汉邦问答 / 问答 / 问答详情

已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log1/2(x+1)。

2023-08-03 10:41:42
TAG: 函数 定义
凡尘

解:

因为f(x)为偶函数

所以f(-x)=f(x)

当x<0时,-x>0

f(x)=f(-x)=log1/2 (-x+1)

{log1/2 (-x+1) x<0

所以f(x)=

{log1/2 (x+1) x≥0

当x≥0时,f(x)=log1/2(x+1)为减函数

当x<0时,f(x)=log1/2(-x+1)为增函数

f(a-1)-f(3-a)<0

f(a-1)<f(3-a)

|a-1|>|3-a|

a^2-2a+1>a^2-6a+9

4a>8

a>2

真颛

答:

f(x)是定义在R上的偶函数:f(-x)=f(x)

x>=0,f(x)=log1/2(x+1),f(x)是单调递减函数

x<=0,-x>=0,f(-x)=log1/2(-x+1)=f(x)

所以:x<=0,f(x)=log1/2(-x+1),f(x)是单调递增函数

f(a-1)-f(3-a)<0

f(a-1)<f(3-a)

所以:

|a-1|>|3-a|

两边平方得:

a^2-2a+1>9-6a+a^2

4a>8

a>2

已知函数 f(x)=e^x-ax^3(a>0) 有两个零点(1求实数a的取值范围

当 a>(e^3)/27 , f(x)=e^x-ax^3(a>0) 有两个零点。解算过程如下图; f(x)=e^x-(e^3)/27*x^3的函数图像如下图:
2023-08-02 23:46:012

已知函数y=f(x)在(-2,7)上为减函数,则一定有( )

y=f(x)在(-2,7)上为减函数3<4f(3) > f(4)ans : C
2023-08-02 23:46:3915

[0,1]
2023-08-02 23:47:471

已知函数f(x)

f(x)=ax^2+bx+c截距为1,c=1f(x+1)-f(x)=a(x+1)^2+b(x+1)+c-ax^2-bx-c=2ax+a+b=2x从而a=1,b=-1f(x)=x^2-x+1
2023-08-02 23:47:543

求导一次,得到f"(x)=2x+2 f"(x)>0表示递增,反之递减,所以很容易得到x的范围。然后二次求导f""(x)=2>0 说明有极小值 f"(x)=2x+2=0算出x 就是这个最值
2023-08-02 23:48:092

已知函数f(x)在区间[0,2]上连续,且∫(2-0) xf(x)dx=4,则∫(4-0)f(根号x)dx=

希望能帮到你
2023-08-02 23:48:474

f(x)连续是否一定存在原函数?为什么?

一定存在。“连续函数必存在原函数”是原函数存在的一条重要定理。证明该定理的一个常用方法是构建一个变上限定积分,利用导数的定义进行证明。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。原函数的特点:已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。例如:sinx是cosx的原函数。
2023-08-02 23:49:231

怎样求函数f(x)的不定积分呢?

解题过程如下图:记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。扩展资料常用积分公式:1)∫0dx=c2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c
2023-08-02 23:49:401

已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)

1、在已知等式中,取 x=y=2 得 4f(4)=2f(2)+2f(2)=4f(2) ,l因此 f(2)=f(4) ,即 a1=a2 。2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,。。。) ,则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,即 b(n+1)=2f(2)+bn ,则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 。3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,所以 bn=2n ,则 an=bn/2^n=n/2^(n-1) ,所以 Sn=1+2/2+3/4+.......+n/2^(n-1) ,两边同乘以 2 得 2Sn=2+2+3/2+.......+n/2^(n-2) ,相减得 Sn=2+[1+1/2+1/4+....+1/2^(n-2)]-n/2^(n-1) =2+2-1/2^(n-1)-n/2^(n-1) =4-(n+1)/2^(n-1) 。
2023-08-02 23:50:071

如何求函数f(x)= x^2-1的导数?

过程如下:[1/(1+x )]"=-1/(x+1)^2*(1+x)"=-1/(x+1)^2不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。扩展资料:对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数。
2023-08-02 23:50:141

导数的导数怎样求?

