主成分分析用相关系数矩阵和协方差矩阵有什么区别
相关系数矩阵:相当于消除量纲的表示变量间相关性的一个矩阵协方差矩阵:它是没有消除量纲的表示变量间相关性的矩阵.你对比下它们的等式变换关系:r=COV(x,y)/D(x)D(y)北境漫步2023-08-02 10:14:422
主成分分析用相关系数矩阵和协方差矩阵有什么区别?
在统计学与概率论中,相关矩阵与协方差矩阵,互相关矩阵与互协方差矩阵可以通过计算随机向量(自相关或自协方差时为x,互相关或互协方差时为x,y)其第 i 个与第 j 个随机向量(即随机变量构成的向量)之间的自、互相关系数以及自、互协方差来计算。这是从标量随机变量到高维度随机向量的自然推广。相关矩阵:也叫相关系数矩阵,其是由矩阵各列间的相关系数构成的。也就是说,相关矩阵第i行第j列的元素是原矩阵第i列和第j列的相关系数。协方差矩阵:在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差,是从标量随机变量到高维度随机向量的自然推广。相关系数矩阵和协方差矩阵主要用于描述矩阵各行,列向量之间的相关程度。阿啵呲嘚2023-08-02 10:14:421
如何用spss主成分分析出现factor
可以save一下就得到hi投2023-07-09 08:08:312
如何用SPSS对一组数据进行主成分分析并进行回归
factor analysis之后,做regressionmeira2023-06-13 07:38:443
怎样用做Eviews主成分分析和因子分析
主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。二、基本思想的异同(一)共同点主成分分析法和因子分析法都是用少数的几个变量(因子)来综合反映原始变量(因子)的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85%以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,...,x3,经过坐标变换,将原有的p个相关变量xi作线性变换,每个主成分都是由原有p个变量线性组合得到。在诸多主成分Zi中,Z1在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。聚类分析的基本思想是:采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。(二)不同之处主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量),使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0,或样本向量彼此相互垂直的随机变量),在这种变换中,保持变量的总方差(方差之和)不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p个变量,实际应用中一般不是找p个主成分,而是找出m(m再也不做站长了2023-06-12 07:13:541
主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点。
主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。二、基本思想的异同(一) 共同点主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3 ]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。(二) 不同之处主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量) ,使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0 ,或样本向量彼此相互垂直的随机变量) ,在这种变换中,保持变量的总方差(方差之和) 不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p 个变量,实际应用中一般不是找p 个主成分,而是找出m (m < p) 个主成分就够了,只要这m 个主成分能反映原来所有变量的绝大部分的方差。主成分分析可以作为因子分析的一种方法出现。因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。因子分析只能解释部分变异,主成分分析能解释所有变异。 聚类分析算法是给定m 维空间R 中的n 个向量,把每个向量归属到k 个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为: 类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。从三类分析的基本思想可以看出,聚类分析中并没于产生新变量,但是主成分分析和因子分析都产生了新变量。三、数据标准化的比较主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1 的无量纲数据。而因子分析在这方面要求不是太高,因为在因子分析中可以通过主因子法、加权最小二乘法、不加权最小二乘法、重心法等很多解法来求因子变量,并且因子变量是每一个变量的内部影响变量,它的求解与原始变量是否同量纲关系并不太大,当然在采用主成分法求因子变量时,仍需标准化。不过在实际应用的过程中,为了尽量避免量纲或数量级的影响,建议在使用因子分析前还是要进行数据标准化。在构造因子变量时采用的是主成分分析方法,主要将指标值先进行标准化处理得到协方差矩阵,即相关矩阵和对应的特征值与特征向量,然后构造综合评价函数进行评价。聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果。因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响。不同方法进行标准化,会导致不同的聚类结果要注意变量的分布。如果是正态分布应该采用z 分数法。四、应用中的优缺点比较(一) 主成分分析1、优点首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。2、缺点当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。(二) 因子分析1、优点第一它不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;第二,它通过旋转使得因子变量更具有可解释性,命名清晰性高。2、缺点在计算因子得分时,采用的是最小二乘法,此法有时可能会失效。(三) 聚类分析1、优点聚类分析模型的优点就是直观,结论形式简明。2、缺点在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。小菜G的建站之路2023-06-12 07:13:542
冗余分析和主成分分析的区别
一、基本思想的异同共同点从二者表达的含义上看,主成分分析法和因子分析法都寻求少数的几个变量(或因子)来综合反映全部变量(或因子)的大部分信息,变量虽然较原始变量少,但所包含的信息量却占原始信息量的 85%以上,用这些新变量来分析问题,其可信程度仍然很高,而且这些新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。不同点在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,……,x3,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。二、操作软件中的异同主成分分析与因子分析都可利用 SPSS 软件中的 FACTOR 过程来实现,在此过程中应该注意以下几点:1.指标的选定指标最好具有同趋势化,一般为了评价分析的方便,需要将逆指标转化为正指标。2.假设条件主成分分析:不需要有假设(assumptions)因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。3.因子变量个数的确定在利用 FACTOR 实现主成分分析时,在确定公共因子个数时,一般直接选择与原变量数目相等的个数,这样可以避免由于采用默认形式后累积方差贡献率达不到 85%而造成的二次操作。在利用FACTOR实现因子分析时,可以选择的选项较多,除了主成分分析法之外,还有未加权最小平方法、广义最小平方法、最大似然法、主轴因式分解法、Alpha式分解法、映像因式分解法。这七种方法中只有用主成分分析法求解因子载荷时可以选择与变量个数相等的因子变量个数,其它方法都必须因子变量个数小于原始变量个数。4.模型的生成经过 FACTOR 过程都产生因子载荷阵,但主成分分析模型需要的不是因子载荷量而是特征向量,所以还需要将因子载荷量输入到数据的编辑窗口,利用“主成分相应特征根的平方根与特征向量乘积为因子载荷量”性质来计算特征向量,从而得到主成分的线性表达式。康康map2023-06-12 07:13:531
spss如何对4个样本10个变量做聚类分析,分成几类变量,和几个样本?或者应该用因子分析,主成分分析?
要求是最少二十个样本,十个变量。 1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。 2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。 3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。 4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释80%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。 5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。 6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。墨然殇2023-06-12 07:13:501
主成分分析法 10个变量抽几个
要求是最少二十个样本,十个变量。1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释8%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。余辉2023-06-12 07:13:491
主成分分析与因子分析及SPSS实现
主成分分析与因子分析及SPSS实现一、主成分分析(1)问题提出在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?这时,主成分分析隆重登场。(2)主成分分析的原理主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:根据坐标变化的原理,我们可以算出:Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2其中sqrt(x)为x的平方根。通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。至此我们解决了两个问题:降维和消除共线性。对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。二、因子分析(一)原理和方法:因子分析是主成分分析的扩展。在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。举个例子:比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:x1 = 0.02 * z1 + 0.99 * z2 + e1x2 = 0.94 * z1 – 0.01 * z2 + e2x3 = 0.13* z1 + 0.98 * z2 + e3x4 = 0.84 * z1 + 0.42 * z2 + e4x5 = 0.97 * z1 – 0.02 * z2 + e1(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”第二个公因子z2主要与味道、风味有关,代表“口味”e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。(二)使用条件:(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。三、主成分分析和因子分析的联系与区别联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。区别:(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。 一、问题提出 男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。 二、分析过程 变量视图: 数据视图(部分): 菜单选择(分析->降维->因子分析):打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下: 点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:上图相关解释:”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。