向量相乘

向量相乘的坐标公式是什么?

向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
豆豆staR2023-05-14 15:35:551

向量相乘的坐标公式是什么?

向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
墨然殇2023-05-14 15:35:551

向量相乘的坐标公式是什么?

向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
左迁2023-05-14 15:35:551

坐标向量相乘怎么算

  坐标向量相乘:各对应元素相乘,然后相加。比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD,则向量AB×向量SD=2×5+3×8=34。   在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
Ntou1232023-05-14 15:35:551

两个向量相乘点坐标是怎么乘的

向量a=(x,y,z),向量b=(u,v,w),向量ab相乘分数量积、向量积两种情况: 1、数量积(点积):a·b=xu+yv+zw。 2、向量积(叉积):a×b=|ijk||xyz||uvw|。 在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。
北营2023-05-14 15:35:551

坐标向量相乘公式

a=(x1,y1),b=(x2,y2)a*b=x1*x2+y1*y2这就是坐标公式哪里不清欢迎追问,满意谢谢采纳!
wpBeta2023-05-14 15:35:541

两个坐标向量相乘怎么算

分为数乘、点乘和叉乘,计算方法如下:1、向量的数乘,也叫向量的数量积或标量积,是一个向量和一个数相乘的运算,结果是一个向量。如果向量a的坐标为(x1,y1,z1),数k为一个常数,则向量a与数k的数乘为:k·a=(kx1,ky1,kz1)。数乘的结果是改变向量的长度,但不改变向量的方向。2、向量的点乘,也叫向量的内积或数量积,是两个向量相乘的运算,结果是一个数。如果向量a的坐标为(x1,y1,z1),向量b的坐标为(x2,y2,z2),则向量a与向量b的点乘为:a·b=x1x2+y1y2+z1z2。3、向量的叉乘,也叫向量的外积或矢量积,是两个向量相乘的运算,结果是一个向量。如果向量a的坐标为(x1,y1,z1),向量b的坐标为(x2,y2,z2),则向量a与向量b的叉乘为:a×b=(y1z2-z1y2,z1x2-x1z2,x1y2-y1x2)。
墨然殇2023-05-14 15:35:541

如果已知P,Q两点坐标,怎么算向量PQ,如果已知两向量的坐标,这两个向量相乘怎么算

设P(x1,y1) Q(x2,y2) 则PQ=(x2-x1,y2-y1) P*Q=x1*x2+y1*y2
黑桃花2023-05-14 15:35:541

向量相乘能不能写成坐标乘坐标的形式,只是问写法而已~~

就是写成这样,尤其记住不能写成(a,b)×(c,d),它代表的不是向量相乘了,而是一个向量积,结果仍为向量,而不是数字。你的结果结果为:ac+bd。
瑞瑞爱吃桃2023-05-14 15:35:541

向量相乘用坐标表示的公式是什么

向量a(x1,y1),向量b(x2,y2)向量a点乘向量b等于x1x2+y1y2扩展资料实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当|λ|>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的|λ|倍。实数p和向量a的点乘乘积是一个数。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。
凡尘2023-05-14 15:35:5310

坐标向量相乘怎么算

坐标向量相乘:各对应元素相乘,然后相加。比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD,则向量AB×向量SD=2×5+3×8=34。在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
苏萦2023-05-14 15:35:531

两个向量相乘后的方向向量如何求?

加油
mlhxueli 2023-05-14 13:59:373

两个单位向量相乘等于什么

等于两个单位向量的夹角余弦值
wpBeta2023-05-14 13:59:362

两个坐标向量相乘怎么表示

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底.a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a.由平面向量基本定理知,有且只有一对实数(x,y),使得 a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y).这就是向量a的坐标表示.其中(x,y)就是点P的坐标.向量OP称为点P的位置向量.
u投在线2023-05-14 13:59:363

两个向量相乘公式

/pf1/·/pf2/不是两个向量相乘,是两个向量的模相乘,结果为一个数。向量的模即向量的长度。
瑞瑞爱吃桃2023-05-14 13:59:362

两个向量相乘后的方向向量如何求?