∫tanxdx=∫sinx/cosxdx=-∫d(cosx)/ducosx=-ln|cosx|+c所以-ln|cosx|+c的导数为tanx。其导数:y=tanx=sinx/cosxy'=(sinx'*cosx-sinx*cosx')/(cosx)^2=1/(cosx)^2tanx=sinx/cosx=(cosx+sinx)/cosx=secx扩展资料:对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数。
2023-08-02 23:50:491

求不定积分:∫e^x/x^2 dx

分析:本题没有初等函数表达式,可以把e^x进行泰勒展开,然后求出,具体过程如下:
2023-08-02 23:50:574

已知函数f(x)是定义在实数集R上恒不为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x) 则f[f(5/2)]值为

3/2*f(5/2)=5/2*f(3/2) => f(5/2)=5/3*f(3/2)1/2*f(3/2)=3/2*f(1/2) => f(3/2)=3*f(1/2)-1/2*f(1/2)=1/2*f(-1/2) f(x)为偶函数 f(1/2)=f(-1/2) => f(1/2)=0 => f(5/2)=0-1*f(0)=0*f(-1) => f(0)=0 f[f(5/2)]=0
2023-08-02 23:52:202

1.已知函数f(x)=|2x+a|是定义在+[2m,m+3]+上的偶函数,则+f(m)=

已知函数f(x)=|2x+a|是定义在+[2m,m+3]+上的偶函数,则+f(m)=由题意可得:2m=-m-3,所以m=-1又f(x)为偶函数,图像关于y轴对称,所以a=0,所以f(m)=f(-1)=丨-2丨=2
2023-08-02 23:52:391

已知函数f(x)在区间(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x...

证明:f(x1)=f(x2)=f(x3),那么由罗尔定理就可以知道,在x1和x2之间存在c,使得f"(c)=0同理,x2和x3之间存在d,使得f"(d)=0那么再由一次罗尔定理,f"(c)=f"(d)=0所以c和d之间存在ξ,使得f“(ξ)=0故在区间(x1,x2)内至少存在ξ一点,使得f″(ξ)=0.
2023-08-02 23:52:592

y=x-1/x+1的导数

2/uff08x+1uff09^2
2023-08-02 23:53:586

已知函数f(x)=2x,求f(-2),f(-1),f(0),f(1),f(2)的值是多少

f(-2)=-4f(-1)=-2f(0)=0f(1)=2f(2)=4朋友,请采纳正确答案,你们只提问,不采纳正确答案,回答都没有劲!!!朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
2023-08-02 23:54:371

已知函数f(x)= 。(1)求f(x)的定

解:(1)由sinx≠0得x≠kπ(k∈Z),故求f(x)的定义域为{x|x≠kπ,k∈Z} ∵f(x)= =2cosx(sinx-cosx)=sin2x-cos2x-1= sin(2x- )-1∴f(x)的最小正周期T= =π。(2)∵函数y=sinx的单调递减区间为[2kπ+ ,2kπ+ ](k∈Z)∴由2kπ+ ≤2x- ≤2kπ+ ,x≠kπ(k∈Z)得kπ+ ≤x≤kπ+ ,(k∈Z)∴f(x)的单调递减区间为:[kπ+ ,kπ+ ](k∈Z)。
2023-08-02 23:54:441

(1+X)分之X的不定积分?

x-ln(x+1)
2023-08-02 23:56:065

已知f(x)是R上的奇函数,函数g(x)=f(x+2),若f(x)有三个零点,则g(x)的所有零点之和为

若f(x)有三个零点,设这三个零点为a,b,c, 且a<b<c而:f(x)是R上的奇函数f(x)=-f(-x)所以:-a,-b,-c也是f(x)的零点而:-c<-b<-a考虑到只有三个零点,所以:只能a=-c, b=-b, c=-a也就是:a=-c, b=0而:g(x)=f(x+2)g(x-2)=f(x)则显然g(x)也有三个零点分别是a-2, b-2, c-2所以:g(x)的所有零点之和为:(a-2)+(b-2)+(c-2)=a+c-6=-6
2023-08-02 23:56:344

已知函数f(x)对任意实数xy都有f(x+y)=f(x)+f(y)-1,且当x1,(1)求f(0),(2)求证f(x)是R上减函数

22.(1)另x=y=0,则f(0)=2f(0)-1 所以f(0)=1 (2)设X1<x2 f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-1-f(x2)=f(x1-x2)-1 又x1<x2则x1-x2<0 所以f(x1-x2)<1 所以f(x1)-f(x2)>0 所以f(x)是R上减函数 (3) f(6)=f(3)+f(3)-1=9 所以f(3)=5 又f(x)是R上减函数所以f(5x+2)>5=f(3)即 5x+2<3 所以x<1/5
2023-08-02 23:56:422

5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x方-2x,求在R上f(x)的表达式.