点击”继续“,回到主界面,点击”抽取“,打开对话框。”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。解释:①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。点击”继续“,回到主界面,点击”确定“,进入分析。输出的主要表格如下:(1)相关性检验因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验: 上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。(2)提取主成分和公因子接下来输出主成分结果:这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。下面,输出碎石图,如下: 碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。接下来,输出提取的成分矩阵:上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。(三)因子旋转前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。点击“继续”,回到主界面点击“确认”进行分析。输出结果如下: 这是选择后的成分矩阵。经过旋转,可以看出:公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。经过旋转,可以看出公因子有了更合理的解释。(四)结果的保存在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):F1 = -0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.131*Z9-0.037*Z10F2同理,略去。注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。再也不做站长了2023-06-12 07:13:411
2022-06-03我的数据是用主成分分析还是冗余分析呢?2
上次冗余分析说了一点点,今天继续。 冗余分析是约束化的主成分分析,是响应变量与解释变量之间多元多重线性回归的拟合值矩阵的PCA分析,目的是----寻找能最大程度解释响应变量矩阵变差的一系列的解释变量的线性组合,因此 RDA是被解释变量X约束的排序 。从排序开始就直接加入解释变量进行运算,只提取和展示与解释变量有关的数据结构,并通过统计检验方法来表示解释变量X与响应变量y之间关系的显著性。 在群落分析中,响应变量Y一般是物种的多度数据,解释变量X就是环境变量(也是约束成分)。 另外,RDA还有许多升级版,比如tb-RDA(基于转化的RDA)、db-RDA(基于距离的RDA)、偏RDA、非线性关系RDA等等,各自有自己的拓展适用范围,这里只看看最基本的RDA是怎么回事儿。 进行RDA分析后,总方差被划分为约束和非约束两部分。约束部分表示响应变量Y矩阵的总方差能被解释变量X解释的部分,如果用比例表示,其值相当于多元回归的R^2。在RDA中,这个解释比例值也称作双多元冗余统计(bimultivariate redundancy statistic)。然而,类似多元回归未校正的R^2, RDA的也需要校正,注意校正后的R^2 总是小于R^2的。 比如下图是origin进行RDA分析后结果,就给出RDA分析产生的典范轴constrained axe(RDAx)和非约束轴unconstrained axe(PCx)的特征根,典范轴的特征根表示响应变量总方差能被RDA模型解释的部分(这张图中是9.26%,特别低,说明本研究中响应变量的变化大部分都不能用本研究中解释变量来解释),非约束轴的特征根表示响应变量总方差能被残差轴解释的部分,与RDA模型无关,严格说来不属于RDA范畴,但能够 帮助我们获取更多信息 。并给出累积方差解释率(约束轴)或承载率(非约束轴)。怎么说帮助我们获取更多信息呢?如果约束轴解释的变差>非约束轴解释的变差,表明响应数据Y的大部分变化量均可通过解释变量X作出解释,群落物种组成分布真实地由给定环境因子所影响(对于RDA结果,即二者呈现出较好的线性梯度),直接去解读RDA结果即可;但是,如果约束轴解释变差<非约束轴解释变差,或者约束轴解释变差仅占总变差的较小比例(比如下图),此时应谨慎对待,因为RDA模型并未显示出给定环境因子能够对群落物种的组成作出有效的解释,可能有重要的解释变量X没有被你测定/考虑等等原因。 在RDA的排序图中,约定俗成的会将响应变量用不带箭头的线表示,定量解释变量X用带箭头的线表示。 排序图可以只展示样方/样本和环境变量X,这叫双序图;也可以展示样方/样本、环境变量X和物种Y这三者,叫三序图,看自己的使用需求。但无论是双序图还是三序图, 首先需要明确的是,展示时有I、II型两种标尺scaling可以选择,这两种标尺关系到对图中数据解读的方式是不同的。 I型标尺(距离图):特征向量被标准化为单位长度,关注对象/样本之间的关系。 II型标尺(相关图):特征向量被标准化为特征根的平方根,关注变量之间的关系。 (1)样方点垂直投影到响应变量或定量解释变量的箭头或延长线上,I型标尺表示:投影点近似于该样方内该响应变量或解释变量的数值沿着变量的位置;II型标尺表示:投影点位置近似于该响应变量或解释变量在该样方内的数值;有人说 两个标尺的这个点没有区别 ,我暂且还不太理解。 对上图的解读:a图,存在排序样方(样本)i和ii,解释变量(环境变量)1,探究i、ii与1的关系时,将i或ii垂直投影在1的向量(箭头)上,根据交叉点的位置判断变量1在i或ii中的值。交叉点越靠近该变量向量的正方向,则表明所对应的样方中,该变量的数值越大。例如,假设变量1为土壤碳含量,样方i投影在1的正方向,样方ii投影在1的负方向上(图中红色虚线反向延长线部分),两个交叉点相比较,i与1的交叉点更位于1延伸方向,因此可知i中的土壤碳含量要比ii中的土壤碳含量要高。 (2)响应变量与解释变量箭头之间的夹角反映了它们之间的相关性, 但I型标尺中响应变量内部之间、解释变量内部之间的夹角都无此含义;II型标尺中则响应变量内部之间、解释变量内部之间的夹角也反映了它们之间的相关性 。角度反映的相关性等于 矢量之间角度的余弦 (例如,描述90°角度的矢量对与cos(90)= 0不相关),描述20°角度的矢量对与cos具有强正相关性(20 )= 0.94。 对上图解读:b图,根据向量(箭头)夹角判断变量间的相关性。∠a接近90°,即接近正交,表明变量1和2之间的相关性很小,二者相互之间几乎不存在影响。∠b小于90°,夹角为锐角,表明变量2和3之间存在正相关;锐角角度越小,则正相关性越大。∠c大于90°,夹角为钝角,表明变量3和4之间存在负相关;钝角角度越大,则负相关性越大。 (3) 定性解释变量 的形心与响应变量(物种)箭头之间的解读如同样方点与响应变量之间的解读(因为定性解释变量的形心也是一组样方的形心);对于I型标尺,仅能据此观测定性解释变量与响应变量间的相关性;对于II型标尺,既可以据此观测定性解释变量与响应变量间的相关性,也可以观测其与定量解释变量之间的相关性。 对上图解读:对于因子类型的解释变量5(定性变量,非数值型变量),在图中以点表示而非以向量表示, 探究因子类型变量5与其它变量间的相关性时需要根据投影判断 。例如,变量5垂直投影在变量4的正方向,表明与变量4存在正相关;投影在变量2的负方向,表明与变量2存在负相关;相关性的大小,可以通过垂线交叉点与原点(0,0)的距离来表示。 进行显著性检验是对各个RDA轴或解释变量进行 置换检验 来进行的。不显著的结果不能被解读,要丢弃。 1、 https://www.jianshu.com/p/00f69e8bd5ef 2、群落分析的冗余分析(RDA)概述 (微信号:小白鱼的生统笔记) 3、 https://www.bilibili.com/video/BV1jY4y1C7i9/?spm_id_from=333.788.recommend_more_video.18&vd_source=721b2cd4a7c048a6485aefbb175915fcNerveM 2023-06-10 09:13:571
因子分析法和主成分分析法的区别与联系是什么?
因子分析与主成分分析的异同点:都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大 主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。豆豆staR2023-06-10 07:51:542
想知道主成分分析法写的这个代码为什么matlab会报错未定义函数或变量
您好,看调试情况而言,感觉是您的第七行代码运行的问题使得vecl变量并未有效的生成,后续对其进行引用与调用自然会出错,建议您检查一下第七行代码的使用方法(查帮助文档确认代码语法是否有问题),以及变量空间那一栏是否显示出vcel变量了(确认vcel是否已经成功运行出来),程序的调试是技术活,不可操之过急,需要全面的把控与思考能力,谢谢。。。NerveM 2023-06-10 07:41:521
主成分分析法(PCA)
3.2.2.1 技术原理主成分分析方法(PCA)是常用的数据降维方法,应用于多变量大样本的统计分析当中,大量的统计数据能够提供丰富的信息,利于进行规律探索,但同时增加了其他非主要因素的干扰和问题分析的复杂性,增加了工作量,影响分析结果的精确程度,因此利用主成分分析的降维方法,对所收集的资料作全面的分析,减少分析指标的同时,尽量减少原指标包含信息的损失,把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合指标。主成分分析法的建立,假设xi1,xi2,…,xim是i个样品的m个原有变量,是均值为零、标准差为1的标准化变量,概化为p个综合指标F1,F2,…,Fp,则主成分可由原始变量线性表示:地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例计算主成分模型中的各个成分载荷。通过对主成分和成分载荷的数据处理产生主成分分析结论。3.2.2.2 方法流程1)首先对数据进行标准化,消除不同量纲对数据的影响,标准化可采用极值法 及标准差标准化法 ,其中s= (图3.3);图3.3 方法流程图2)根据标准化数据求出方差矩阵;3)求出共变量矩阵的特征根和特征变量,根据特征根,确定主成分;4)结合专业知识和各主成分所蕴藏的信息给予恰当的解释,并充分运用其来判断样品的特性。3.2.2.3 适用范围主成分分析不能作为一个模型来描述,它只是通常的变量变换,主成分分析中主成分的个数和变量个数p相同,是将主成分表示为原始变量的线性组合,它是将一组具有相关关系的变量变换为一组互不相关的变量。适用于对具有相关性的多指标进行降维,寻求主要影响因素的统计问题。北有云溪2023-06-09 08:03:491
主成分分析(PCA)简介
PCA是一种广泛应用的降维分析技术,由PCA建立的新坐标空间是原模式空间的线性变换,且用一组正交基依次反映了空间的最大分散特征。PCA和因子分析的差别在于:PCA是用最少个数的主成分占有最大的总方差,而因子分析是用尽可能少的公共因子最优地解释各个变量之间的相互关系。设有N个观察样本,其特征变量为m个。Xi=(Xi1,Xi2,…,Xim)T组成样本集。PCA方法及将m个特征变量组合成m个新的成分,这些新成分分别是m个特征变量的线性组合:Y1=L11X1+L21X2+…+Lm1XmY2=L12X1+L22X2+…+Lm2Xm……………………………………Ym=L1mX1+L2mX2+…+LmmXm如果用矩阵表示,即Y=LX为求L矩阵,可先求空间分布中心:Xc=(Xc1,Xc2,…,Xcm)T将空间平移即得位移向量Yj=Xj-Xcj=1,2,…,N或表示为矩阵相态分析与地质找矿由此可得离散矩阵S=RRT可用雅可比(Jacobi)法求出S矩阵的特征值和特征向量。求出的特征向量即是L矩阵的每一列元素。对应于最大特征值的第一特征向量所反映的方差最大,而对应于第二特征值的第二特征向量位于第一特征向量的正交量上,且反映了该正交面上的最大方差。我们可取前P个特征向量构成坐标空间(P≤12),当P=2,3 时,即可得到降维后的显示图像。当选P=2时,可将欲测样本投影到平面上来,用目测法对其进行分类和识别。韦斯特兰2023-06-09 08:03:291
主成分分析法与实证分析法的关系
主成分分析法和实证分析法是两种常见的数据分析方法。它们都是用来处理大量数据,从中提取有意义的信息并简化数据集的。然而,它们的目的和适用性不同。主成分分析法是一种无监督学习方法,旨在从数据中提取最重要的特征。实证分析法则是一种有监督学习方法,其目的是通过统计分析来验证某个假设并找到相关性。它将依靠多个假设及其相关的证明进行实证分析。两种方法可以结合使用,根据具体的问题来选择使用哪种分析方法。FinCloud2023-06-08 08:02:087
数据挖掘总结之主成分分析与因子分析
