小学数学

小学数学教学中如何应用数形结合思想的研究

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现。华罗庚先生指出,数缺形时少直观,形少数时难入微。数形结合既是一个重要的数学思想,又是一种常用的数学方法。数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视。在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题。二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力。能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养。2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要。三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量。 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想。 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题。在不断地“探索”与“创造”中构建属于个人的数学思想。四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物。它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述。数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力。2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变。3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法。五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用。2、数形结合思想在“空间与图形”知识领域中的应用。3、数形结合思想在“统计与概率”知识领域中的应用。4、数形结合思想在“实践与综合运用”知识领域中的应用。六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告。七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态。2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究。3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式。4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证。
凡尘2023-05-21 22:10:171

小学数学数形结合的例子

计算1+3+5+7+9+11转化成点子图,则1+3+5+7+9+11=6x6=36.2.一桶水共重30千克,倒出一半水,还剩下18千克,请问原来水重多少千克?用数轴图画出一目了然,可知原来水重24千克。3.计算1/2+1/4+1/8+1/16+......+1/512根据数形结合可得该式最终等于511/512。数形结合是数学解题中常用的思想方法之一,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷
gitcloud2023-05-21 22:10:161

数形结合思想在小学数学中的应用

数形结合思想在小学数学中的应用:数形结合思想在“数与代数”知识领域中的渗透、数形结合思想在“图形与几何”知识领域中的渗透、数形结合思想在“统计与概率”知识领域中的渗透、数形结合思想在“综合与实践”知识领域中的渗透。1、数形结合思想在“数与代数”知识领域中的渗透:数与代数是义务教育阶段数学课程的重要知识内容。而小学阶段是以数的运算为主,所以计算教学是小学数学教学中重要的组成部分。新的计算教学理念要求学生不仅会用笔算、口算等进行正确的计算。2、数形结合思想在“图形与几何”知识领域中的渗透:在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学知识直观化,帮助学生形成空间概念。3、数形结合思想在“统计与概率”知识领域中的渗透:在“统计与概率”方面,主要把统计表的数据转化成统计图,有条形统计图、折线统计图、扇形统计图,通过数与形的结合,让学生更好地分析数据的特点来解决问题。4、数形结合思想在“综合与实践”知识领域中的渗透:把从直观图形支持下得到的模型应用到现实生活中,沟通图形及具体数量之间的联系,强化对题意的理解。运用数形结合,借助于形象的图形来解题,对于学生来说,不仅学得有趣、简单,而且还能发展学生的思维能力。
豆豆staR2023-05-21 22:10:141

小学数学教材哪些内容利用数形结合?

数学是抽象的,小学数学是数学专业的基础性知识,想要学生在以后的学习中都能够取得较好的成绩就需要对小学生的数学教学有一个正确的教学方式,减轻小学数学对于小学生来说的难度性,使得抽象的数学公式在学生学习过程中变得具体化、形象化。数与形是小学数学教学内容中的两个主要部分,也是学生学习的重点和难点,但是将二者的内容有效的结合起来就能够简化学习的过程,将教材的内容与教师的实际教学融会贯通,将复杂的问题简单化。此外,数形结合的学习方法还能够培养学生养成良好的思维能力,让学生能够通过一道数学题的知识点和公式理论来套用到同类题型中,做到举一反三。  一、数形结合的概念   数形结合其实质就是将数学知识中的数量关系和数学图形之间的量化关系相互转换,从而解决小学数学学习中的一些繁重过程和内容。而对于年纪较小的小学生来说,想让他们透彻的理解数学是有很大难度的,所以利用数形结合能够帮助小学生在学习数学的期间将数学知识直观化,引导学生将抽象的数学知识变得具体化,培养学生的思维转换的能力,提高学生的学习能力,加深学生对数学知识的理解能力。而在数学知识的学习过程中,数形结合的思想也是基础数学的一个重要思想。   二、营造良好的教学情境,吸引学生的学习兴趣   对于小学生来讲,活泼好动,奇思异想是孩子们尚未消失的童真,而乐趣是吸引学生主动进行学习动作的有个有效方式。小学数学教师在对学生进行教学是也是一样的,只有找到学生的好奇点,抓住学生们的需要,就能够在学习中迎合学生的需要有效的将知识灌输到学生的意识中去。这个时候就需要教师学会在课堂上营造良好的学习氛围以及教学情境,利用教材将书本上的知识与现实生活有效的进行结合,在将一些具体的公式或是理论与图形进行搭配融合,不仅能够找到学生感兴趣的方面,还能够引导学生在求知心理的引导下主动进行学习。   以小学数学教材中三角、圆形、柱体等图形,以及平移、旋转、对称等知识的学习为例,引导学生认识坐标轴这个重要的数学知识,让学生能够凭借自己对数学的理解在坐标轴中找到每个图形的实际坐标,以及每个图形在坐标轴上的位置变换以及形态的转变。此外,在课堂上,教师还可以留出十分钟的时间来给学生进行一个趣味教学,通过一些有意思的数学谜底,或是让学生根据某个有多个几何图形组成的图案来让学生找出它是由那些简单的图形组成的,并且每个图形的数量是多少,以此来巩固学生对数形结合知识的掌握。
小白2023-05-21 22:10:142

