函数顶点坐标

二次函数顶点坐标式 二次函数的顶点坐标的公式的介绍

1、对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a) 2、交点式:y=a(x-xu2081)(x-x u2082) [仅限于与x轴有交点A(xu2081 ,0)和 B(xu2082,0)的抛物线] 其中x1,2= -b±√b^2-4ac 顶点式:y=a(x-h)^2+k 3、[抛物线的顶点P(h,k)] 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 注:在3种形式的互相转化中,有如下关系: h=-b/2a= (xu2081+xu2082)/2 k=(4ac-b^2)/4a 与x轴交点:xu2081,xu2082=(-b±√b^2-4ac)/2a
ardim2023-08-05 17:12:531

二次函数顶点坐标公式是什么

坐标公式:-b/2a,4ac-b?/4a。二次函数(quadraticfunction)的基本表示形式为y=ax?+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。二次函数表达式为y=ax?+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
豆豆staR2023-08-05 17:12:491

初中数学知识点:二次函数顶点坐标公式

学好 数学 首先要学好知识点,下面我就大家整理一下初中数学二次函数顶点坐标公式 ,仅供参考。 二次函数基本简介 一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。 二次函数顶点式公式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) (2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0). (3)交点式(与x轴):y=a(x-x1)(x-x2) (4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明: (1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点. (2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2). 二次函数顶点坐标公式推导 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于 二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a) 推导: y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a 对称轴x=-b/2a 顶点坐标(-b/2a,(4ac-b^2)/4a)
余辉2023-08-05 17:12:491

二次函数顶点坐标怎么求啊?

先求对称轴,-2a/b,再用求出来的对称轴坐标带入函数
苏州马小云2023-07-30 21:59:371

二次函数顶点坐标的公式

二次函数顶点坐标的公式是(-b/2a,(4ac-b^2)/4a)。二次函数的介绍如下:二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
u投在线2023-07-30 21:58:521

对勾函数顶点坐标和最值怎么求啊 详细一些

解设一般地对勾函数为f(x)=x+k/x (k>0)函数的顶点坐标为(√k,2√k),和(-√k,-2√k),当x>0时,函数的最小值为2√k,当x<0时,函数的最大值为-2√k。
墨然殇2023-07-06 08:38:141

怎么计算二次函数顶点坐标

导数求极值比较好用啊
铁血嘟嘟2023-05-16 14:50:415

二次函数顶点坐标意义

设顶点坐标为(a,b) 横坐标反映出这个函数的对称轴是x=a 纵坐标反映出这个函数的最大(域最小)值
康康map2023-05-13 16:42:551

二次函数顶点坐标计算公式?

二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。扩展资料:函数图象对称关系对于一般式:1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)对于顶点式:1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。参考资料来源:百度百科-二次函数
黑桃花2023-05-13 16:42:551

二次函数顶点坐标公式!

拌三丝2023-05-13 16:42:553

求二次函数顶点坐标的公式!

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线] 其中x1,2= -b±√b^2-4ac 注:在3种形式的互相转化中,有如下关系: ______ h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a
北境漫步2023-05-13 16:42:551

二次函数顶点坐标公式

用来表示二次函数抛物线顶点位置的坐标被叫做二次函数顶点坐标,顶点公式为y=a(x-h)²+k(a≠0,k为常数)顶点坐标是【-b/2a,(4ac-b²)/4a】。二次函数的一般式为ax²+bx+c=z(a≠0)。二次函数顶点式为a(x-h)²+k=z(a≠0)。研究抛物线的图象ax²+bx+c=z(a≠0),通过配方,将一般式化为a(x-h)²+k=z的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了,利用图像就一目了然了。主要考察用描点法画出二次函数的图象.利用配方法确定抛物线的开口方向及对称轴、顶点的位置.会根据已知图象上三个点的坐标求出二次函数的解析式。
北有云溪2023-05-13 16:42:551

对勾函数顶点坐标是什么

你用导数求极值,然后代入求顶点。按理说,这个应该是没有标准公式,因为对勾函数没有标准式。我的答题到此结束,谢谢希望我的答案对你有帮助
苏萦2023-05-13 16:42:553

二次函数顶点坐标公式是什么

  坐标公式:-b/2a,4ac-b²/4a。   二次函数(quadraticfunction)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。   如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。   二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
hi投2023-05-13 16:42:541

二次函数顶点坐标怎么求?