数据挖掘总结之主成分分析与因子分析主成分分析与因子分析1)概念:主成分分析概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。 PCA的目标是用一组较少的不相关变量代替大量相关变量,同时尽可能保留初始变量的信息,这些推导所得的变量称为主成分,它们是观测变量的线性组合。因子分析概念:探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。 PCA/EFA 分析流程:(1)数据预处理;PCA和EFA都是根据观测变量间的相关性来推导结果。用户可以输入原始数据矩阵或相关系数矩阵列到principal()和fa()函数中,若输出初始结果,相关系数矩阵将会被自动计算,在计算前请确保数据中没有缺失值;(2)选择因子分析模型。判断是PCA(数据降维)还是EFA(发现潜在结构)更符合你的分析目标。选择EFA方法时,还需要选择一种估计因子模型的方法(如最大似然估计)。(3)判断要选择的主成分/因子数目;(4)选择主成分/因子;(5)旋转主成分/因子;(6)解释结果;(7)计算主成分或因子得分。2)、因子分析与主成分分析的区别①原理不同主成分分析基本原理:利用降维(线性变换)的思想,每个主成分都是原始变量的线性组合,且各个主成分之间互不相关。因子分析基本原理:利用降维的思想,从数据中提取对变量起解释作用的少数公共因子(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)②侧重点不同主成分分析侧重“变异量”,主成分分析是原始变量的线性组合,得出来的主成分往往从业务场景的角度难以解释因子分析更重视相关变量的“共变异量”,因子分析需要构造因子模型:EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,目的是找到在背后起作用的少量关键因子,因子分析的结果往往更容易用业务知识去加以解释③ 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大主成分分析:原始变量的线性组合表示新的综合变量,即主成分;EFA和PCA的区别在于:PCA中的主成分是原始变量的线性组合,而EFA中的原始变量是公共因子的线性组合,因子是影响变量的潜在变量,变量中不能被因子所解释的部分称为误差,因子和误差均不能直接观察到。进行EFA需要大量的样本,一般经验认为如何估计因子的数目为N,则需要有5N到10N的样本数目。北营2023-06-08 08:02:021
常用的统计分析方法总结(聚类分析、主成分分析、因子分析)
1. 系统聚类法 :由N类--1类 2. 分解法 :由1类---N类 3. K-均值法 :事先在聚类过程中确定在K类,适用于数据量大的数据 4. 有序样品的聚类 :N个样品排序,次序相邻的样品聚成一类 5. 模糊聚类法 :模糊数学的方法,多用于定性变量 6. 加入法 :样品依次加入,全部加入完得到聚类图。 a.夹角余弦 b.相关系数 a.常用的类间距离定义有8种之多,与之相应的 系统聚类法 也有8种,分别为 a. 中间距离法 b. 最短距离法 :类与类之间的距离最近两个样品的距离。 c. 最长距离法 :类与类之间的距离最远两个样品的距离。【先距离最短,后距离最远合并】 d. 类平均法 :两类元素中任两个样品距离的平均。 e. 重心法 :两个重心xp 和xq 的距离。 f. 可变类平均法 e. 离差平方和法(Ward法) : 该方法的基本思想来自于方差分析,如果分类正确,同 类样品的离差平方和应当较小,类与类的离差平方和较大。 具体做法是先将 n 个样品各自成一类,然后每次缩小一类,每 缩小一类,离差平方和就要增大,选择使方差增加最小的两 类合并,直到所有的样品归为一类为止。 a. 最短距离法的主要缺点是它有链接聚合的趋势,容易形 成一个比较大的类,大部分样品都被聚在一类中,所以最短 距离法的聚类效果并不好,实际中不提倡使用。 b. 最长距离法克服了最短距离法链接聚合的缺陷,两类合 并以后与其他类的距离是原来两个类中的距离最大者,加大 了合并后的类与其他类的距离。 a. 定义 :主成分分析(Principal Component Analysis,简记 PCA)是将 多个指标化为少数几个综合指标的一种统计分析方法 ,通常我们把转化成的综合指标称为主成分。 b. 本质:降维 c. 表达 :主成分为原始变量的线性组合 d. 即信息量在空间降维以后信息量没有发生改变,所有主成分的方差之和与原始的方差之和 e. 多个变量之间有一定的相关性,利用原始变量 的线性组合形成几个综合指标(主成分),在保留原始变量主要信息的前提下起到降维与简化问题的作用。 f. 累积贡献率一般是 85% 以上 (1)每一个主成分都是各 原始变量的线性组合 (2)主成分的数目大大少于原始变量的数目 (3)主成分保留了原始变量绝大多数信息 (4)各主成分之间 互不相关 a. 基本目的:用 少数几个综合因子去描述多个随机变量之间的相关关系 。 b. 定义:多个变量————少数综合因子(不存在的因子) c. 显在变量:原始变量X;潜在变量:因子F d. X=AF+e【公共因子+特殊因子】 e. 应用: 因子分析主要用于相关性很强的多指标数据的降维处理。 f. 通过研究原始变量相关矩阵内部 的依赖关系,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。 g. 定义:原始的变量是可观测的显在变量,而 综合 的因子是 不可观测 的 潜在变量 ,称为因子。 i. 根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。 ii. 公共因子 :每组变量代表一个基本结构,并用一个不可观测的综合变量表示。 iii. 对于所研究的某一具体问题,原始变量分解成两部分: i. R 型因子分析——研究变量之间的相关关系 ii. Q 型因子分析——研究样品之间的相关关系 a. 因子载荷 是第i个变量与第j个公共因子的相关系数,绝对值越大,相关的密切程度越高。 a. 变量 Xi 的共同度是因子载荷矩阵的第i行的元素的平方和。记为 b. 所有的公共因子与特殊因子对变量 Xi 的贡献和为1。 a. 确定因子载荷 b. 因子旋转 c. 计算因子得分 a. 寻找简单结构的载荷矩阵:载荷矩阵A的所有元素都接 近0或±1,则模型的公共因子就易于解释。 b. 如果各主因子的典型代表变量不突出,就需要进行旋转使因子载荷矩阵中载荷的绝对值向0和1两个方向分化。 a.意义:对公共因子作正交旋转相当于对载荷矩阵 A 作一正交变换 ,右乘正交矩阵 T ,使 A* = AT 能有更鲜明的实际意义。 b.几何意义:是在 m 维空间上对原因子轴作一刚性旋转。 因子旋转不改变公共因子的共同度,这是因为 A A "=ATT"A"=AA" c. 旋转方法有:正交旋转和斜交旋转 d. 最普遍的是: 最大方差旋转法 a. 定义:通过坐标变换使各个因子载荷的方差之和最大。 b. 任何一个变量只在一个因子上有高贡献率,而在 其它因子上的载荷几乎为0; c. 任何一个因子只在少数变量上有高载荷,而在其 它变量上的载荷几乎为0。 思想相同: 降维 前提条件:各变量间必须有 相关性 ,否则各变量之间没有共享信息NerveM 2023-06-08 08:01:511
谁能解释下主成分分析和因子分析的区别
主成分分析做的仅为变量变换,将原始变量进行线性组合得到互相正交的新变量因子分析需要构造因子模型,用潜在的假想变量(不可观测的潜在变量)和随机影响变量的线性组合表示原始变量。因子旋转是因子分析的核心,因子分析模型中公共因子的系数aij 称为因子载荷,所谓载荷亦即aij 表示第i个变量与第j个公共因子的相关系数,其绝对值越大表示相关的密切程度越高。因子旋转实际上是对因子载荷矩阵进行旋转,可以简化因子载荷阵的结构,使载荷矩阵中每列或每行的元素平方值向0和1两极分化,通过因子旋转(实际上是做坐标旋转)使每个原始变量在尽可能少的因子之间有密切关系,这样因子解的实际意义更容易解释。只有少数几个变量在某个公共因子上有较高载荷而其他变量在其上载荷较小或是趋于零时,对该公共因子的解释最为简单。陶小凡2023-06-08 07:31:312
PCA(主成分分析) 一
研究一个问题,必须考虑许多指标,这些指标能从不同的侧面反映我们所研究的对象的特征,但在某种程度上存在信息的重叠,具有一定的相关性。这种信息的重叠有时甚至会抹杀事物的真正特征与内在规律。 主成分分析是利用降维的思想, 在力求数据信息丢失最少的原则下,对高维的变量空间降维,即在众多变量中找出少数几个综合指标(原始变量的线性组合),并且这几个综合指标将尽可能多地保留原来指标变异方面的信息,且这些综合指标互不相关。这些综合指标就称为主成分。主成分的数目少于原始变量的数目。 主成分分析是一种数学变换方法,它把给定的一组变量通过线性变换转换为一组不相关的变量。在这种变换中,保持变量的总方差不变,同时,使第一主成分具有最大方差,第二主成分具有次大方差,依此类推。 主成分与原始变量间的关系 (1)每一个主成分是原始变量的线性组合。 (2)主成分的数目少于原始变量的数目。 (3)主成分保留了原始变量的大多数变异信息。 (4)各主成分间互不相关。 假定只有二维,即只有两个变量,由横坐标和纵坐标所代表;每个观测值都有相应于这两个坐标轴的坐标值。如果这些数据形成一个椭圆形状的点阵(这在二维正态的假定下是可能的)该椭圆有一个长轴和一个短轴。在短轴方向上数据变化较少。在极端的情况,短轴如退化成一点,长轴的方向可以完全解释这些点的变化,由二维到一维的降维就自然完成了。 由图可以看出这些样本点无论是沿着xl轴方向或x2轴方向都具有较大的离散性,其离散的程度可以分别用观测变量xl的方差和x2的方差定量地表示。显然,如果只考虑x1和x2中的任何一个,那么包含在原始数据中的经济信息将会有较大的损失。 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭圆的长短轴平行。如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。椭圆的长短轴相差得越大,降维也越有道理。 将xl轴和x2轴先平移,再同时按逆时针方向旋转θθ角度,得到新坐标轴Fl和F2。Fl和F2是两个新变量。根据旋转变换的公式: 旋转变换的目的是为了使得n个样品点在F1轴方向上的离散程度最大,即F1的方差最大。变量Fl代表了原始数据的绝大部分信息,在研究某经济问题时,即使不考虑变量F2也无损大局。经过上述旋转变换原始数据的大部分信息集中到Fl轴上,对数据中包含的信息起到了浓缩作用。 F1, F2除了可以对包含在Xl,X2中的信息起着浓缩作用之外,还具有不相关的性质,这就使得在研究复杂的问题时避免了信息重叠所带来的虚假性。二维平面上的个点的方差大部分都归结在F1轴上,而F2轴上的方差很小。 F1和F2称为原始变量x1和x2的综合变量。 X1 X2 ... Xp共计p个变量,现在将这p个变量线性组合组成新的变量F1 F2 ... Fk ,其中k<p。按照保留主要信息量的原则充分反映原指标的信息,并且相互独立。 由讨论多个指标降为少数几个综合指标的过程在数学上就叫做降维。主成分分析通常的做法是,寻求原指标的线性组合Fi。 第一主成分 第二主成分 说明主成分分析把p个随机变量的总方差分解成为p个不相关的随机变量的方差之和。协方差矩阵ΣΣ的对角线上的元素之和等于特征根之和。ardim2023-06-08 07:31:261
spss中如何进行主成分分析然后再对数据进行线性判别分析啊?求大神指导啊
就先用主成分计算主成分得分,后再判别分析啊凡尘2023-05-26 08:18:092
想问下,聚类分析,判别分析,因子分析,主成分分析和对应分析各自的使用条件是什么?
是吗?“”你懂的!!!!~Jm-R2023-05-26 08:18:072
关于主成分分析的特征向量确定问题?
主成分的特征向量有两个约束条件:(1)特征向量的模为1;(2)特征向量两两正交。在这两个条件的制约下,一个特征值对应两个方向相反的特征向量a和-a。因此需要再设定一个约束条件,即:取值最大的样本的主成分的得分必须大于取值最小的样本的主成分的得分,满足这个条件的特征向量就只有一个了。真颛2023-05-24 18:37:071
pca主成分分析
主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。主成分分析的运作:获取数据集,计算数据的协方差矩阵,计算特征值和特征向量除以协方差矩阵,选择主成分,从选定的组件构造新的特征数据集。iris数据集是本文中的目标数据集。数据有4个特征或变量; 或矩阵代数中的4维。并且,1个目标向量显示依赖于4个特征的花的类型。所以,问题在于四维。4D并不多,但会尝试将其缩小为2D以说明PCA。拌三丝2023-05-23 19:24:221
主成分分析有什么用?
主成分分析最主要的用途在于“降维”. 举个例子,你要做一项分析,选中了20个指标,你觉得都很重要,但是20个指标对于你的分析确实太过繁琐,这时候,你就可以采用主成分分析的方法进行降维. 20个指标之间会有这样那样的相互关系,相互之间会有影响,通过主成分分析后,得到4个或者5个主成分指标.此时,这几个主成分指标既涵盖了你20个指标中的绝大部分信息,又让你的分析得到了简化(从20维降到4、5维),简化了分析过程,增加了结果精度.瑞瑞爱吃桃2023-05-23 19:24:221
求助主成分分析和因子分析的区别
第一:两种的函数构成相反,因子分析在于发现潜在的影响因素,是可观测自变量之外潜在的因素,主成分则是自变量的系数聚合;第二:因子分析给出的重要结果又两个,第一个是因子的命名,也就是潜在的因素,需要命名。第二个是每个因子所占的权重,附加的可以得到每个变量所占的权重。而主成分分析则主要是综合得分和得分的比较。第三:如果仅从因子综合得分和主成分得分用于综合评价的话,没什么大地区别,计算出各自得分后进行大小排序,比较,就是结果了。苏萦2023-05-23 19:24:222
用主成分分析法找出主成分后,要怎么知道这一个主成分中包含了哪些原始变量?在线等,非常感谢!