小学数学的数形结合思想方法

小学数学的数形结合思想方法如下:数与形是小学数学教学内容中的两个主要部分,也是学生学习的重点和难点,但是将二者的内容有效的结合起来就能够简化学习的过程,将教材的内容与教师的实际教学融会贯通,将复杂的问题简单化。第一,以形助数——借助形的生动和直观来阐明数与数之间的联系。如“斐波那契问题”也就是常说的兔子数列。第二,以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质。在教学中将“形象”放在支撑的地位,通过“数”来描述、诠释“形”的特征,使数学达到深化、严谨的效果。如在六年级教学“长方体的认识”中就可以借助“数”的概括性认识长方体的特征,让学生在头脑中形成长方体的空间概念。数形结合:数形结合其实质就是将数学知识中的数量关系和数学图形之间的量化关系相互转换,从而解决小学数学学习中的一些繁重过程和内容。而对于年纪较小的小学生来说,想让他们透彻的理解数学是有很大难度的,所以利用数形结合能够帮助小学生在学习数学的期间将数学知识直观化,引导学生将抽象的数学知识变得具体化。培养学生的思维转换的能力,提高学生的学习能力,加深学生对数学知识的理解能力。而在数学知识的学习过程中,数形结合的思想也是基础数学的一个重要思想。
FinCloud2023-05-21 22:10:131

国内外怎样研究小学数学的数形结合思想方法

一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现.华罗庚先生指出,数缺形时少直观,形少数时难入微.数形结合既是一个重要的数学思想,又是一种常用的数学方法.数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径.长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视.在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力.“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中.作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题.二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力.能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养.2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要.三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量. 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想. 3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题.在不断地“探索”与“创造”中构建属于个人的数学思想.四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物.它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力.2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变.3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法.五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用.2、数形结合思想在“空间与图形”知识领域中的应用.3、数形结合思想在“统计与概率”知识领域中的应用.4、数形结合思想在“实践与综合运用”知识领域中的应用.六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告.七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态.2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究.3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式.4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证.
Chen2023-05-21 22:10:131