Ⅹ=一b/2a,y=(4ac一b^2)/4a
善士六合2023-05-13 16:42:542

怎么计算二次函数顶点坐标

(一)顶点坐标是(-b/2a,(4ac-b^2)/4a)(二)采用配方法,把二次函数化为y=a(x-b)^2+c的形式,(b,c)就是顶点坐标。
北有云溪2023-05-13 16:42:543

二次函数顶点坐标式

对于二次函数y=ax^2+bx+c(a≠0)来说,其顶点式为:y=a(x-h)²+k(a≠0,k为常数),其顶点坐标为(-b/2a,(4ac-b^2)/4a)。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标。什么是二次函数二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。二次函数性质:一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0.a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)2+k(a≠0.a、h、k为常数)。交点式(与x轴):y=a(x-x1)(x-x2)(a≠0.a、且x1、x2为常数)x1、x2为二次函数与x轴的两交点。等高式:y=a(x-x1)(x-x2)+m(a≠0.且过(x1、m)(x2、m)为常数)x1、x2为二次函数与直线y=m的两交点。
阿啵呲嘚2023-05-13 16:42:541

二次函数顶点坐标公式

用来表示二次函数抛物线顶点位置的坐标被叫做二次函数顶点坐标,顶点公式为y=a(x-h)+k (a≠0,k为常数)顶点坐标是【-b/2a,(4ac-b)/4a】。二次函数的一般式为ax+bx+c=z(a≠0)。二次函数顶点式为a(x-h)+k=z(a≠0)。研究抛物线的图象ax+bx+c=z(a≠0),通过配方,将一般式化为a(x-h)+k=z的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了,利用图像就一目了然了。主要考察用描点法画出二次函数的图象.利用配方法确定抛物线的开口方向及对称轴、顶点的位置.会根据已知图象上三个点的坐标求出二次函数的解析式。
小菜G的建站之路2023-05-13 16:42:541

二次函数顶点坐标公式怎么求

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。接下来给大家分享二次函数顶点坐标公式的推导过程。 二次函数顶点坐标公式 二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0) 二次函数的顶点式:y=a(x-h)^2+k  k(a≠0,a、h、k为常数),顶点坐标为(h,k) 推导过程: y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a 即h=-b/2a,k=(4ac-b^2)/4a 对称轴x=-b/2a 顶点坐标(-b/2a,(4ac-b^2)/4a) 二次函数顶点式的几种情况 当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到; 当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到; 当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象; 当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象; 当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象; 当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
铁血嘟嘟2023-05-13 16:42:531

二次函数顶点坐标公式推导过程是什么?

二次函数y=ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a,顶点坐标是(-b/2a,4ac-b^2/4a)。
LuckySXyd2023-05-13 16:42:535

二次函数顶点坐标怎样求?

二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。扩展资料:函数图象对称关系对于一般式:1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)对于顶点式:1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。参考资料来源:百度百科-二次函数
再也不做站长了2023-05-13 16:42:531

二次函数顶点坐标公式是什么

首先看,一定过(t,b)两点其次,当a>0时,a(x-t)2+b>b,(因为完全平方是恒大于零的),所以,(t,b)是图像的最低点,也就是顶点最后,当a<0时,a(x-t)2<0,所以a(x-t)2+b评论00加载更多
tt白2023-05-13 16:42:533

二次函数顶点坐标怎样求?

