式。
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。bikbok2023-06-06 07:55:531
基本函数的求导公式 证明
这些都是基本函数的求导,分别在高等数学的教科书中的导数的概念,基本函数的求导,反函数和复合函数的求导法则的相关章节中有详细的推导过程和结论,自己找来看一下吧。基本概念,很容易理解。西柚不是西游2023-06-06 07:55:521
高数常见函数求导公式有哪些
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。u投在线2023-06-06 07:55:521
高等数学的求导公式
fC=0 fsinx=cosx fcos=-sinx flnx=1/xmlhxueli 2023-06-06 07:55:512
导数公式及运算法则 高数常见函数求导公式
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。 14个基本初等函数的导数 高数常见函数求导公式mlhxueli 2023-06-06 07:55:511
高数常见函数求导公式有哪些啊?
高数常见函数求导公式如下图:求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。扩展资料:导数与微分:微分也是一种线性描述函数在一点附近变化的方式。微分和导数是两个不同的概念。但是,对一元函数来说,可微与可导是完全等价的。可微的函数,其微分等于导数乘以自变量的微分dx,换句话说,函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。函数y=f(x)的微分又可记作dy=f"(x)dx。gitcloud2023-06-06 07:55:511
高等数学 大一需要了解的求导公式 及求不定积分公式
求导公式(x^a)"=ax^(a-1)(a^x)"=a^xlna(logax)"=1/(x*lna)(sinx)"=cosx(cosx)"=-sinx(uv)"=uv"+u"v(u+v)"=u"+v"(u/v)"=(u"v-uv")/v^2积分公式 1)∫0dx=c 2)∫x^udx=(x^(u+1))/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16) ∫sec^2 x dx=tanx+c; 17) ∫shx dx=chx+c; 18) ∫chx dx=shx+c; 19) ∫thx dx=ln(chx)+c;北境漫步2023-06-06 07:55:501
微积分极限求值公式和导数求导公式及例题
经济数学团队为你解答,满意请采纳!水元素sl2023-06-06 07:55:491
高等数学,隐函数的求导公式
直接对X求导,再运用隐函数求导公式肖振2023-06-06 07:55:483
基本函数的求导公式 证明
这些都是基本函数的求导,分别在高等数学的教科书中的导数的概念,基本函数的求导,反函数和复合函数的求导法则的相关章节中有详细的推导过程和结论,自己找来看一下吧。基本概念,很容易理解。真颛2023-06-06 07:55:481
高等数学 大一需要了解的求导公式 及求不定积分公式
用定义推一下吧,假设∫xf(x)dx=f(x),则f"(x)=xf(x)则∫(0,q)xf(x)dx=f(q)-f(0)对q求导,结果是f"(q)=qf(q)u投在线2023-06-06 07:55:481
求高等数学所有的求导公式!
这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y"=02.y=x^n y"=nx^(n-1)3.y=a^x y"=a^xlna y=e^x y"=e^x4.y=logax y"=logae/x y=lnx y"=1/x5.y=sinx y"=cosx6.y=cosx y"=-sinx7.y=tanx y"=1/cos^2x8.y=cotx y"=-1/sin^2x9.y=arcsinx y"=1/√1-x^210.y=arccosx y"=-1/√1-x^211.y=arctanx y"=1/1+x^212.y=arccotx y"=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y"=f"[g(x)]61g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』2.y=u/v,y"=u"v-uv"/v^23.y=f(x)的反函数是x=g(y),则有y"=1/x"证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。可以知道,当a=e时有y=e^x y"=e^x。4.y=logax ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有lim⊿x→0⊿y/⊿x=logae/x。可以知道,当a=e时有y=lnx y"=1/x。这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y"=e^nlnx61(nlnx)"=x^n61n/x=nx^(n-1)。5.y=sinx ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2) ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)61lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx6.类似地,可以导出y=cosx y"=-sinx。