小学数学逻辑推理

3个数字分别为1.5.11
小白2023-05-21 12:53:553

极限思想在小学数学中的应用

一、认数中渗透数的认识是小学数学教学中最基础的重要内容,它是其它各领域知识得以生长和展开的基础。从自然数、零到分数、小数、负数等的学习贯穿了小学阶段学习的始终,我们在数的认识教学中,应引导学生立足于已有经验经历从具体到一般的过程,充分利用各种机会让学生体验各类数的无限,感受极限思想,促进学生良好数感的形成。如浙江省温州市教育学院雷子东老师在“分数的意义”教学中,有如下教学片段,很好地运用数轴让学生体会了对应思想和极限思想,具体过程如下:二、操作中渗透数学是研究空间形式与数量关系的科学,主要有两个方向:“数”和“形”,“数”是指数量关系 ,“形”是指空间形式。数与形常常是结合在一起的, 内容上相互联系, 方法上相互渗透, 并在一定条件下互相转化。小学生的思维正处于具体形象思维向抽象逻辑思维过渡的阶段,抽象的概念学生根本无法接受,必须运用直观手段给以外化后在教师的引导下逐步让学生理解掌握,让学生通过操作运用多种感官参与学习活动就是有效的方式之一。在操作活动中,有不少现象与无限有关,教学中应及时地抓住体现“无限”的时机给予引申,让学生领略“无限”的含义,培养学生的极限思想。三、推理中渗透数学思想方法是数学知识不可分割的有机组成部分, 如果说数学教材中的基础知识和基本技能是一条明线的话,那么蕴含在教材中的数学思想方法就是一条暗线。为此,我们在学生掌握基础知识、形成基本技能的过程中,应适时地抓住教学内容中的有利因素,有意识地在知识技能形成或运用的推理过程中加以引导渗透,让学生在归纳与演绎推理过程中感悟极限思想。如 “商不变的性质”教学时,在巩固练习环节,一位教师设计了这样一个练习:在□里填上什么数,使商不变?四、想象中渗透极限思想实质上是一种逼近思想,而且是一种无限逼近的思想,灵活地借助极限思想,可以将某些数学问题化难为易,避免一些复杂运算,探索出解决问题的方向或途径。小学阶段有许多数学知识需要利用这种逼近的思想方法进行探索,用逼近的思想方法探索规律与知识的过程也是培养学生极限数学思想的宝贵时机,我们要充分利用这个探索过程,引导学生在“无限接近”的想象思维中,从有限认识无限,从近似认识精确,从量变认识质变,渗透极限思想。
真颛2023-05-20 22:09:411

极限思想在小学数学中的体现和例子

1.算圆周率 【π】2.计算圆的面积这种极限观在我国古代的文献中就有记载,最著名的是《庄子·天下篇》中记载的惠施( 约前 370——约前 310) 的一段话:“一尺之锤,日取其半,万世不竭.” 公元 3 世纪,中国数学家刘徽 ( 263 年左右) 成功地把极限思想应用于实践,其中最典型的方法就是在计算圆的面积时建立的“割 圆术”.由于刘徽所采用的圆的半径为1,这样圆的面积在数值上即等于圆周率,所以说刘微成功地 创立了科学的求圆周率的方法.刘徽采用的具体做法是:在半径为一尺的圆内,作圆的内接正六边 形,然后逐渐倍增边数,依次算出内接正6 边形、正 12 边形、…、直至 6 ×2 192 边形的面积.刘徽认为,割得越细,圆内接正多边形与圆面积之差越小,即“割之弥细,所失弥少.割之又割,以至 于不可割,则与圆和体,而无所失矣”.这就是割圆术所反映的朴素的极限思想.
墨然殇2023-05-20 22:09:402

小学数学科学记数法知识点总结

很多同学学习数学的时候都要及时整理知识点,那么科学计数法都有哪些需要掌握的知识呢?大家一起来看看吧。 科学记数法简介 把一个数表示成a*10^n的形式(其中1<或=a且小于10,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于1的数时,应当表示为a×10n的形式,其中1≤︱a︱<10,n为原整数部分的位数减1; 用科学记数法表示绝对值小于1的数时,则可表示为a×10-n的形式,其中n为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a︱<10. 科学记数法的特点 (1)简单:对于数目很大的数用科学记数法的形式表示起来又科学、又简单。 (2)科学记数法的形式是由两个数的乘积组成的,其中一个因数为a(1≤a<10,a∈N*),另一个因数为10n(n是比原来数A的整数部分少1的正整数)。 (3)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。 科学记数法例题 1、写出下列用科学记数法表示的数的原数; ①3.456×10 ②4.040×104 ③-2.58×103 ④1.00×107 2、1240.5的整数位数为4,1.24×103的整数位数为 , 5.8×107的整数位数为 3、比较下列数的大小:① 1.5×104 1.2×105 ② -1.49×104 -2.58×103 4、(1)一天24小时有多少秒?你能用科学记数法表示吗? (2)一年中有多少秒?用科学计数法表示。 5、已知10×102 =1000=103, 102×102=10000=104, 102×103=100000=105 以上就是科学记数法的相关知识,希望同学们在考试中取得优异成绩。
NerveM 2023-05-20 17:39:041

小学数学应用题 题目看下面↓

1/6X+1/12X+1/7X+5+1/2X+4=X(3/28)X=9X=84他活了84岁
康康map2023-05-19 20:16:417

小学数学序数是什么

数有基数和序数,基数指1、2、3、4.. 序数是表顺序的数,像第1、第2、第3..
无尘剑 2023-05-19 11:03:231

小学数学中除号÷怎么书写顺序?