1、二次函数y = ax²+bx+c = a{x+b/(2a)}²+(4ac-b²)/(4a)。2、顶点坐标:x=-b/(2a),y=(4ac-b²)/(4a)。一次项系数b和二次项系数a共同决定对称轴的位置。当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。当a>0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。
u投在线2023-05-13 16:42:531

一元二次函数顶点坐标公式

一元二次函数顶点坐标公式是:y=ax²+bx+c=a{x+b/(2a)}²+(4ac-b²)/(4a),顶点坐标:x=-b/(2a),y=(4ac-b²)/(4a)。二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。二次函数表达式为y=ax²+bx+c(且a≠0),其定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
meira2023-05-13 16:42:531

二次函数顶点坐标怎么算

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,根据二次函数解析式形式的不同,顶点的计算方法也不同,下面和我一起来看看顶点坐标都怎么求。 顶点坐标 1、解析式为y=ax²时,顶点坐标为(0,0),抛物线关于x=0这条直线对称 2、解析式为y=a(x-h)²时,这时解析式的形式就为顶点式,顶点坐标为(h,0),抛物线关于x=h这条直线对称 3、解析式为y=a(x-h)²+k时,这时解析式的形式就为顶点式,顶点坐标为(h,k),抛物线关于x=h这条直线对称 4、解析式为y=ax²+bx+c时,这时解析式为二次函数通用式,顶点坐标为 (-b/2a,4ac-b²/4a),抛物线关于x=-b/2a对称
瑞瑞爱吃桃2023-05-13 16:42:531

二次函数顶点坐标公式推导过程

二次函数顶点坐标公式推导过程如下:用来表示二次函数抛物线顶点位置的坐标被叫做二次函数顶点坐标,顶点公式为y=a(x—h)²+k(a≠0,k为常数)顶点坐标是【—b/2a,(4ac—b²)/4a】。二次函数的一般式为ax²+bx+c=z(a≠0)。二次函数顶点式为a(x—h)²+k=z(a≠0)。研究抛物线的图象ax²+bx+c=z(a≠0),通过配方,将一般式化为a(x—h)²+k=z的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了,利用图像就一目了然了。二次函数的解析式y=x,那么给出一个x的值,就可以求出对应的一个y值。主要考察用描点法画出二次函数的图象.利用配方法确定抛物线的开口方向及对称轴、顶点的位置.会根据已知图象上三个点的坐标求出二次函数的解析式。二次函数介绍:一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越小,则抛物线的开口越大;|a|越大,则抛物线的开口越小。一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab(可巧记为:左同右异)。
拌三丝2023-05-13 16:42:531

二次函数顶点坐标公式的推导过程

  二次函数顶点坐标公式的推导过程是什么呢?感兴趣的小伙伴快来和我一起看看吧。下面是由我为大家整理的“二次函数顶点坐标公式的推导过程”,仅供参考,欢迎大家阅读。   二次函数顶点坐标公式的推导过程   二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)   推导过程:y=ax^2+bx+cy=a(x^2+bx/a+c/a)   y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)   y=a(x+b/2a)^2+c-b^2/4a   y=a(x+b/2a)^2+(4ac-b^2)/4a   对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)   拓展阅读:二次函数的顶点表达式   y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) [4] ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k.有时题目会指出让你用配方法把一般式化成顶点式。   例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。   解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。   注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。   具体可分为下面几种情况:   当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;   当h>0时,y=a(x+h)²的图像可由抛物线y=ax²向左平行移动h个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图像;   当h>0,k>0时,将抛物线y=ax²向左平行移动h个单位,再向下移动k个单位,就可以得到y=a(x+h)²-k的图像;   当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图像;   当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动|k|个单位可得到y=a(x-h)²+k的图像。
此后故乡只2023-05-13 16:42:531

二次函数顶点坐标怎么求?

将二次函数的表达式y=ax^2+bx+c进行配方处理,y=a(x+b/2a)^2+(4ac一b^2)/4a。于是就得到二次函数的图像,抛物线的顶点的坐标是(一b/2a,(4ac一b^2)/4a)。
小白2023-05-13 16:42:532

二次函数顶点坐标的公式

二次函数y=ax²+bx+c(其中a≠0)=a(x+b╱2a)²+(4ac-b²)╱4a顶点坐标:[-b╱2a,(4ac-b²)╱4a]
hi投2023-05-13 16:42:526