主成分的解释,根据主成分系数矩阵得到各主成分的表达式,然后按照各变量对主成分的影响结合实际意义进行解释,得分越高越好,如果其中的某些变量对主成分的影响是反向的,需要事先对其数据进行正向化处理,这样就可以。扩展资料:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。铁血嘟嘟2023-05-23 19:24:221
pca主成分分析是怎么样的?
pca主成分分析是一种使用最广泛的数据降维算法。将多个指标转换为少数几个综合指标,由霍特林于1933年首先提出。主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量,从而达到降维的目的。主成分分析方法之所以能够降维,本质是因为原始变量之间存在着较强的相关性,如果原始变量之间的相关性较弱,则主成分分析不能起到很好的降维效果,所以进行主成分分析前最好先进行相关性分析。主成分分析其实就是将原来的指标进行线性变换,生成新的指标。本质上讲,PCA就是将高维的数据通过线性变换投影到低维空间上去,但并非随意投影,而是需要遵循一个规则,希望降维后的数据不能失真,也就是说被PCA降掉的那些维度只能是噪声或是冗余的数据。阿啵呲嘚2023-05-23 19:24:221
主成分分析的基本步骤
基本步骤如下:标准化输入数据集变量的范围标准化,以使它们中的每一个均可大致成比例地分析。如果初始变量的范围之间存在较大差异,那么范围较大的变量将占据范围较小的变量(例如,范围介于0和100之间的变量将占据0到1之间的变量),这将导致主成分的偏差。因此,将数据转换为可比较的比例可避免此问题。协方差矩阵计算了解输入数据集的变量是如何相对于平均值变化的。计算协方差矩阵的特征向量和特征值,用以识别主成分。特征向量和特征值都是线性代数概念,需要从协方差矩阵计算得出,以便确定数据的主成分。希望以上回答能对您有所帮助,谢谢。真颛2023-05-23 19:24:221
主成分分析法综合评价得分怎样计算?
1输入数据。2点Analyze 下拉菜单,选Data Reduction 下的Factor 。3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。6单击主对话框中的OK 按钮,输出结果。统计专业研究生工作室原创,请勿复杂粘贴北有云溪2023-05-23 19:24:221
spss里面怎么没有主成分分析
spss如何做主成分分析 spss20.0方法/步骤>01先在spss中准备好要处理的数据,然后在菜单栏上执行:analyse--dimension reduction--factor analyse。打开因素分析对话框>02我们看到下图就是因素分析的对话框,将要分析的变量都放入variables窗口中>03点击descriptives按钮,进入次级对话框,这个对话框可以输出我们想要看到的描述统计量>04因为做主成分分析需要我们看一下各个变量之间的相关,对变量间的关系有一个了解,所以需要输出相关,勾选coefficience,点击continue,返回主对话框>05回到主对话框,点击ok,开始输出数据处理结果>06你看到的这第一个表格就是相关矩阵,现实的是各个变量之间的相关系数,通过相关系数,你可以看到各个变量之间的相关,进而了解各个变量之间的关系>07第二个表格显示的主成分分析的过程,我们看到eigenvalues下面的total栏,他的意思就是特征根,他的意义是主成分影响力度的指标,一般以1为标准,如果特征根小于1,说明这个主因素的影响力度还不如一个基本的变量。所以我们只提取特征根大于1的主成分。如图所示,前三个主成分就是大于1的,所以我们只能说有三个主成分。另外,我们看到第一个主成分方差占所有主成分方差的46.9%,第二个占27.5%,第三个占15.0%。这三个累计达到了89.5%。善士六合2023-05-23 19:24:221
主成分分析中计算特征值的方法
直接用matlab啊输入指令[coeff,score,latent,tsquared]=princomp(X)把X换成你要分析的矩阵输出的数据中,latent就是你要的特征值康康map2023-05-23 19:24:221
pca主成分分析
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用,是一种常用的多变量分析方法。主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。拌三丝2023-05-23 19:24:221
主成分分析图怎么解读
从不同的侧面对数据的状况进行整体的反映。PCA全名principal component analysis,即主成分分析。主成分分析是一组变量通过正交变换转变成另一组变量的分析方法,来实现数据降维的目的,转换后得到的这一组变量,即是主成分。PCA还可以让我们非常直观地看出各个样本之间的相似性。在一张主成分分析图中,数个样本的点聚在一起,那么就说明这几个样本之间的相似性非常高;反之,如果几个样本的点非常分散,则说明这几个样本之间的相似性比较低。水元素sl2023-05-23 19:24:221
spss怎么进行主成分分析
在降维里面去做的wpBeta2023-05-23 19:24:223
主成分分析法源解析
比值法可以定性地解释研究区PAHs的污染来源,但是不能进行定量的描述,且还有一定的局限性。因此本研究将通过对PAHs数据的因子分析和多元回归分析,可以半定量地了解各种污染源对研究区PAHs总量的贡献率。主成分分析(PrincipalComponentsAnalysis,PCA)和因子分析是进行数据降维的常用方法,是把多个变量(指标)化为少数几个可以反映原来多个变量的大部分信息的综合变量(综合指标)的一种方法。主成分分析可直接将数据映射到唯一正交坐标系,因子分析可以进一步通过旋转坐标系,使被提取出来的因子具有最小的协方差,使每个因子代表的变量更明显,从而支持污染源识别。Wangetal.(2009)运用空间和多元分析对北京表土(0~10cm)PAHs的分布特征和污染来源进行了研究,结果表明,煤的燃烧和汽车尾气的排放、石油源及焦炭源分别是商业区、市内和郊区的主要污染源,这与北京的能源消耗及功能区划的空间分布特征密切相关。对污灌区表土的14种PAHs进行主成分分析,结果表明,前两个因子说明了100%的方差,其中第一个主成分F1占方差的68.36%,第二个主成分F2占方差的31.64%,因此这两个主因子可以说明PAHs的污染来源。由表4.13可以看出,第一个主成分F1在变量苯并[a]芘、苯并[b]荧蒽、苯并[g,h,i]苝、苯并[k]荧蒽、二苯并[a,h]蒽、二氢苊、芘、屈、茚并[1,2,3-cd]芘上有高的正负荷,同时也可以看出大部分是高环的PAHs。根据文献报道(Harrisonetal.,1996;Mastraletal.,1996),荧蒽、芘、屈、苯并[k]荧蒽是煤燃烧产物的典型标志。屈、苯并[b]荧蒽、苯并[g,h,i]苝、苯并[k]荧蒽、二苯并[a,h]蒽、苯并[a]芘、茚并[1,2,3-cd]芘表征汽车尾气的排放(Simciketal.,1999;Motelay-Masseietal.,2007)。因此,第一主成分F1可表征的污染源为煤的燃烧和汽车尾气的排放。表4.13 污灌区土壤的方差极大旋转后的主因子载荷注:提取方法为主成分分析法。施转方法为Varimax与Kaiser规范化。3次迭代汇成的旋转。第二个主成分F2在萘、菲、芴、荧蒽、苊上有较高的正负荷,反映的是低环的PAHs。据Simciketal.(1999)的研究发现,二氢苊、菲、芴是焦炭源的主要产物。蒽和苊是石油源的主要产物,其中包括在生产和运输过程中石油及其相关产品的泄漏和溢洒。因此第二个主成分F2可表征的污染源为焦炭源和石油源。运用SPSS对主因子分析所得的结果进行多元回归分析,进一步估算每种PAHs源的贡献率,因变量为PAHs总量的标准化分数,自变量为各因子的得分,得出的回归方程为∑PAHs=0.393F1+0.919F2各因子的贡献率根据公式 计算,其中Ai为每个因子的回归系数。根据上述公式可以计算出,污灌区土壤PAHs污染中两个主因子的贡献率分别为F1(煤的燃烧和汽车尾气)30%,F2(焦炭源和石油源)70%。可见主成分分析法再次说明了污灌区土壤剖面PAHs的主要来源为石油源和燃烧源的输入,其中石油源的输入比重较大,这一结果与比值法所得结果相吻合。对再生水灌区表土的PAHs进行主成分分析,结果表明,前两个因子说明了100%的方差,其中第一个主成分F1占方差的79.39%,第二个主成分F2占方差的20.61%,因此这两个主因子可以说明PAHs的污染来源。由表4.14可以看出,第一个主成分F1在变量苯并[a]芘、苯并[b]荧蒽、苯并[g,h,i]苝、苯并[k]荧蒽、蒽、二苯并[a,h]蒽、苊、芘、屈、茚并[1,2,3-cd]芘、荧蒽上有高的正负荷,同时也可以看出大部分是高环的PAHs。根据上面的文献报道可得出,第一主成分F1可表征的污染源为煤的燃烧、汽车尾气的排放和石油源。表4.14 再生水灌区土壤的方差极大旋转后的主因子载荷第二个主成分F2在菲、芴上有较高的正负荷,反映的是低环的PAHs。第二个主成分F2可表征的污染源为焦炭源。运用SPSS对主因子分析所得的结果进行多元回归分析,进一步估算每种PAHs源的贡献率,得出的回归方程为∑PAHs=0.980F1+0.198F2根据因子贡献率公式可以计算出,再生水灌区土壤PAHs污染中两个主因子的贡献率分别为F1(煤的燃烧、汽车尾气、石油源)83.2%,F2(焦炭源)16.8%。可见再生水灌区土壤剖面PAHs的主要来源为煤的燃烧、汽车尾气的排放和部分石油源的输入。对清灌区表土的PAHs进行主成分分析,结果表明,前两个因子说明了100%的方差,其中第一个主成分F1占方差的69.72%,第二个主成分F2占方差的30.28%,因此这两个主因子可以说明PAHs的污染来源。由表4.15可以看出,第一个主成分F1在变量苯并[a]芘、苯并[b]荧蒽、苯并[g,h,i]苝、苯并[a]蒽、荧蒽、芘、屈、茚并[1,2,3-cd]芘上有高的正负荷,同时也可以看出主要是高环的PAHs。根据上面的文献报道可得出,第一主成分F1可表征的污染源为煤的燃烧、汽车尾气的排放。表4.15 清灌区土壤的主因子载荷注:用主成分分析法提取出两个因子。第二个主成分F2在菲、芴上有较高的正负荷,反映的是低环的PAHs。第二个主成分F2可表征的污染源为焦炭源。运用SPSS对主因子分析所得的结果进行多元回归分析,进一步估算每种PAHs源的贡献率,得出的回归方程为∑PAHs=0.981F1+0.193F2根据因子贡献率公式可以计算出,再生水灌区土壤PAHs污染中两个主因子的贡献率分别为F1(煤的燃烧、汽车尾气)83.6%,F2(焦炭源)16.4%。可见清灌区土壤剖面PAHs的主要来源为煤的燃烧和汽车尾气的排放。从以上分析可以看出,3个灌区土壤的PAHs污染来源主要是煤的燃烧、汽车尾气的排放、焦炭源和石油源,只是各个污染源所占的比重不同而已。因此控制北京地区汽车的保有量,加强清洁能源的推广,继续缩减煤炭在能源结构中的比重,并加强石油储藏、运输过程中的管理,可以有效地减少PAHs的污染。这里需要说明的是,由于PAHs在环境中可能会因挥发、淋滤、降解、光解等过程而产生损失或丢失,造成“源”信息的失真,在一定程度上影响了其有效地示踪环境中该类污染物的来源。如本研究中由于污水的长期灌溉,使低环的PAHs会向下层土壤中迁移,因此表土中低环PAHs的含量会不断地发生变化,从而导致表土的PAHs的组成发生相应的变化,进而影响PAHs的来源分析。此外灌溉用水沿渠道流动水质的改变也会影响到PAH来源的判别。北有云溪2023-05-23 19:24:221
如何进行主成分分析