7.y=tanx=sinx/cosx y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x8.y=cotx=cosx/sinx y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x9.y=arcsinx x=siny x"=cosy y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^210.y=arccosx x=cosy x"=-siny y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^211.y=arctanx x=tany x"=1/cos^2y y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^212.y=arccotx x=coty x"=-1/sin^2y y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与4.y=u土v,y"=u"土v"5.y=uv,y=u"v+uv"均能较快捷地求得结果。自己上网去查吧,很多啊bikbok2023-06-06 07:55:471
高数十八个求导公式
1.(c)`=0 (c为常数) 2.(x^a)`=ax^(a-1) (a∈R) 3.(a^x)`=a^(x)lna (a≠1且a>0)4.(e^x)`=e^x 5.(㏒a(x))`=1/(xlna) (a≠1且a>0) 6.(lnx)`=1/x7.(sinx)`=cosx 8.(cosx)`= -sinx 9.(tanx)`=1/cos^2x=sec^2x10.(cotx)`= -1/sin^2x= -csc^2x 11.(secx)`=sectanx 12.(cscx)`= -csccotx13.(arcsinx)`=1/((1-x^2)^1/2) 14.(arccosx)`= -1/((1-x^2)^1/2)15.(arctanx)`=1/(1+x^2) 16.(arccotx)`= -1/(1+x^2)善士六合2023-06-06 07:55:472
高中数学求导公式运算法则
求导是指对一个函数进行微分运算,求出它的导数。一、求导运算法则常数因子法则:如果f(x)是一个函数,c是一个常数,则d/dx(cf(x)) = c(d/dx(f(x)))。加减法则:如果f(x)和g(x)是两个函数,则d/dx(f(x)+g(x)) = d/dx(f(x)) + d/dx(g(x)),d/dx(f(x)-g(x)) = d/dx(f(x)) - d/dx(g(x))。乘法法则:如果f(x)和g(x)是两个函数,则d/dx(f(x)g(x)) = f(x)d/dx(g(x)) + g(x)d/dx(f(x))。除法法则:如果f(x)和g(x)是两个函数,则d/dx(f(x)/g(x)) = [g(x)d/dx(f(x)) - f(x)d/dx(g(x))]/[g(x)]^2。二、求导公式常数函数的导数为0,即d/dx(c) = 0,其中c为常数。幂函数的导数为nx^(n-1),即d/dx(x^n) = nx^(n-1),其中n为正整数。指数函数的导数为e^x,即d/dx(e^x) = e^x。对数函数的导数为1/x,即d/dx(lnx) = 1/x。三、三角函数的导数为:sinx的导数为cosx,即d/dx(sinx) = cosx;cosx的导数为-sinx,即d/dx(cosx) = -sinx;tanx的导数为sec^2x,即d/dx(tanx) = sec^2x;cotx的导数为-csc^2x,即d/dx(cotx) = -csc^2x。四、反三角函数的导数为:arcsinx的导数为1/√(1-x^2),即d/dx(arcsinx) = 1/√(1-x^2);arccosx的导数为-1/√(1-x^2),即d/dx(arccosx) = -1/√(1-x^2);arctanx的导数为1/(1+x^2),即d/dx(arctanx) = 1/(1+x^2)。meira2023-06-05 08:05:161
两函数相乘高阶求导公式 那个莱布尼茨求导公式是什么啊!! 谢谢了。。
类似牛顿二项式展开形式人类地板流精华2023-06-05 08:04:433
两函数相乘 的求导公式怎么推
lim(△x->0) [f(x + △x) g(x + △x) - f(x) g(x)] / △x=lim(△x->0) [f(x + △x) g(x + △x) - f(x + △x) g(x) + f(x + △x) g(x) - f(x) g(x)] / △x=lim(△x->0) f(x + △x) [g(x + △x) - g(x)] / △x + lim(△x->0) g(x)[f(x + △x) - f(x)] / △x=f(x) g"(x) + g(x) f "(x)可桃可挑2023-06-05 08:04:421
excel函数相乘求导公式
公式:(fg)"=f"g+fg"。式中两个连续函数f,g及其导数f′,g′则它们的积。乘积法则也称莱布尼兹法则,是数学中关于两个函数的积的导数的一个计算法则。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续。基本信息excel函数公式大全是一部针对初学者的excel函数与公式的应用大全,由秒秒学出品,整个课程分为12章,共计79个小节,全面呈现了Excel函数与公式的应用。Excel之所以具备如此强大的数据分析与处理功能,公式(包括函数)起了非常重要作用。要想有效的提高自己的Excel应用水平和工作效率,提高公式(包括函数)的应用能力是非常有效的途径之一。gitcloud2023-06-05 08:04:391
三角函数平方求导公式
复合函数的求导 (sin^2x)`=2sinx(sinx)`=2sinxcosx (cos^2x)`=2cosx(cosx)`=-2sinxcosxCarieVinne 2023-06-05 08:04:361