特征值分解

svd是否只能用特征值分解的方法去求左右奇异向量?

特征值解奇异值解区别所矩阵都进行奇异值解阵才进行特征值解所给矩阵称阵A(T)=A二者结相同说称矩阵特征值解所奇异值解特例二者存些差异奇异值解需要奇异值排序且全部于等于零于特征值解 [v,d] = eig( A ) , 即 A = v*d*inv(v)于奇异值解,其解基本形式 [u,s,v] = svd(C), C = u*s*v". 若C阵称阵, 则 u = v; 所 C = v*s*v";
NerveM 2023-05-23 19:24:101

矩阵特征值分解的两种方法:jacobi分解方法和QR分解方法的各自优点、缺点是什么,请计算数学专业高手解答

粗略一点讲,Jacobi算法相对慢一些,但精度高一些;QR算法相对快一些,但精度低一些。
九万里风9 2023-05-23 19:24:092

matlab 特征值分解

这是因为matlab求解特征值用的是数值解法,对于奇异矩阵当然是有复数的,但是更多的原因是因为数值解法导致的,可以先用SVD命令求解奇异值,实际上奇异值是特征值的开方,所以,而且奇异值求解排列是从大到小,当然接近零的话可能出现负数,就不一定满足这个规律了。
小白2023-05-23 19:24:091

10、将NXN的矩阵R进行特征值分解,并将特征值排列成一个列向量。

[证明] 充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXi i=1,2,……,nA[X1 X2 ……Xn]=[入1X1 入2X2 ……入nXn]=[X1 X2 ……Xn]*X1,X2,Xn线性无关,故P=[X1 X2 Xn]为满秩矩阵,令V=*,则有AP=PVV=AP/P必要性:已知存在可逆方阵P,使AP/P=V=*将P写成列向量P=[P1 P2 Pn] Pn为n维列向量[AP1 AP2……APn]=[入1P1 入2P2……入nPn]可见,入i为A的特征值,Pi为A的特征向量,所以,A具有n个线性无关的特征向量。注:因为上面的过程是我自己手工打上去的,好多符号百度都打不出来,将就能看懂就好,其中*表示的是一个n阶对角矩阵,对角线上的矢量分别为入1,入2……入nn阶矩阵在复数范围内,一定有n个特征值(重特征值按重数计算个数),从这个意义上说,矩阵的特征值个数与矩阵的阶数是有关系的。n阶矩阵在实数范围内有多少个特征值就不一定了。但是有一个重要的结论需要知道:n阶实对称矩阵一定有n个实特征值(重特征值按重数计算个数)。
肖振2023-05-23 19:24:091

请教问题,大型稀疏矩阵的特征值分解

【知识点】若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn【解答】|A|=1×2×...×n=n!设A的特征值为λ,对于的特征向量为α。则Aα=λα那么(A²-A)α=A²α-Aα=λ²α-λα=(λ²-λ)α所以A²-A的特征值为λ²-λ,对应的特征向量为αA²-A的特征值为0,2,6,...,n²-n【评注】对于A的多项式,其特征值为对应的特征多项式。线性代数包括行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量、矩阵的对角化,二次型及应用问题等内容。
tt白2023-05-23 19:24:091

为什么正交矩阵一定可以特征值分解?

1. "正交矩阵的特征值只能是1或者-1"这个是严重错误!随便给你个例子0 1 00 0 11 0 02. "是什么保证了它有足够的特征向量使得它一定可以特征值分解"本质上讲正交矩阵是正规矩阵,所有的正规矩阵都可以酉对角化(当然这个不是非常容易证明,先要酉上三角化,然后用正规性得到非对角元全为零)。如果你已经知道Hermite矩阵可以酉对角化的话还可以用Cayley变换建立酉阵和Hermite矩阵的联系,这样就可以把酉阵看作Hermite阵的矩阵函数,从而也可以酉对角化。
wpBeta2023-05-23 19:24:091

对称半正定矩阵一定可以特征值分解吗?

A的所有主子式都大于等于0,所以必然可以进行特征值分解。不存在你说的哪种情况。
北境漫步2023-05-23 19:24:093

为什么正交矩阵一定可以特征值分解

证明:根据题意:n/(n²+nπ) < 1/(n²+π) +1/(n²+2π)+.....+1/(n²+nπ) < n/(n²+π)因此:n²/(n²+nπ) < n[1/(n²+π) +1/(n²+2π)+.....+1/(n²+nπ)] < n²/(n²+π)又∵lim(n→∞) n²/(n²+nπ) = lim(n→∞) 1/[1+(π/n)] = 1lim(n→∞) n²/(n²+π)] = lim(n→∞) 1/[1+(π/n²)] = 1根据夹逼准则:原极限=1
无尘剑 2023-05-23 19:24:091

c++编程求矩阵的特征值,特征向量和特征值分解

想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已
Chen2023-05-23 19:24:091

特征值分解和奇异值分解的区别

特征值分解和奇异值分解的区别所有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解[v,d]=eig(A),即A=v*d*inv(v)对于奇异值分解,其分解的基本形式为[u,s,v]=svd(C),C=u*s*v".若C阵为对称的方阵,则有u=v;所以有C=v*s*v";
人类地板流精华2023-05-22 22:49:431

特征值分解和奇异值分解

特征值和特征向量的定义如下: 其中A是一个 n×n 的矩阵,x 是一个 n 维向量,则我们说λ是矩阵 A 的一个特征值, 而 x 是矩阵 A 的特征值λ所对应的特征向量。求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵 A 特征分解。如果我们求出了矩阵 A 的 n 个特征值 ,以及矩阵这n个特征值所对应的特征向量 。那么矩阵A就可以用下式的特征分解表示: ,其中 为特征向量组成的矩阵, 是特征值所组成的对角矩阵。特征值分解 的前提条件是A是方阵。如果A不是方阵,这种分解(对角化)将无效。 怎样解决这个问题呢? 因此出现了奇异值分解。 奇异值分解可表示成: 如何进行奇异值分解呢?? 奇异值分解性质
Chen2023-05-22 22:49:421

特征值分解和奇异值分解的区别

有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解 [v,d] = eig( A ) , 即 A = v*d*inv(v)对于奇异值分解,其分解的基本形式为 [u,s,v] = svd(C), C = u*s*v". 若C阵为对称的方阵, 则有 u = v; 所以有 C = v*s*v";
再也不做站长了2023-05-22 22:49:413

特征值分解和奇异值分解的区别

特征值分解和奇异值分解的区别所有的矩阵都可以进行奇异值分解,而只有方阵才可以进行特征值分解。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。对于特征值分解[v,d]=eig(A),即A=v*d*inv(v)对于奇异值分解,其分解的基本形式为[u,s,v]=svd(C),C=u*s*v".若C阵为对称的方阵,则有u=v;所以有C=v*s*v";
NerveM 2023-05-22 22:49:411

矩阵的特征值分解和奇异值分解有什么不同

阿萨德点点滴滴点点滴滴
余辉2023-05-22 22:49:354