再加50分给你作~
2023-08-02 23:57:013

已知函数 y=f(x)是定义在r上周期为二奇函数,若 f(0.5)=1,求f(1),f(3.5)值

∵函数f(x)是定义在R上的周期为2的奇函数, ∴f(1)=f(-1), ∴-f(1)=f(-1)=f(1), ∴f(1)=f(-1)=0, ∴f(2017)=f(1)=0. 故选:B.
2023-08-02 23:57:101

已知函数f(x)的定义域是[0,2],求函数F(x)=f(x+1/2)+f(x-1/2)的定义域

答:f(x)的定义域为[0,2]则F(x)=f(x+1/2)+f(x-1/2)的定义域满足:0<=x+1/2<=20<=x-1/2<=2所以:-1/2<=x<=3/21/2<=x<=5/2所以:1/2<=x<=3/2所以:F(x)的定义域为[1/2,3/2]
2023-08-02 23:57:181

已知函数f(x)求f(x^2)怎么求

2方
2023-08-02 23:57:252

已知f(x)是一次函数,且f[f(x)]=4x+3,求f(x)的解析式

y=2x+1或y=-2x-3
2023-08-02 23:57:355

已知连续函数f(x)在(a,b]上单调递增,F(x)=∫(上x,下a)f(t)dt/(x-a),证明F(x)在(a,b]上也单调递增。

用罗比达法则,上下分别对X求导,F"(x)=f(x)-f(a),由于f(x)单调增,所以得到结论。
2023-08-02 23:57:523

已知函数f(x),求f(x)的一个原函数为

分部积分法,A和D是一样的,题目是不是有问题
2023-08-02 23:58:012

已知f(x)=ln(x+1/x-1) g(x)=x+1/x-1 求复合函数f(g(x))

望采纳
2023-08-02 23:58:233

已知奇函数f(x)满足f(x+2)=f(-x),且当x属于(0.,1]时,f(x)=3^x,求f(以3为底324)的值

f(-x)=-f(x)=f(x+2),即f(x)+f(x+2)=0,f(x)=f(x+4),所以你求的那个f(以3为底324,不知道什么意思,3^24?)将其变为(0,1]中即可求解
2023-08-02 23:58:445

已知f(x)的定义域为[0,1],求函数y=f(lgX)的定义域

f(x)的定义域为[0,1]则y=f(lgx)中有0<=lgx<=1lg1<=lgx<=lg101<=x<=10所以定义域时[1,10]
2023-08-02 23:59:015

求大神解答高数题,在线等!高分 已知函数f(x)={(cosx)^-x^2,x≠0;a,x=0;

2023-08-02 23:59:315

常数项缺少一个符号这个就是把0,2,a,-a等代入函数解析式,求值即可
2023-08-03 00:00:482

可积函数的函数可积的充分条件

为啥连续了还能有有限个间断点
2023-08-03 00:01:065

已知连续函数f(x)=x^2+x∫(上限为1下限0)f(x)dx,则f(x)=?

f(x)=x^2+x∫(0,1)f(x)dx(1)两边求导得f"(x)=2x+∫(0,1)f(x)dx两边再求导得f""(x)=2因此么过来积分得f"(x)=2x+C1f(x)=x^2+C1x+C2代入(1)得f(x)=x^2+x∫[0,1]f(x)dx=x^2+x∫[0,1][x^2+C1x+C2]dx=x^2+x*(x^3/3+C1x^2/2+C2x)[0,1]=x^2+x*(1/3+C1/2+C2)=x^2+Cx再代入(1)得f(x)=x^2+x∫[0,1]f(x)dx=x^2+x∫[0,1][x^2+Cx]dx=x^2+x*(x^2/3+Cx^2/2)[0,1]=x^2+x*(1/3+C/2)=x^2+Cx比较系数得C=1/3+C/2C=2/3所以f(x)=x^2+2/3x再改一下答案:f(x)=x^2+x∫(0,1)f(x)dx由于∫(0,1)f(x)dx是常数,因此令∫(0,1)f(x)dx=C则f(x)=x^2+Cx反代得f(x)=x^2+x∫[0,1]f(x)dx=x^2+x∫[0,1][x^2+Cx]dx=x^2+x*(x^2/3+Cx^2/2)[0,1]=x^2+x*(1/3+C/2)=x^2+Cx比较系数得C=1/3+C/2C=2/3所以f(x)=x^2+2/3x
2023-08-03 00:01:381

已知一次函数f(x)满足f(x+1)=f(x)+2且f(0)=1求f(x)解析式

设f(x)=ax+b由 f(x+1)=f(x)+2得a(x+1)+b=ax+b+2即 ax+a+b=ax+b+2对比系数,得 a+b=b+2解得 a=2又 f(0)=b=1从而f(x)=2x+1
2023-08-03 00:01:521

0
2023-08-03 00:02:184

已知x的分布函数为F(x)=ax/1+3x,x>0,0,其他,求(1)a,(2)f(x)?