样品常用的分离与纯化手段1. 化学分离法蒸馏与分馏分离沸点与挥发度相差较大组分的有效方法。有常压蒸馏,减压蒸馏,水蒸气蒸馏。适用于混合液体及液固的分离。萃取利用物质在不同溶剂中溶解度的不同和分配系数的差异,使物质达到相互分离的方法。适用于液固,液液的分离。提取利用不同的溶剂,从固体样品的基体中,使某种组分得到分离和浓缩。主要利用索氏提取器。如高聚物与填料,高聚物材料中微量助剂的提取与浓缩处理。缺点:①易引起热不稳定的组分变质②溶剂中的杂质也被浓缩③溶剂用量大结晶与沉淀(溶解沉淀法)利用样品中各组分在溶剂中的溶解度差异,使某些组分从浓溶液中生成结晶分离出来,是纯化物质的一种有效的方法。适用与高聚物的分离。过滤与膜分离过滤是分离液-固非均一体系常用的分离方法。适用于>1μm的颗粒。膜分离适用于分离<1μm的胶体颗粒。分为固体高分子膜,阳离子膜,阴离子膜。灰化,酸化,微波消解—用于无机物的分离。2. 色谱分离法:柱色谱法—分离有机化合物的有效手段。分为:硅胶填充柱—适用于分离大多数弱极性,中等极性和较强极性的化合物。氧化铝填充柱—适用于分离非极性,弱极性化合物聚酰胺填充柱—可用于染料,表面活性剂的分离。阳离子交换柱—分离阳离子,适用于阳离子表面活性剂。阴离子交换柱—分离阴离子,适用于阴离子表面活性剂。凝胶色谱法分为:凝胶过滤色谱(GFC)—用于分离水溶性大分子。凝胶渗透色谱(GPC)—用于有机溶剂中可溶的高聚物分子量分布分析及分离。哲博检测与浙大合作拥有丰富的检测分析测试经验,可提供各类物质的全成分分析,为工业生产的配方还原改性提供可靠技术支持。联系方式见我百度账号。Ntou1232023-05-23 19:24:222
spss主成分分析结果图怎么看
看spss主成分分析结果图方法。1、分析数据依次单击spss的分析降维因子分析。2、降维分析接着,将评价员工能力的五个指标变量添加到变量选项框。3、变量设置接着,进行分析方法的设置。点击描述分析,在弹出的描述分析设置上,勾选相关性矩阵中的系数。小白2023-05-23 19:24:211
主成分分析(PCA)的推导与解释
PCA是一种无参数的数据降维方法,在机器学习中很常用,这篇文章主要从三个角度来说明PCA是怎么降维的分别是方差角度,特征值和特征向量以及SVD奇异值分解。 推导主要来源于下面网址的这篇文章,是通过方差和协方差矩阵来说明: http://blog.codinglabs.org/articles/pca-tutorial.html PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。 在上面网址的文章中,从头到尾发明了一遍PCA我觉得很有借鉴意义。我们知道PCA是一种数据降维的方法,在降低维度的过程中,我们当然想要保留更多的特征,PCA就是经过数学推导,保留最多特征同时降维的方法。 在推导之前要先知道几个基础知识: 两个维数相同的向量的内积被定义为: 假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为二维向量,则A=(x 1 ,y 1 ),B=(x 2 ,y 2 )。则在二维平面上A和B可以用两条发自原点的有向线段表示,见下图: 到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式: 下面我们继续在二维空间内讨论向量。上文说过,一个二维向量可以对应二维笛卡尔直角坐标系中从原点出发的一个有向线段。例如下面这个向量: 在代数表示方面,我们经常用线段终点的点坐标表示向量,例如上面的向量可以表示为(3,2),这是我们再熟悉不过的向量表示。 不过我们常常忽略, 只有一个(3,2)本身是不能够精确表示一个向量的。 我们仔细看一下, 这里的3实际表示的是向量在x轴上的投影值是3,在y轴上的投影值是2。 也就是说我们其实 隐式引入了一个定义:以x轴和y轴上正方向长度为1的向量为标准。 那么一个向量(3,2)实际是说在x轴投影为3而y轴的投影为2。注意投影是一个矢量,所以可以为负。 更正式的说, 向量(x,y)实际上表示线性组合 : 我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量,因此就使得二维平面上点坐标和向量一一对应,非常方便。 但实际上任何两个线性无关的二维向量都可以成为一组基, 所谓线性无关在二维平面内可以直观认为是两个不在一条直线上的向量。 例如,(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!实际上,对应任何一个向量我们总可以找到其同方向上模为1的向量,只要让两个分量分别除以模就好了。例如,上面的基可以变为(1/√2,1/√2)和(-1/√2,1/√2) 现在,我们想获得(3,2)在新基上的坐标,即在两个方向上的投影矢量值,那么根据内积的几何意义,我们只要分别计算(3,2)和两个基的内积,不难得到新的坐标为(5/√2,-1/√2)。下图给出了新的基以及(3,2)在新基上坐标值的示意图: 另外这里要注意的是,我们列举的例子中基是正交的(即内积为0,或直观说相互垂直),但可以成为一组基的唯一要求就是线性无关,非正交的基也是可以的。不过因为正交基有较好的性质, 所以一般使用的基都是正交的。 一般的,如果我们有M个N维向量,想将其变换为由R个N维向量表示的新空间中,那么首先将R个基按行组成矩阵A,然后将向量按列组成矩阵B,那么两矩阵的乘积AB就是变换结果,其中AB的第m列为A中第m列变换后的结果。 (新基按行,向量按列) 特别要注意的是,这里R可以小于N,而R决定了变换后数据的维数。也就是说, 我们可以将一N维数据变换到更低维度的空间中去 , 变换后的维度取决于基的数量。因此这种矩阵相乘的表示也可以表示降维变换。 最后,上述分析同时给矩阵相乘找到了一种物理解释: 两个矩阵相乘的意义是将右边矩阵中的每一列列向量变换到左边矩阵中每一行行向量为基所表示的空间中去。 更抽象的说,一个矩阵可以表示一种线性变换。很多同学在学线性代数时对矩阵相乘的方法感到奇怪,但是如果明白了矩阵相乘的物理意义,其合理性就一目了然了。 我们从上面的矩阵乘法与基变换可以看出,当新基的维数小于原来的维数时可以做到数据的降维,但是究竟如何选择新基就是我们现在面临的问题,我们想要选择一个维数更小的新基,同时新基保留有更多的信息。我们知道矩阵向新基投影的形式,也就是PCA是将一组N维的特征投影到K维(K<N)同时保留更多的特征。 那么怎么衡量更多的特征,也就是投影后尽量少的重叠,投影值尽可能分散。 这种投影值的分散数学上可以用方差表示。方差公式这里不表, 所以PCA现在的问题就变成了,寻找K维的新基,使得数据变换到这组基上后方差值最大。 从二维到一维的降维,只需要找到一个一维基使得方差最大,但是三维降到二维呢?我们需要找到两个基让这个三维数据投影到两个基上,如果我们找方差最大的两个基,会发现他们完全一样或者线性相关,这和一个基没什么区别,不能表达更多的信息,所以我们需要添加限制条件,我们希望这两个基彼此线性无关,扩展到K个基也是一样。 在数学上使用协方差表示两个向量的相关性,在我们将均值归一化为0后,协方差可以表示为: =frac{1}{m}sum_{i=1}^{m}a_ib_i) m为向量的元素数。可以看到,在字段均值为0的情况下,两个字段的协方差简洁的表示为其内积除以元素数m。 当协方差为0时,表示两个字段完全独立。为了让协方差为0,我们选择第二个基时只能在与第一个基正交的方向上选择。因此最终选择的两个方向一定是正交的。 至此,我们得到了降维问题的优化目标: 将一组N维向量降为K维(K大于0,小于N),其目标是选择K个单位(模为1)正交基,使得原始数据变换到这组基上后,各字段两两间协方差为0,而字段的方差则尽可能大(在正交的约束下,取最大的K个方差)。 上面我们导出了优化目标,但是这个目标似乎不能直接作为操作指南(或者说算法),因为它只说要什么,但根本没有说怎么做。所以我们要继续在数学上研究计算方案。 我们看到,最终要达到的目的与字段内方差及字段间协方差有密切关系。因此我们希望能将两者统一表示,仔细观察发现,两者均可以表示为内积的形式,而内积又与矩阵相乘密切相关。于是我们来了灵感: 假设我们只有a和b两个特征,那么我们将它们按行组成矩阵X: 然后我们用X乘以X的转置,并乘上系数1/m: 这个矩阵对角线上的两个元素分别是两个字段的方差,而其它元素是a和b的协方差。两者被统一到了一个矩阵的。 根据矩阵相乘的运算法则,这个结论很容易被推广到一般情况: 设我们有m个n维数据记录,将其按列排成n乘m的矩阵X,设C=1/mXX T ,则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。 根据上述推导,我们发现要达到优化目前,等价于将协方差矩阵对角化:即除对角线外的其它元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系: 设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系: 现在事情很明白了!我们要找的P不是别的,而是能让原始协方差矩阵对角化的P。换句话说, 优化目标变成了寻找一个矩阵P,满足PCP T 是一个对角矩阵 ,并且对角元素按从大到小依次排列,那么P的前K行就是要寻找的基,用P的前K行组成的矩阵乘以X就使得X从N维降到了K维并满足上述优化条件。 由上文知道,协方差矩阵C是一个是对称矩阵,在线性代数上,实对称矩阵有一系列非常好的性质: 1)实对称矩阵不同特征值对应的特征向量必然正交。 2)设特征向量λ重数为r,则必然存在r个线性无关的特征向量对应于λ,因此可以将这r个特征向量单位正交化。 由上面两条可知,一个n行n列的实对称矩阵一定可以找到n个单位正交特征向量,设这n个特征向量为e 1 ,e 2 ,...,e n ,我们将其按列组成矩阵: 则对协方差矩阵C有如下结论: 其中Λ为对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)。以上结论不再给出严格的数学证明,对证明感兴趣的朋友可以参考线性代数书籍关于“实对称矩阵对角化”的内容。 到这里,我们发现我们已经找到了需要的矩阵P: P是协方差矩阵的特征向量单位化后按行排列出的矩阵,其中每一行都是C的一个特征向量。如果设P按照Λ中特征值的从大到小,将特征向量从上到下排列,则用P的前K行组成的矩阵乘以原始数据矩阵X,就得到了我们需要的降维后的数据矩阵Y。 至此我们完成了整个PCA的数学原理讨论。 在我的文章特征值和特征向量中说过,特征值反映了矩阵对于特征向量的拉伸程度,只有拉伸而没有旋转,也就是在特征向量方向上的作用程度,所以在PCA中我们选取前K个特征向量组成新基进行投影,就是因为原特征在前K个特征向量有最大的作用程度,投影过后可以保留更多的信息,作用程度是用特征值表示的,所以我们可以使用下面的式子表示贡献率,贡献率是表示投影后信息的保留程度的变量,可以用下面的式子表示: 也就是特征值的总和比上前K个特征值,一般来说贡献率要大于85%。 上面的推导中我们看到 其实就是对于D的奇异值分解。但是其实两者还有一些区别: 1) SVD可以获取另一个方向上的主成分,而PCA只能获得单个方向上的主成分: 隐语义索引(Latent semantic indexing,简称LSI)通常建立在SVD的基础上,通过低秩逼近达到降维的目的。 注意到PCA也能达到降秩的目的,但是PCA需要进行零均值化,且丢失了矩阵的稀疏性。 通过SVD可以得到PCA相同的结果,但是SVD通常比直接使用PCA更稳定。因为PCA需要计算X T X的值,对于某些矩阵,求协方差时很可能会丢失一些精度。例如Lauchli矩阵: 1)将原始数据按列组成n行m列矩阵X 2)将X的每一行(代表一个属性字段)进行零均值化,即减去这一行的均值 3)求出协方差矩阵 4)求出协方差矩阵的特征值及对应的特征向量 5)将特征向量按对应特征值大小从上到下按行排列成矩阵,取前k行组成矩阵P 6)Y=PX即为降维到k维后的数据 courser里吴恩达的PCA的习题就不错。苏萦2023-05-23 19:24:211
什么是主成分分析方法?