两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向.如果向量是用坐标表示的,则可用行列式计算.(注意:向量a×向量b=-向量b×向量a)
bikbok2023-05-14 13:59:361

两个相同方向的向量相乘得什么来着.帮帮忙

向量相乘分《点乘》和《叉乘》,你是想问那种【乘】呢?都可以由公式计算:若点乘,点积为 两向量的模的乘积;若叉乘,叉积为零。(∵sin 0°=0)
大鱼炖火锅2023-05-14 13:59:361

两个坐标向量相乘怎么算 两个坐标向量相乘的计算方法是什么

  两个坐标向量相乘的算法分为数量积和向量积两种,例如两个向量A=(x1,y1)和B=(x2,y2)相乘,AB两个坐标向量的数量积为x1x2+y1y2,AB两个坐标向量的向量积是∣A×B∣=|A|·|B|·sin〈A,B〉。   向量指的是在二维平面内既有方向又有大小的量,物理学上又将向量称为矢量,与矢量相对的是标量。   标量就只有大小,没有方向,向量这个说法最开始是由英国数学家哈密顿使用的,成为了现代数学、物理学中的一个重要概念。
北有云溪2023-05-14 13:59:361

向量相乘等于1代表什么?

设两平行向量分别为:向量A、向量B。 向量A·向量B=|A|·|B|·〈向量A,B夹角〉, 因为两向量方向相反且平行,经平移,故其夹角为.则cos180°=-1。 可得,向量A·向量B=-|A|·|B|。 所以两平行且方向相反的向量乘积为向量A·向量B=-|A|·|B|。刚才答快了,希望采纳
再也不做站长了2023-05-14 13:59:353

为什么两个向量相乘等于其中一个向量的模与另一个向量在这个向量的方向上的投影的乘积.

二个向量的数积有二种表达形式 1、设向量a=(x1,y1),向量b=(x2,y2) 向量a•向量b =|向量a|*|向量b|*cos |向量a|=√(x1^2+y1^2) |向量b|=√(x2^2+y2^2) 为二向量的夹角 2,坐标形式:向量a•向量b= x1x2+y1y2
hi投2023-05-14 13:59:351

向量相乘的算法

康康map2023-05-14 13:59:352

为什么两个向量相乘的模,≤他们的模相乘

向量a乘以向量b等于a的模乘以b的模乘以两个模夹角的余弦值,夹角是同起点的夹角,夹角要找准
人类地板流精华2023-05-14 13:59:352

矩阵与向量相乘得到的是什么?

1、向量与矩阵两两相乘,最后得到的是矩阵。a是n维向量,相当于n*1阶矩阵,a是n阶矩阵(n*n),两个矩阵相乘结果应该是n*n的矩阵。2、矩阵乘以列向量,按照矩阵的乘法一样算,得到的是一列的矩阵,也就是一个列向量。表示向量,但是还得看你这个是行向量还是列向量了,总之你把这个向量也看成是矩阵啊,然后根据n*s的矩阵和s*m的矩阵相乘变成n*m的矩阵来分析就可以了。如果是行向量就是n*1的矩阵,如果是列矩阵就是n*1的矩阵,然后就这样分析啊。总之不是任何两个矩阵都可以相乘的,中间的那个数必须相同,就如我举得那个例子中的s。
小白2023-05-14 13:59:351

两个向量相乘的几何意义是什么?(点乘、内积)

两向量相乘可以表示为如下形式:              其中, 为向量   和向量   之间的夹角。 上式右边的意思为,一个向量在另一个向量方向上的射影乘以另一个向量的长度。 即, 当 为单位向量时,两向量的点积为,向量 在向量 方向上 “贡献” 长度的多少; in general, 两向量相乘的几何意义可以理解为: 在以 为单位长度时,向量 在向量 方向上的贡献长度; 或在以 为单位长度时,向量 在向量 方向上贡献的长度。另外,如果当两个向量长度相等,或者将两个向量 化为其所在方向的单位向量(如: , )时,两个向量的点积得到的结果为两向量的夹角 ,可以通过这个夹角的大小来判断两个向量的相似性。即,当两个向量为单位向量时,它们点积的几何意义也可以理解为他们的相似性(越大越相似,越小越不相似。这个原理常被用于判断文本的相似性)。
ardim2023-05-14 13:59:351

两个坐标向量相乘怎么表示

二个向量的数积有二种表达形式1、设向量a=(x1,y1),向量b=(x2,y2)向量a•向量b=|向量a|*|向量b|*cos<向量a,向量b>|向量a|=√(x1^2+y1^2)|向量b|=√(x2^2+y2^2)<向量a,向量b>为二向量的夹角2,坐标形式:向量a•向量b=x1x2+y1y2
FinCloud2023-05-14 13:59:351

两个向量相乘点坐标是怎么乘的

  向量a=(x,y,z),向量b=(u,v,w),向量ab相乘分数量积、向量积两种情况:   1、数量积(点积):a·b=xu+yv+zw。   2、向量积(叉积):a×b=|ijk||xyz||uvw|。   在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。
LuckySXyd2023-05-14 13:59:351

两个向量相乘怎么搞?