2023-08-03 00:02:461

已知定义在r上的函数f(x,函数若f(x+1)为偶函数,函数f(x+2)为奇函数,则f(i)202

定义域为R,f(x+1)为奇函数,f(0+1)=0,且f(-x+1)=-f(x+1) 那么f(-(x+1)+1)=-f(x+1+1)=-f(x+2), f(-x)=-f(x+2) f(-(x-1)+1)=-f(x-1+1) f(2-x)=-f(x) f(x)=-f(2-x) f(x)为偶函数,f(-x)=f(x)=-f(x+2) -f(2-x)=-f(x-2)=f(x) 所以f(x-2)=f(x+2) 那么f(x+2-2)=f(x+2+2) f(x)=f(x+4) 所以f(x)的周期是4 f(1)=0 f(3)=f(1+2)=-f(1)=0 f(2)=1 f(4)=f(2+2)=-f(2)=-1 f(1)+f(2)+f(3)+f(4)=0 周期是4 f(1)+f(2)+.f(2012)=0 原式=f(2013)+f(2014)=f(1)+f(2)=0+1=1
2023-08-03 00:03:251

已知f(x)的定义域为[0,1]求f(x+a)+f(x-a)的定义域

解:已知:f(x)的定义域为[0,1],即0<= x <=1.由 0<= x+a <=1 得 -a< =x <=1-a.所以 f(x+a)的定义域为[-a,1-a].由 0< =x-a <=1 得 a<= x <=1+a.所以 f(x+a)的定义域为[a,1+a].当a属于(-1/2 ,1/2)定义域[|a|,1-|a|] (当a>0时,-a<a<1-a<1+a, g(x)=f(x+a)+f(x-a)的定义域(a,1-a],当a<0时,a<-a<1+a<1-a, g(x)=f(x+a)+f(x-a)的定义域(-a,1+a] ).当a>1/2或a<-1/2 定义域为空集.当a=1/2或-1/2时 定义域为{1/2}.
2023-08-03 00:03:362

已知函数,怎么求?

结果为:sinx e^sinx-e^sinx+C解题过程如下:设t=sinx原式=∫e^(sinx)*sinxdsinx=∫te^tdt=∫tde^t=te^t-∫e^tdt=te^t-e^t+C=sinx e^sinx-e^sinx+C扩展资料求函数积分的方法:设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记。若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
2023-08-03 00:03:531

已知F(x)是二次函数,且F(0)=2,f(x+1)-f(x)=x-1,求F(x)?

设F(X)=ax的平方+bx+c则F(X)=ax的平方+bx+2。由题意得:f(x+1)-f(x)=x-1等于a(x+1)2+b(x+1)+2-ax2-bx-2=2ax+a+b所以2ax+a+b=x-1所以2a=1a=12所以b=-2/3所以F(x)=1/2x2-23x+2。。没有抄袭楼下、这道题老师讲了的。
2023-08-03 00:04:142

已知二次函数f(x)是偶函数,且有最小值,则f(-2)、f(-1)、f(1)的大小关系是

f(x)是偶函数,那么f(-1)=f(1),而且函数有最小值,那么函数图像开口向上,所以f(-2)>f(-1)=f(1)
2023-08-03 00:04:4414