这个➗的书写顺序大部分人应该都是先写中间的一横,再写上下的那两个圆点。
hi投2023-05-19 11:02:522

小学数学笔算除法的符号叫什么

除号。小学数学笔算除法的符号是“÷”叫:除号。除法竖式中的厂,厂字符号叫:大除号
小菜G的建站之路2023-05-19 11:02:501

小学数学。算式什么意思?谢谢

1+1=2这就是算式
hi投2023-05-19 11:02:464

小学数学题,求解!814的分数单位是什么?再加上几个这样的分数单位就能成为最小的质数?

出题有误。
hi投2023-05-19 11:02:404

小学数学

不知道
bikbok2023-05-18 15:14:165

小学数学文化有哪些

这个我觉得还可以吧,文化的话可能就是在我们的书中的一些东西吧,反正我也不是很清楚。下面是一些无关紧要的,来源于百度百科!!!数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。 3. 数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。4. 代数学  a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。5. 代数几何学  6. 几何学  a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。7. 拓扑学  a:点集拓扑学,b:代数拓扑学,c:同伦论,d:低维拓扑学,e:同调论,f:维数论,g:格上拓扑学,h:纤维丛论,i:几何拓扑学,j:奇点理论,k:微分拓扑学,l:拓扑学其他学科。8. 数学分析a:微分学,b:积分学,c:级数论,d:数学分析其他学科。9. 非标准分析10. 函数论  a:实变函数论,b:单复变函数论,c:多复变函数论,d:函数逼近论,e:调和分析,f:复流形,g:特殊函数论,h:函数论其他学科。  11. 常微分方程  a:定性理论,b:稳定性理论。c:解析理论,d:常微分方程其他学科。12. 偏微分方程a:椭圆型偏微分方程,b:双曲型偏微分方程,c:抛物型偏微分方程,d:非线性偏微分方程,e:偏微分方程其他学科。  13. 动力系统  a:微分动力系统,b:拓扑动力系统,c:复动力系统,d:动力系统其他学科。14. 积分方程 15. 泛函分析  a:线性算子理论,b:变分法,c:拓扑线性空间,d:希尔伯特空间,e:函数空间,f:巴拿赫空间,g:算子代数 h:测度与积分,i:广义函数论,j:非线性泛函分析,k:泛函分析其他学科。16. 计算数学a:插值法与逼近论,b:常微分方程数值解,c:偏微分方程数值解,d:积分方程数值解,e:数值代数,f:连续问题离散化方法,g:随机数值实验,h:误差分析,i:计算数学其他学科。
大鱼炖火锅2023-05-18 05:46:171

小学数学所有单位换算公式

1千米=1000米 1米=10分米1分米=10厘米 1米=100厘米1厘米=10毫米1=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分换算1世纪=100年 1年=12月大月(31天)有:135781012月(30天)的有:46911月2月28天,2月29天全年365天,全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒常用图形计算公式:1,正方形C周长 S面积 a边长周长=边长×4面积=边长×边长C=4aS=a×a S=a22,正方体V体积 a棱长表面积=棱长×棱长×6体积=棱长×棱长×棱长S表=a×a×6 表=6a2V=a×a×a V= a33,长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4,长方体V体积 S面积 a长 b宽 h高(1)表面积=(长×宽+长×高+宽×高)×2(2)体积=长×宽×高S=2(ab+ah+bh)V=abh5,三角形S面积 a底 h高面积=底×高÷2S=ah÷2=面积 ×2÷底三角形底=面积 ×2÷高6,平行四边形S面积 a底 h高面积=底×高S=ah7,梯形S面积 a上底 b下底h高面积=(上底+下底)×高÷2S=(a+b)× h÷28,圆形S面积 C周长 πd直径 r半径周长=直径×π周长=2×π×半径面积=半径×半径×πC=πdC=2πrS=πr2d=C÷πd=2rr=d÷2 r=C÷2÷πS环=π(R2-r2)9,V体积 h高 S底面积 r底面半径 C底面周长侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高S侧=ChS侧=πdhV=ShV=πr2h圆=侧面积÷2×半径10,V体积 h高S底面积 r底面半径体积=底面积×高÷3V=Sh÷3
meira2023-05-16 14:50:3214
 首页 上一页  1 2 3 4