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.左迁2023-05-23 19:24:211
主成分分析的类型
主成分分析的类型如下:成分分析将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。 又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。kikcik2023-05-23 19:24:211
用主成分分析法分析结果不好的原因
主成分分析法的缺点:1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。可桃可挑2023-05-23 19:24:211
主成分分析中,以第一主成分为横轴,第二主成分为纵轴的图的意义是什么啊
这个散点图每个点代表每个原始变量,x轴值是此变量与第一主成分的相关系数,y轴值是此变量与第二主成分的相关系数,所以这个点越接近哪个轴,就说明这个变量跟相应的主成分越相关。Chen2023-05-23 19:24:211
主成分分析和因子分析有什么区别
主成分分析和因子分析都是信息浓缩的方法,即将多个分析项信息浓缩成几个概括性指标。因子分析在主成分基础上,多出一项旋转功能,该旋转目的即在于命名,更容易解释因子的含义。如果研究关注于指标与分析项的对应关系上,或是希望将得到的指标进行命名,SPSSAU建议使用因子分析。主成分分析目的在于信息浓缩(但不太关注主成分与分析项对应关系),权重计算,以及综合得分计算。如希望进行排名比较,计算综合竞争力,可使用主成分分析。SPSSAU可直接使用这两种方法,支持自动保存因子得分及综合得分,不需要手动计算。meira2023-05-23 19:24:212
主成分分析和层次分析法的区别是什么?
层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。小白2023-05-23 19:24:211
主成分分析(PCA)能用于二维向量组的分析么
PCA是用来降维的,比如从1000维降到50维。你现在只有2维,就不要再降了。meira2023-05-23 19:24:211
spss主成分分析步骤是什么?
spss主成分分析法详细步骤:1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。如图1所示:2、打开因子分析界面之后,把需要进行分析的变量全部选进变量对话框,然后点击右上角的描述。如图2所示:3、勾选原始分析结果、KMO检验对话框,然后点击继续。如图3所示:4、点击抽取,方法里选择主成分再点击碎石图。如图4所示:5、点击旋转,再点击最大方差旋转。如图5所示:6、点击得分,再点击,保存为变量及显示因子得分系数矩阵。如图6所示:7、最后点确定就可以在输出截面看到主成分分析的结果了。如图7所示:扩展资料:SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,精通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口。无尘剑 2023-05-23 19:24:211
pca主成分分析是什么?
pca主成分分析是一种降维技术,它可用于降低n维数据集的维数,同时保留尽可能多的信息。其中,主成分是我们上面讨论过的“新”独立特征。目标是尽可能多地保留“新”特征,同时删除最不重要的特征。主成分分析的运作:获取数据集,计算数据的协方差矩阵,计算特征值和特征向量除以协方差矩阵,选择主成分,从选定的组件构造新的特征数据集。iris数据集是本文中的目标数据集。数据有4个特征或变量; 或矩阵代数中的4维。并且,1个目标向量显示依赖于4个特征的花的类型。所以,问题在于四维。4D并不多,但会尝试将其缩小为2D以说明PCA。铁血嘟嘟2023-05-23 19:24:211
主成分分析中,各主成分的关系
主成分分析中,各主成分的关系是低度相关。主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。西柚不是西游2023-05-23 19:24:211
主成分分析指标数量太多,怎么降维
1输入数据。2点Analyze 下拉菜单,选Data Reduction 下的Factor 。3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。6单击主对话框中的OK 按钮,输出结果。统计专业研究生工作室原创,请勿复杂粘贴Jm-R2023-05-23 19:24:211
spss主成分分析结果怎么理解
spss如何做主成分分析主成分分析的主要原理是寻找一个适当的线性变换: •将彼此相关的变量转变为彼此独立的新变量; •方差较大的几个新变量就能综合反应原多个变量所包含的主要信息; •新变量各自带有独特的专业含义。住成分分析的作用是: •减少指标变量的个数 •解决多重相关性问题步骤阅读工具/原料spss20.0方法/步骤>01先在spss中准备好要处理的数据,然后在菜单栏上执行:analyse--dimension reduction--factor analyse。打开因素分析对话框>02我们看到下图就是因素分析的对话框,将要分析的变量都放入variables窗口中>03点击descriptives按钮,进入次级对话框,这个对话框可以输出我们想要看到的描述统计量>04因为做主成分分析需要我们看一下各个变量之间的相关,对变量间的关系有一个了解,所以需要输出相关,勾选coefficience,点击continue,返回主对话框>05回到主对话框,点击ok,开始输出数据处理结果>06你看到的这第一个表格就是相关矩阵,现实的是各个变量之间的相关系数,通过相关系数,你可以看到各个变量之间的相关,进而了解各个变量之间的关系>07第二个表格显示的主成分分析的过程,我们看到eigenvalues下面的total栏,他的意思就是特征根,他的意义是主成分影响力度的指标,一般以1为标准,如果特征根小于1,说明这个主因素的影响力度还不如一个基本的变量。所以我们只提取特征根大于1的主成分。如图所示,前三个主成分就是大于1的,所以我们只能说有三个主成分。另外,我们看到第一个主成分方差占所有主成分方差的46.9%,第二个占27.5%,第三个占15.0%。这三个累计达到了89.5%。Ntou1232023-05-23 19:24:211
为什么spss主成分分析只有一个主
那说明这些指标都是一个成分的,而不是多成分,这个是很正常的结果。(南心网 SPSS主成分分析)墨然殇2023-05-23 19:24:211
主成分分析的基本步骤
主成分分析的基本步骤:1、对原始数据标准化2、计算相关系数3、计算特征4、确定主成分5、合成主成分。主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H。霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。肖振2023-05-23 19:24:211
主成分分析(PCA)简介
主成分分析实例:一个 平均值 为(1, 3)、标准差在(0.878, 0.478)方向上为3、在其正交方向为1的 高斯分布 。这里以黑色显示的两个向量是这个分布的 协方差矩阵 的 特征向量 ,其长度按对应的 特征值 之平方根为比例,并且移动到以原分布的平均值为原点。 在多元统计分析中, 主成分分析 (英语: Principal components analysis , PCA )是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的 维数 ,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。 主成分分析由 卡尔·皮尔逊 于1901年发明,用于分析数据及建立数理模型。其方法主要是通过对 协方差矩阵 进行特征分解,以得出数据的主成分(即 特征向量 )与它们的权值(即 特征值 [3] )。PCA是最简单的以特征量分析多元统计分布的方法。其结果可以理解为对原数据中的 方差 做出解释:哪一个方向上的数据值对方差的影响最大?换而言之,PCA提供了一种降低数据 维度 的有效办法;如果分析者在原数据中除掉最小的 特征值 所对应的成分,那么所得的低维度数据必定是最优化的(也即,这样降低维度必定是失去讯息最少的方法)。主成分分析在分析复杂数据时尤为有用,比如 人脸识别 。 PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。如果一个多元数据集能够在一个高维数据空间坐标系中被显现出来,那么PCA就能够提供一幅比较低维度的图像,这幅图像即为在讯息最多的点上原对象的一个‘投影"。这样就可以利用少量的主成分使得数据的维度降低了。 PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。 PCA,Principle Component Analysis,即主成分分析法,是特征降维的最常用手段。顾名思义,PCA 能从冗余特征中提取主要成分,在不太损失模型质量的情况下,提升了模型训练速度。 如上图所示,我们将 样本到红色向量的距离 称作是投影误差(Projection Error)。以二维投影到一维为例,PCA 就是要找寻一条直线,使得各个特征的投影误差足够小,这样才能尽可能的保留原特征具有的信息。 因为PCA仅保留了特征的主成分,所以PCA是一种有损的压缩方式. 从 PCA 的执行流程中,我们知道,需要为 PCA 指定目的维度 k 。如果降维不多,则性能提升不大;如果目标维度太小,则又丢失了许多信息。 由于 PCA 减小了特征维度,因而也有可能带来过拟合的问题。PCA 不是必须的,在机器学习中,一定谨记不要提前优化,只有当算法运行效率不尽如如人意时,再考虑使用 PCA 或者其他特征降维手段来提升训练速度。 降低特征维度不只能加速模型的训练速度,还能帮我们在低维空间分析数据,例如,一个在三维空间完成的聚类问题,我们可以通过 PCA 将特征降低到二维平面进行可视化分析。 根据 13 个特征对葡萄酒分类(推销给不同品味的人),利用 PCA ,可以将数据从 13 维降到 2 维进行可视化。 array([[1.369e+01, 3.260e+00, 2.540e+00, 2.000e+01, 1.070e+02, 1.830e+00, 5.600e-01, 5.000e-01, 8.000e-01, 5.880e+00, 9.600e-01, 1.820e+00, 6.800e+02], [1.269e+01, 1.530e+00, 2.260e+00, 2.070e+01, 8.000e+01, 1.380e+00, 1.460e+00, 5.800e-01, 1.620e+00, 3.050e+00, 9.600e-01, 2.060e+00, 4.950e+02], [1.162e+01, 1.990e+00, 2.280e+00, 1.800e+01, 9.800e+01, 3.020e+00, 2.260e+00, 1.700e-01, 1.350e+00, 3.250e+00, 1.160e+00, 2.960e+00, 3.450e+02]]) array([[ 0.87668336, 0.79842885, 0.64412971, 0.12974277, 0.48853231, -0.70326216, -1.42846826, 1.0724566 , -1.36820277, 0.35193216, 0.0290166 , -1.06412236, -0.2059076 ], [-0.36659076, -0.7581304 , -0.39779858, 0.33380024, -1.41302392, -1.44153145, -0.5029981 , 1.70109989, 0.02366802, -0.84114577, 0.0290166 , -0.73083231, -0.81704676], [-1.69689407, -0.34424759, -0.32337513, -0.45327855, -0.14531976, 1.24904997, 0.31964204, -1.52069698, -0.4346309 , -0.75682931, 0.90197362, 0.51900537, -1.31256499]]) array([0.36884109, 0.19318394, 0.10752862, 0.07421996, 0.06245904, 0.04909 , 0.04117287, 0.02495984, 0.02308855, 0.01864124, 0.01731766, 0.01252785, 0.00696933]) array([[-2.17884511, -1.07218467], [-1.80819239, 1.57822344], [ 1.09829474, 2.22124345]]) LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class="ovr", n_jobs=1, penalty="l2", random_state=0, solver="liblinear", tol=0.0001, verbose=0, warm_start=False) array([1, 3, 2, 1, 2]) array([[14, 0, 0], [ 1, 15, 0], [ 0, 0, 6]]) 准确率(精度)为 : 0.9722222222222222 参考: https://zh.wikipedia.org/wiki/主成分分析 《 斯坦福机器学习》 《机器学习 A-Z》阿啵呲嘚2023-05-23 19:24:201
主成分分析的基本思想
主成分分析的基本思想介绍如下:主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析的主要作用1.主成分分析能降低所研究的数据空间的维数。2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。3.多维数据的一种图形表示方法。4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。5.用主成分分析筛选回归变量。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。拓展:主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。meira2023-05-23 19:24:201
主成分分析法适用于哪些问题?