二次函数顶点坐标公式

很多学生想知道二次函数顶点坐标公式是什么,下面就和我一起了解一下吧,供大家参考。 二次函数的顶坐标公式是什么 对于二次函数y=ax^2+bx+c, 其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线], 其中x1,2=-b±√b^2-4ac, 顶点式:y=a(x-h)^2+k, [抛物线的顶点P(h,k)], 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0), 注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。 所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b 2 /4a)。 二次函数的定义 一般地,如果y=ax 2 +bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数。 ①所谓二次函数就是说自变量最高次数是2; ②二次函数y=ax 2 +bx+c(a≠0)中x、y是变量,a,b,c是常数,自变量x的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,y=ax 2 +bx+c变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。 ③二次函数y=ax 2 +bx+c(a≠0)与一元二次方程y=ax 2 +bx+c(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
黑桃花2023-05-13 16:42:521

二次函数顶点坐标公式是什么怎么算

  二次函数的顶点坐标公式是数学中一个重要的知识点,根据二次函数解析式形式的不同,顶点的计算方法也不同。下面是由我为大家整理的“二次函数顶点坐标公式是什么怎么算”,仅供参考,欢迎大家阅读本文。    二次函数顶点坐标公式   顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。    顶点坐标   1、解析式为y=ax²时,顶点坐标为(0,0),抛物线关于x=0这条直线对称   2、解析式为y=a(x-h)²时,这时解析式的形式就为顶点式,顶点坐标为(h,0),抛物线关于x=h这条直线对称   3、解析式为y=a(x-h)²+k时,这时解析式的形式就为顶点式,顶点坐标为(h,k),抛物线关于x=h这条直线对称   4、解析式为y=ax²+bx+c时,这时解析式为二次函数通用式,顶点坐标为(-b/2a,4ac-b²/4a),抛物线关于x=-b/2a对称    拓展阅读:二次函数顶点式的推导过程   y=ax^2+bx+c   y=a(x^2+bx/a+c/a)   y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)   y=a(x+b/2a)^2+c-b^2/4a   y=a(x+b/2a)^2+(4ac-b^2)/4a   对称轴x=-b/2a   顶点坐标(-b/2a,(4ac-b^2)/4a)
wpBeta2023-05-13 16:42:521

二次函数顶点坐标公式是什么

二次函数顶点坐标公式是y=a(x-h)^2+k k(a≠0,a、h、k为常数)。接下来让我们看一下具体知识点。 二次函数顶点坐标公式及推导过程 二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k) 推导过程: y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a 对称轴x=-b/2a 顶点坐标(-b/2a,(4ac-b^2)/4a) 二次函数的其他表达式 1.一般式 y=ax2+bx+c(a,b,c为常数,a=?0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) 2.交点式  函数图像与x轴交于 和 两点。 a,b,c为常数,a≠0,且a决定函数的开口方向。 3.两根式 y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即ax2+bx+c=0的两个根,a=0. 二次函数的性质 1.二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x=-b/2a 2.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。 3.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
苏州马小云2023-05-13 16:42:521

二次函数顶点坐标的公式

负b/2a,4ac减b2/4a。对于二次函数y等于ax减2加bx加c,其顶点坐标为(-b/2a(4ac减b^2)/4a)交点式:v等于a(x减xi)(x减x2),仅限于与x轴有交点A(x1,0)和B(xz,0)的抛物线,其中x1,2等于-b±√b^2-4ac,顶点式:y等于a(x减h)^2加k,抛物线的顶点P(h,k)一般式:y等于ax-2加bx加c(a,b,c为常数,a不等于0)即为-b/2a,4ac减b2/4a。二次函数的基本表示形式为y等于ax2加bx加c(a不等于0)。
小菜G的建站之路2023-05-13 16:42:521

二次函数顶点坐标公式推导过程

北营2023-05-13 16:42:522

二次函数顶点坐标公式是什么

(-b/2a,4ac-b^2/4a)
NerveM 2023-05-13 16:42:515

一元二次函数顶点坐标公式是什么?