概率论:已知X的概率密度函数为F(X)=2X,0

孩子啊,这是很基本的概率论问题啊。
2023-08-03 00:05:563

已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x^2,当x>1时,f(x+1)=f(

这题要把“当x>1时”改掉才好,否则图像可以脱节,不好办的。已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x^2,当x≥0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,求实数k的值。 可见,当0≤x≤1时,f(x)=x^2 当1≤x≤2时,0≤x-1≤1,f(x-1)=(x-1)^2,f(1)=1^2=1,所以当x≥1时,f(x)=(x-1)^2+1 当2≤x≤3时,1≤x-1≤2,0≤x-2≤1,f(x-1)=(x-2)^2+1,f(x)=(x-2)^2+2 ………… 当n≤x≤(n+1)时,f(x)=(x-n)^2+n即f(x)=(x-[x])^2+[x],这里[x]=INT(x)=x的整数部分。当x<0时,-x>0,所以f(-x)=(-x-[-x])^2+[-x],因为f(x)是奇函数,所以f(x)=-{(-x-[-x])^2+[-x]}=-(x-[x+1])^2-[x+1]y=kx与y=f(x)在原点处相交,由奇函数的对称性,在x>0时再有两个交点即可,由y=kx和y=(x-2)^2+2,得kx=(x-2)^2+2,即x^2-(k+4)x+6=0,△=(k+4)^2-24,当k=-4±2√6时△=0,得k=-4+2√6时,直线y=kx与曲线y=f(x)在[2,3]上相切;由y=kx和y=(x-1)^2+1,得kx=(x-1)^2+1,即x^2-(k+2)x+2=0,△=(k+2)^2-8,当k=-2±2√2时△=0,得k=-2+2√2时,直线y=kx与曲线y=f(x)在[1,2]上相切;所以k∈(-2+2√2,-4+2√6)时,直线y=kx与曲线y=f(x)在(0,+∞)上有两个交点由奇偶性,在(-∞,0)上也有两个交点连同坐标原点,共有5个交点。此题图下面的内容难以说得清,所以原题是填空题的形式,如果是解答题,不大容易写好。
2023-08-03 00:06:141

描写古典的词语

描写古典的词语,示例:【笃志爱古】:笃志:志向专一。志趣专一,爱好古典。【古色古香】:形容器物书画等富有古雅的色彩和情调。
2023-08-02 23:50:042

有古典韵味的词语有哪些?

如下:1、葳蕤:wēi ruí,形容草木茂盛,或华美的样子,也比喻词藻华丽。2、菡萏:hàn dàn,未开的荷花,即花苞,也作荷花的别称。3、毰毸:péi sāi,形容羽毛披散。毸就是指鸟张开翅膀的样子。4、妙鬘:miào mán,乌发如云。鬘就是美好头发。5、皭皭:jiào jiào,清白、洁白。6、淡沲:dàn duò,形容风光明净。7、彬蔚:bīn wèi,富有文采,出自陆机《文赋》。8、缥缃:piǎo xiāng,代指书卷。原义为淡青色、浅黄色两种颜色,因古代经常用这两种颜色的丝帛作书囊书衣而得。9、蓊蔼:wěngǎi,树木茂盛繁密的样子。10、霅霅:zhá zhá,水流激动声。11、愔嫕:yīn yì,和善贤淑。
2023-08-02 23:50:131

中国古典诗歌中的所有意象的象征意义有哪些?

这个问题似乎太大了,是一部专著要解决的问题,因为中国文学源远流长,而且中国人喜欢含蓄,钟爱自然,所以具有诗歌中的象征意义的意象实在是不胜枚举。月代表阴柔、女性、和美、思念、家乡等等。在不同的日期、不同的心情下,月亮还有更多具体的意义,比如“离家已见月两圆”、“月下飞天镜”、“冷月葬花魂”等。毫无疑问,中国的月亮就够写一个系列著作了。雁代表书信比较常用。也代表诚信,因为大雁曾经在历史上作为婚姻中的聘礼使用过。其他的太多太多,不能一一。可以在遇到时随时查,或者去看这方面的文学常识书。
2023-08-02 23:50:362

古典时期的绘画代表作有哪些?