主成分分析法适用于人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等问题,是一种常用的多变量分析方法。主成分分析作为基础的数学分析方法,其实际应用十分广泛。主成分分析,是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量或因素,因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析法原理在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量关系紧密的变量删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。Chen2023-05-23 19:24:201
pca主成分分析
主成分分析法: 英文全名 Principal Component Analysis 简称 PCA ,由名字就可以看出来,这是一个挑重点分析的方法。主成分分析 法是通过 恰当 的数学变换 ,使新变量—— 主成分成为原变量 的线性 组合 ,并选 取少数 几个在变差总信息量中 比例较 大的主成分来分析 事物 的一种方法 。 主成分在变差信息量中的比例越大 , 它在综合评价 中的作用就越大。思想: 整体思想就是化繁为简,抓住问题关键,也就是降维思想。当然,既然是抓住关键,那么自然就是以牺牲精度为代价。解决问题: 因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。 在用统计方法研究多变量问题时,变量太多会增加计算量和分析问题的复杂性。人们希望在进行定量分析过程中,涉及的变量较少,得到的信息量较多。为了尽可能的减少冗余和噪音,一般情况可以从相关变量中选择一个,或者把几个相关变量综合为一个变量作为代表,用少数变量来代表所有变量。原理: 因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量和相关矩阵的内部结构的关系研究 ,找出影响目标变量某一要素的几个综合指标,使综合指标为原来变量的线性拟合。 这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,使得我们在研究复杂目标变量评估问题时,容易抓住主要矛盾。形象理解比如,某学籍数据,有两列 M 和 F ,其中M 列的取值是如果学生为男性,则取值为 1 如果为女性,则取值为 0 。F 列,如果为男性则取值为 0 否则取值为一。 由这两种关系可以知道,这两列数据是强相关的。只要保留一列,就能够完全还原另外一列。 当然,不要局限于数据删除,还有数据转换,删除可以理解为在此方法中的一种方式。当然,上述情况在真实数据中是不可能出现的。这里只是借此介绍一下这种思维。真实情况中, 我们需要考虑删除哪一列信息可以使得损失最小?或者是通过变换数据就能使得损失信息更小?又如何度量信息的丢失量?原始数据的处理降维有哪些步骤?坐标示例:我们来看下面这张图,这是一个椭圆的点阵。椭圆上面有一个长轴和一个短轴。现在我们要表示点阵的主要变化趋势,就可以以长短轴(或者平行于长短轴)构建新的坐标系。在极端的情况下,短轴变成了一个点,那么长轴就能代表这个点阵的趋势和特点。这样,一个二维数据,就变成了一维。基础知识储备内积与投影:内积运算,将两个向量映射为一个实数。其几何意义就是 向量 A ,在向量 B 的投影长度。(下图是以二维向量为例,多维空间依然是如此。)上式中,B 为单位向基 :同样以上图 B为例,B向量为(3,2)其表示的其实为在 X 轴的投影值为3 ,在Y轴的投影值 为 2 。这其实加入了一个隐含信息,就是本坐标轴 分别是以 X Y轴为方向的单位向量。这里的 X Y 轴其实就是我们所提到的 基。只不过一般默认为 (1,0)和(0,1)所以呢,要描述一组向量,首先是要确定一组基。然后求这个向量在这组基中的投影即可。对基的要求是线性无关,并不一定非要正交。但是因为正交基有较好的性质,所以一般情况我们都是用正交基。基变换上面我们了解了基的原理。如果同样把(3,2)放到新基里面描述,那就是把向量和新基相乘即可。如果是在描述中,有多个基呢?那就是与基阵相乘。如何实现降维上面的思路,我们都清楚了。那么我们如何通过基变换来降维呢?这里我们来举个例子。假设我们有一个矩阵如下。为了处理方面,我们现在把每个字段都减去字段平均值,那么就变成了如下所示表示在坐标上如下图那么,我们现在想用一维坐标来表示,而且要求尽可能的保留原来的信息,我们需要如何选择方向(基)呢?(二维降一维)思路就是,希望投影后的值尽可能的分散,避免重合。协方差:在概率论与统计学中,协方差用于衡量两个随机变量的联合变化程度。而方差则是协方差的一种特殊情况,即变量与自身的协方差。期望:在概率论和统计学中,一个离散性随机变量的期望值(或数学期望,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。比如骰子的期望值为 1* 1/6 +2*1/6 + …+ 6*1/6 = 3.5协方差公式为:其中,E(X) = u E(Y) = v协方差表示的是两个变量的总体的误差 ,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X 与Y 是统计独立的,那么二者之间的协方差就是0流程和步骤第一步:标准化把输入数据集变量的范围标准化,以使它们中的每一个均可以大致成比例的分析。简单说,就是要把存在较大差异的数据转变为可比较的数据。比如把 0-100 的变量转化为 0-1 的变量。这一步一般可以通过减去平均值,再除以每个变量值的标准差来完成。标准差公式如下那么常用的标准化指标变量公式可为第二步:协方差矩阵计算这一步的目的是:了解输入数据集的变量是如何相对于平均值变化的。或者换句话说,是为了查看它们之间是否存在任何关系。因为有时候,变量间高度相关是因为它们包含大量的信息。因此,为了识别这些相关性,我们进行协方差矩阵计算。协方差矩阵是p×p对称矩阵(其中p是维数),其所有可能的初始变量与相关联的协方差作为条目。好了,现在我们知道协方差矩阵只不过是一个表,汇总了所有可能配对的变量间相关性。下面就是计算协方差矩阵的特征向量和特征值,以筛选主要成分。第三步:计算协方差矩阵的特征向量和特征值,用以识别主成分特征向量和特征值都是线性代数概念,需要从协方差矩阵计算得出,以便确定数据的主成分。开始解释这些概念之前,让我们首先理解主成分的含义主成分是由初始变量的线性组合或混合构成的新变量。该组合中新变量(如主成分)之间彼此不相关,且大部分初始变量都被压缩进首个成分中。所以,10维数据会显示10个主成分,但是PCA试图在第一个成分中得到尽可能多的信息,然后在第二个成分中得到尽可能多的剩余信息,以此类推。例如,假设你有一个10维数据,你最终将得到的内容如下面的屏幕图所示,其中第一个主成分包含原始数据集的大部分信息,而最后一个主成分只包含其中的很少部分。因此,以这种方式组织信息,可以在不丢失太多信息的情况下减少维度,而这需要丢弃携带较少信息的成分。在这里,方差和信息间的关系是,线所承载的方差越大,数据点沿着它的分散也越大,沿着线的散点越多,它所携带的信息也越多。简单地说,只要把主成分看作是提供最佳角度来观察和评估数据的新轴,这样观测结果之间的差异就会更明显。协方差矩阵的特征向量实际上是方差最多的轴的方向(或最多的信息),我们称之为主成分。通过特征值的顺序对特征向量进行排序,从最高到最低,你就得到了按重要性排序的主成分。第四步:特征向量正如我们在上一步中所看到的,计算特征向量并按其特征值依降序排列,使我们能够按重要性顺序找到主成分。在这个步骤中我们要做的,是选择保留所有成分还是丢弃那些重要性较低的成分(低特征值),并与其他成分形成一个向量矩阵,我们称之为特征向量。因此,特征向量只是一个矩阵,其中包含我们决定保留的成分的特征向量作为列。这是降维的第一步,因为如果我们选择只保留n个特征向量(分量)中的p个,则最终数据集将只有p维。第五步:沿主成分轴重新绘制数据在前面的步骤中,除了标准化之外,你不需要更改任何数据,只需选择主成分,形成特征向量,但输入数据集时要始终与原始轴统一(即初始变量)。这一步,也是最后一步,目标是使用协方差矩阵的特征向量去形成新特征向量,将数据从原始轴重新定位到由主成分轴中(因此称为主成分分析)。这可以通过将原始数据集的转置乘以特征向量的转置来完成。优缺点优点:化繁为简,降低了计算量。缺点:一定程度上损失了精度。并且只能处理“线性问题”,这是一种线性降维技术、总结假设我们拿到了一份数据集,有m个样本,每个样本由n个特征(变量)来描述,那么我们可以按照以下的步骤进行降维:1、将数据集中的每个样本作为列向量,按列排列构成一个n行m列的矩阵;2、将矩阵的每一个行向量(每个变量)都减去该行向量的均值,从而使得新行向量的均值为0,得到新的数据集矩阵X;3、求X的协方差矩阵,并求出协方差矩阵的特征值λ和单位特征向量e;4、按照特征值从大到小的顺序,将单位特征向量排列成矩阵,得到转换矩阵P,并按PX计算出主成分矩阵;5、用特征值计算方差贡献率和方差累计贡献率,取方差累计贡献率超过85%的前k个主成分,或者想降至特定的k维,直接取前k个主成分。陶小凡2023-05-23 19:24:201
主成分分析法介绍 什么是主成分分析法
1、主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 2、在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。 3、主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。gitcloud2023-05-23 19:24:201
主成分分析的作用
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处理就是将原来P个指标作 线性组合 ,作为新的综合指标。. 最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的 方差 来表达,即Var (F1)越大,表示F1包含的信息越多。. 因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。.主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。黑桃花2023-05-23 19:24:201
SPSS的主成分分析主要是解决什么问题?