一元二次方程顶点坐标:[-b/2a,(4ac-b²)/4a]。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k(a≠0,k为常数)。1、一元二次方程:只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。2、一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项 。3、整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,只含有一个未知数;未知数项的最高次数是2。
豆豆staR2023-05-13 16:42:511

二次函数顶点坐标公式是怎么来的

方程就是(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)(又叫两点式,两根式等)
mlhxueli 2023-05-13 16:42:518

对勾函数顶点坐标和最值怎么求啊 详细一些

解设一般地对勾函数为f(x)=x+k/x(k>0)函数的顶点坐标为(√k,2√k),和(-√k,-2√k),当x>0时,函数的最小值为2√k,当x<0时,函数的最大值为-2√k。
mlhxueli 2023-05-13 16:42:512

一元二次函数顶点坐标公式是什么?

二次函数y = ax²+bx+c = a{x+b/(2a)}²+(4ac-b²)/(4a)顶点坐标:x=-b/(2a),y=(4ac-b²)/(4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]其中x1,2= -b±√b^2-4ac顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)扩展资料:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。有时题目会指出让用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。参考资料来源:百度百科-二次函数
可桃可挑2023-05-13 16:42:511

二次函数顶点坐标公式

用来表示二次函数抛物线顶点位置的坐标被叫做二次函数顶点坐标,顶点公式为y=a(x-h)²+k(a≠0,k为常数)顶点坐标是【-b/2a,(4ac-b²)/4a】。二次函数的一般式为ax²+bx+c=z(a≠0)。二次函数顶点式为a(x-h)²+k=z(a≠0)。研究抛物线的图象ax²+bx+c=z(a≠0),通过配方,将一般式化为a(x-h)²+k=z的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了,利用图像就一目了然了。主要考察用描点法画出二次函数的图象.利用配方法确定抛物线的开口方向及对称轴、顶点的位置.会根据已知图象上三个点的坐标求出二次函数的解析式。
Jm-R2023-05-13 16:42:511

二次函数顶点坐标公式是什么?

对于二次函数y=ax^2+bx+c其顶点坐标为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]其中x1,2= -b±√b^2-4ac顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a扩展资料二次函数的三种形式:(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).(3)交点式(与x轴):y=a(x-x1)(x-x2)(又叫两点式,两根式等)参考资料来源:百度百科-顶点式
tt白2023-05-13 16:42:511

二次函数顶点坐标计算公式?a,b,c跟图像的关系?

顶点坐标公式:(-b/2a,4ac-b^2/4a) a是开口的方向(正负分别对应向上向下), b是与y轴交点的切线的斜率, c是与y轴的交点.
人类地板流精华2023-05-13 16:42:511

如何通过函数顶点坐标式判断顶点坐标

二次函数(顶点式):通过将函数解析式y=ax^2的函数图象平移我们可以得到二次函数的顶点式y=a(x-h)^2+k;通过顶点式可以确定抛物线的顶点坐标为(h,k)。抛物线均有顶点,因此二次函数也具有顶点,对于二次函数y=ax^2,不论其开口向上或者向下,其顶点坐标均为坐标原点(0,0)。既然有顶点坐标那么气必定有最大值和最小值: 当a>0时,开口向上,有最小值,在x=0处取到,即y=0; 当a<0时,开口向下,有最大值,在x=0处取到,即y=0。
ardim2023-05-13 16:42:511

二次函数顶点坐标怎样求?为什么?

顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。当h>0时,y=a(x-h)² 的图象可由抛物线y=ax2;向右平行移动h个单位得到;当h<0时,则向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax² 向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k 的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k 的图象;因此,研究抛物线y=ax²+bx+c (a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。扩展资料:抛物线y=ax²+bx+c 的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b²-4ac>0,图象与x轴交于两点A(  ,0)和B(  ,0),其中的  ,  是一元二次方程y=ax²+bx+c(a≠0)的两根.这两点间的距离AB=|  -  |.当△=0,图象与x轴只有一个交点;当△<0,图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。用待定系数法求二次函数的解析式:(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。参考资料:百度百科——顶点坐标
康康map2023-05-13 16:42:501

二次函数顶点坐标怎么求

二次函数顶点坐标求法如下:二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。相关介绍对称关系对于一般式:1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称。4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)。对于顶点式:1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。
NerveM 2023-05-13 16:42:501