古典时期的绘画(公元前5世纪初—公元前4世纪末)古典时期是希腊艺术的繁盛期。其主要成就集中体现在建筑和雕刻上,对后世影响也最大。绘画作品由于保存要比雕塑和建筑困难得多,除了大量的陶器彩绘以外,至今仍未发现这一时期的绘画作品。《春燕图》希腊地区应该承认在这个雕塑和建筑相当发达的时期。绘画当然也不会落后。虽然我们没有发现此期除瓶画以外的绘画作品,但在古希腊和罗马的一些文献或哲学著作中,提供了一些有关这一时期的绘画资料。(1)陶器彩绘古典时期的陶器与同时期的建筑和雕塑一样。也达到了它的发展高峰。在这一时期红绘风格的瓶画已经完全取代了上一时期占统治地位的黑绘风格陶器,并达到了很高的水平。公元前5世纪中后期又出现了“白底彩绘风格”。此期的红绘风格陶器彩绘,已达到古代希腊陶器彩绘的最高水平。这突出地表现在深入人物性格的刻画和意境的表达上。俄罗斯列宁格勒爱尔米塔什博物馆收藏的画有《春燕图》的双耳陶瓶,以及慕尼黑古代工艺美术馆收藏的画有《送别出征战士》的双耳陶瓶,可算作此期陶器彩绘中红绘风格的代表作品。《送别出征战士》希腊地区《春燕图》双耳陶瓶,画了3个不同年龄的人物:少年、青年和成年人。他们的目光都集中在一只象征春天来临的正在飞翔的燕子身上。有趣的是,陶瓶上还刻着他们3人简短的对话。最早发现燕子的青年人说“瞧,那是燕子!”成年人接着说:“我以赫克里斯的名义起誓,这是真的!”少年则以兴高采烈的心情欢呼:“春天来到了!”从这一陶瓶的彩绘上可以看出,古典时期的陶器彩绘作者已经不再满足于一般现象的描绘,而是力求通过人的活动,去表现某种特定的意境。彩绘《送别出征战士》,是前5世纪下半期的作品。这一作品最引人注目的是送别出征战士场面中的妇女形象。她给即将走上战场的丈夫斟酒送行,丈夫端起酒杯将要一饮而尽,她则痛苦地低下了头。表现出一种复杂的心情。整幅作品在线条的运用上熟练、简洁、准确而流畅,使得所表现的希腊妇女更加优美动人。它充分体现了古典时期希腊绘画艺术的高度技巧和典雅的艺术风格。(2)文献所记载的画家和绘画古希腊和罗马时期有一些历史著作和文艺理论著作,记载了古希腊古典时期的绘画和画家。他们分别是波利格诺托斯、阿波罗多罗斯、宙克西斯、尼西亚斯、阿佩莱斯等。对于这些画家及其作品,我们只见于文献记载,没有见到其真正的作品,但通过文献记载我们也可以窥知古典时期绘画的繁荣。
2023-08-02 23:49:561

政治:人类是最高级动物。

人是一种能够利用聪明智慧谋取幸福的动物 人,或人类,这个名词可以从生物、精神与文化各个层面来定义,或者是这些层面定义的结合。生物学上,人被分类为真核总界 动物界 后生动物亚界 后口动物总门 脊索动物门 脊椎动物亚门 羊膜总纲 哺乳纲 真兽亚纲 灵长目 类人猿亚目 狭鼻猴次目 人猿超科 人科 人亚科 人属 智人种(拉丁文为Homo sapiens),拥有高度发展的头脑。精神层面上,人被描述为能够使用各种灵魂的概念,在宗教中这些灵魂被认为与神圣的力量或存在有关;而在神话学中,人的灵魂也会被拿来与其他的人型动物作对照。文化人类学上,人被定义为能够使用语言、具有复杂的社会组织与科技发展,尤其是他们能够建立团体与机构来达到互相支持与协助的目的。 生物学上人的学名为Homo sapiens(拉丁文的意思为“knowing man”),与黑猩猩、大猩猩、猩猩、长臂猿、合趾猿同属人科的灵长目动物[1]。人类与其它灵长目动物的不同在于人类直立的身体、高度发展的大脑,以及由高度发展的大脑而来的推理与语言能力。 行为学上来看人类的特征有:懂得使用语言,具有多种复杂的互助性社会组织,喜欢发展复杂的科技。这些行为学上的差异也衍生出各文化不同的信仰, 传说, 仪式, 价值观, 社会规范。 人,在哲学的意义上来讨论,也许是更适合的。因为哲学给出了人的本质,人之为人的各种说法。 暂取几个说法如下: 劳动创造了人,对于这句话的解释不是说劳动使猿猴变成了人,而是说人的独立性,人的地位,人的主动性,人的文化创造力,人的在外物的直观都在劳动中体现。 我思故我在:即肯定人的存在是基于会思考,能够思考。 此外海德格尔 黑格尔 等等都对此有所论述。 人,都是指社会的人,自然界创造了人类,而劳动创造了人类社会.没有所谓人的本质的抽象的总和,而只有个别的,具体的人.人总是带有社会性,阶级性和个性的共同体.人的本性是善或是恶就是由这个多重性的共同体决定的,正是人在社会中的阶段地位不同,于是才有了各种不同的善恶的观点. 马克思主义认为人的本质从其现实性上说是各种社会关系的总和。人是一种包含理性在内的感性活动的存在,即实践的存在。实践是人所特有的生存方式。 灵长类动物,人科.人和动物的根本区别是会使用大多数工具,但是本质是不变的!
2023-08-02 23:49:531