spss的主成分分析主要应用在因子分析里,目的是将原来很多的因素,通过他们内在的相关分析,整合成新的一个或多个相对独立的综合因素,来代表原来散乱的因素.例如我们测量客户满意度,设计了10个题目,那数据收集完后,就可以通过因子分析,来看看这10个题目是否能综合成几个因素.通过spss的主成分分析,就可以得出相应结果.结果可能是其中5个题目的相关显著,可以通过一个因素来归纳这5个因素,另外3个、2个也可以分别组成一个,而且主成分对应的特征值大于1,这样就最后就可以通过3个综合因素来研究和分析客户满意度了铁血嘟嘟2023-05-23 19:24:201
主成分分析的主要步骤包括
收藏立即下载为了提升浏览体验,原视图版网页已升级为如下版式主成分分析法的步骤和原理主成分分析法的步骤和原理.pdf438.91K, 15页, 13478次阅读sshiiwengy6 分享于2016-11-16 09:09立即下载 举报(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变 量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性 组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信 息,且所含的信息互不重叠。[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺 点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问 题得以简化,同时得到更为科学、准确的财务信息。(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用 X1, X2…Xp来表示,这p个变量 构成的p维随机向量为X=(X1, X2…Xp)t。设随机向量X 的均值为μ,协方差 矩阵为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的 期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E [X])}=(如图对 X 进行线性变化,考虑原始变量的线性组合:Zp=μ p1X1+μ p2X2+…μ ppXp主成分是不相关的线性组合Z1, Z2……Zp,并且Z1是 X1, X2…Xp的线性 组合中方差最大者, Z2是与 Z1不相关的线性组合中方差最大者,…, Zp是与Z1, Z2 ……Zp-1 都不相关的线性组合中方差最大者。(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵 X=(xij)m×p,其中 xij表示第 i 家上市公司的第 j 项财务指标数据。第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标 数据进行标准化,得到标准化矩阵(系统自动生成)。第三步:根据标准化数据矩阵建立协方差矩阵 R,是反映标准化后的数据 之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中, Rij (i, j=1, 2,…, p)为原始变量Xi与Xj的相关系数。 R为实对 称矩阵(即 Rij=Rji),只需计算其上三角元素或下三角元素即可,其计算公式为:1/15页n第四步:根据协方差矩阵 R 求出特征值、主成分贡献率和累计方差贡献率, 确定主成分个数。解特征方程ER 0,求出特征值λi(i=1, 2,…, p)。因为R是正定矩阵,所以其特征值λi都为正数,将其按 大小顺序排列,即λ1≥λ2≥…≥λi≥0。特征值是各主成分的方差,它的大1 且累计贡献率达80%-95%的特征值λ1,λ2,…,λm所对应的1, 2,…, m (m≤p), 其中整数 m 即为主成分的个数。第五步:建立初始因子载荷矩阵,解释主成分。因子载荷量是主成分Zi与 原始指标Xi的相关系数R (Zi, Xi),揭示了主成分与各财务比率之间的相关程 度,利用它可较好地解释主成分的经济意义。第六步:计算企业财务综合评分函数Fm,计算出上市公司的综合值,并进 行降序排列:Fm=W1Z1 + W2Z2+…+ WiZi无尘剑 2023-05-23 19:24:202
主成分分析详解
你想知道什么》Jm-R2023-05-23 19:24:202
spss20主成分分析法结果怎么分析
spss主成分分析法详细步骤: 1、打开SPSS软件,导入数据后,依次点击分析,降维,因子分析。如图1所示(图1) 2、打开因子分析界面之后,把需要进行分析的变量全部选进变量对话框,然后点击右上角的描述。如图2所示(图2) 3、勾选原始分析结果、KMO检验对话框,然后点击继续。如图3所示(图3) 4、点击抽取,方法里选择主成分再点击碎石图。如图4所示(图4) 5、点击旋转,再点击最大方差旋转。如图5所示(图5) 6、点击得分,再点击,保存为变量及显示因子得分系数矩阵。如图6所示(图6) 7、最后点确定就可以在输出截面看到主成分分析的结果了。如图7所示(图7)总结:以上就是spss主成分分析法详细步骤,大家是不是学会了呢?gitcloud2023-05-23 19:24:201
什么是主成分分析方法?
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.水元素sl2023-05-23 19:24:201
主成分分析中各主成分之间的关系是
主成分分析中,各主成分之间的关系是( )。A. 相互独立B. 低度相关C. 高度相关D. 完全相关答案:B.低度相关主成分分析 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息可桃可挑2023-05-23 19:24:201
主成分分析有什么用?
主成分分析最主要的用途在于“降维”。举个例子,你要做一项分析,选中了20个指标,你觉得都很重要,但是20个指标对于你的分析确实太过繁琐,这时候,你就可以采用主成分分析的方法进行降维。20个指标之间会有这样那样的相互关系,相互之间会有影响,通过主成分分析后,得到4个或者5个主成分指标。此时,这几个主成分指标既涵盖了你20个指标中的绝大部分信息,又让你的分析得到了简化(从20维降到4、5维),简化了分析过程,增加了结果精度。九万里风9 2023-05-23 19:24:201
如何利用spss进行主成分分析
1输入数据。2点Analyze 下拉菜单,选Data Reduction 下的Factor 。3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。6单击主对话框中的OK 按钮,输出结果。kikcik2023-05-23 19:24:202
pca主成分分析
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫作主成分分析或称主分量分析,也是数学上用来降维的一种方法瑞瑞爱吃桃2023-05-23 19:24:201
什么是主成分分析方法?
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.Ntou1232023-05-23 19:24:201
主成分分析和因子分析的区别
主成分分析和因子分析的原理不同。主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个不相关的综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量表示成少数的公共因子和仅对某一个变量有作用的特殊因子线性组合而成。就是要从数据中提取对变量起解释作用的少数公共因子。因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标(即主成分),其中每个主成分都能够反映原始变量的大部分信息,且所含信息互不重复。这种方法在引进多方面变量的同时将复杂因素归结为几个主成分,使问题简单化,同时得到的结果更加科学有效的数据信息。在实际问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。主要方法有特征值分解,SVD,NMF等。西柚不是西游2023-05-23 19:24:202
在什么情况下需要进行主成分分析
主宾结构的时候铁血嘟嘟2023-05-23 19:24:203
层次分析法和主成分分析的区别是什么?
层次分析法:主成分分析和层次分析两者计算权重的不同,AHP层次分析法是一种定性和定量的计算权重的研究方法,采用两两比较的方法,建立矩阵,利用了数字大小的相对性,数字越大越重要权重会越高的原理,最终计算得到每个因素的重要性。主成分分析(1)方法原理及适用场景主成分分析是对数据进行浓缩,将多个指标浓缩成为几个彼此不相关的概括性指标(主成分),从而达到降维的目的。主成分分析可同时计算主成分权重及指标权重。(2)操作步骤使用SPSSAU【进阶方法-主成分分析】。如果计算主成分权重,需要用到方差解释率。具体加权处理方法为:方差解释率除累积方差解释率。比如本例中,5个指标共提取了2个主成分:主成分1的权重:45.135%/69.390%=65.05%主成分2的权重:24.254%/69.390%=34.95%如果是计算指标权重,可直接查看“线性组合系数及权重结果表格”,SPSSAU自动输出了各指标权重占比结果。其计算原理分为三步:第一:计算线性组合系数矩阵,公式为:loading矩阵/Sqrt(特征根),即载荷系数除以对应特征根的平方根;第二:计算综合得分系数,公式为:累积(线性组合系数*方差解释率)/累积方差解释率,即上一步中得到的线性组合系数分别与方差解释率相乘后累加,并且除以累积方差解释率;第三:计算权重,将综合得分系数进行归一化处理即得到各指标权重值。CarieVinne 2023-05-23 19:24:201
如何利用spss进行主成分分析标准化
主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6.第二步:主成分与分析项对应关系判断.第三步:在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.spssau主成分分析操作共有三步:①选择【进阶方法】--【主成分分析】②将分析项拖拽到右侧分析框③点击开始分析请点击输入图片描述默认提供主成分得分和综合得分,分析前勾选“成分得分”、“综合得分”即可。小白2023-05-23 19:24:202
主成分分析和因子分析的区别
因子分析与主成分分析的异同点:都对原始数据进行标准化处理; 都消除了原始指标的相关性对综合评价所造成的信息重复的影响; 构造综合评价时所涉及的权数具有客观性; 在信息损失不大的前提下,减少了评价工作量公共因子比主成分更容易被解释; 因子分析的评价结果没有主成分分析准确; 因子分析比主成分分析的计算工作量大主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。NerveM 2023-05-23 19:24:202
如何用spss做主成分分析和因子分析
主成分分析用于对数据信息进行浓缩,比如总共有20个指标值,是否可以将此20项浓缩成4个概括性指标。第一步:判断是否进行主成分(pca)分析;判断标准为KMO值大于0.6.第二步:主成分与分析项对应关系判断.第三步:在第二步删除掉不合理分析项后,并且确认主成分与分析项对应关系良好后,则可结合主成分与分析项对应关系,对主成分进行命名.spssau主成分分析操作共有三步:①选择【进阶方法】--【主成分分析】②将分析项拖拽到右侧分析框③点击开始分析请点击输入图片描述默认提供主成分得分和综合得分,分析前勾选“成分得分”、“综合得分”即可。苏萦2023-05-23 19:24:202
如何用spss对面板数据进行主成分分析进而提取到主成分因子
面板数据方法很多,最简单的是加权平均一下做一个因子分析1输入数据。2点Analyze 下拉菜单,选Data Reduction 下的Factor 。3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。6单击主对话框中的OK 按钮,输出结果。统计专业研究生工作室原创,请勿复杂粘贴hi投2023-05-23 19:24:191
主成分分析法有什么缺点?
得到的主元物理意思或者现实含义没有原来的变量那么清楚,确切。而且得到的特征值有负号的时候,,综合评价函数意义就不明确。Jm-R2023-05-23 19:24:196
SPSS主成分分析时,是不是得到的方差百分比就是贡献率,累计百分比就是累计贡献率??
恩!第一个是特征值。一般有大于1的或者大于0.5,累计方差百分比一般要求大于85%才能够进行主成分分析。得到的是每个变量的指标,相关系数吧a。然后就是根据特征值b,求向量系数u,u=a/sqr(b).这样就得到了系数。 F1=α11x1+α12x2+ ... +α1pxp F2=α21x1+α22x2+ ... +α2pxp ... ... ... ... ... ... Fm=αm1x1+αm2x2+ ... +αmpxp然后根据成分构建F的综合模型。有需要帮助hi我!阿啵呲嘚2023-05-23 19:24:192
在spss主成分分析中,如何指定提取的主成分个数,多谢!
spss中有选项的,一般选择看特征根我经常帮别人做类似的数据分析的hi投2023-05-23 19:24:191
如何用通俗易懂的一句话解释主成分分析和因子分析
主成分分析做的仅为变量变换,将原始变量进行线性组合得到互相正交的新变量因子分析需要构造因子模型,用潜在的假想变量(不可观测的潜在变量)和随机影响变量的线性组合表示原始变量。因子旋转是因子分析的核心,因子分析模型中公共因子的系数aij 称为因子载荷,所谓载荷亦即aij 表示第i个变量与第j个公共因子的相关系数,其绝对值越大表示相关的密切程度越高。因子旋转实际上是对因子载荷矩阵进行旋转,可以简化因子载荷阵的结构,使载荷矩阵中每列或每行的元素平方值向0和1两极分化,通过因子旋转(实际上是做坐标旋转)使每个原始变量在尽可能少的因子之间有密切关系,这样因子解的实际意义更容易解释。只有少数几个变量在某个公共因子上有较高载荷而其他变量在其上载荷较小或是趋于零时,对该公共因子的解释最为简单。gitcloud2023-05-23 19:24:191