两个向量相乘后的方向向量叫向量积,它的知大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右道手拇指与其余四指垂直,握拳时四指运动的方向内表示从第一向量到第二向量,拇指所指方向就是向量积的方向。如果向量是用坐标容表示的,则可用行列式计算。(注意:向量a×向量b=-向量b×向量a)
u投在线2023-05-14 13:59:351

两个向量相乘的几何意义

向量相乘也就是点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos。在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。 点乘的定义即为 向量a·向量b=|a||b|cos,那么显而易见就表示一向量在另一向量上的射影乘以另一向量了。
凡尘2023-05-14 13:59:352

两个向量相乘后的方向向量如何求?

两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向.如果向量是用坐标表示的,则可用行列式计算.(注意:向量a×向量b=-向量b×向量a)
wpBeta2023-05-14 13:59:351

两向量相乘

向量a与向量b设这两个向量的夹角为则这两个向量的内积为a*b=|a|*|b|*cos当向量a=(x,y)b=(j,k)此时内积为a*b=xj+yk
黑桃花2023-05-14 13:59:352

两个向量相乘怎么搞?

向量积=a向量模长×b向量模长×a.b两向量夹角的余弦值,如果是点向量就是x1x2+y1y2
bikbok2023-05-14 13:59:352

俩向量相乘的公式是?

1楼的答案太麻烦了,看2楼的也就是向量a点乘向量b=a的模乘以b的模再乘以向量a与向量b夹角的余旋
墨然殇2023-05-14 13:59:344

两个向量相乘公式是什么呢?三角函数求导公式是什么呢?

向量的乘法分为数量积和向量积两种。对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2)
小菜G的建站之路2023-05-14 13:59:344

两个向量相乘如何计算

· 就是结果是一个数 每个向量求积加起来就好× 结果是向量 按行列式乘法算就行
gitcloud2023-05-14 13:59:344

两个向量相乘怎么求啊?

=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积
CarieVinne 2023-05-14 13:59:342

两个向量相乘的几何意义

两向量相乘可以表示为如下形式:其中,为向量 和向量 之间的夹角。上式右边的意思为,一个向量在另一个向量方向上的射影乘以另一个向量的长度。即,当为单位向量时,两向量的点积为,向量在向量方向上 “贡献” 长度的多少;in general,两向量相乘的几何意义可以理解为:在以为单位长度时,向量在向量方向上的贡献长度;或在以为单位长度时,向量在向量方向上贡献的长度。另外,如果当两个向量长度相等,或者将两个向量 化为其所在方向的单位向量(如:,)时,两个向量的点积得到的结果为两向量的夹角,可以通过这个夹角的大小来判断两个向量的相似性。即,当两个向量为单位向量时,它们点积的几何意义也可以理解为他们的相似性(越大越相似,越小越不相似。这个原理常被用于判断文本的相似性)。
ardim2023-05-14 13:59:341

两个向量相乘,结果是个向量还是一个数?

没错,结果一定是一个数 a向量与b向量的数量积可理解为:a向量的模与b向量的a向量方向上的射影的乘积 或:b向量的模与a向量的b向量方向上的射影的乘积 乘积当然是一个数娄~
瑞瑞爱吃桃2023-05-14 13:59:341

平面内两个向量相乘意义是什么

向量相乘,直接来源于物理中的两个矢量相乘。其结果,相量乘的结果,不是向量。只有大小。即只是数字。所以,这种运算称为“向量的数量积”向量相乘的运算法则,在数学中可定义为:两个有共同起点的向量相乘,等于两向量在过起点的任意直线上的射影的长度相乘。
Jm-R2023-05-14 13:59:341

两个坐标向量相乘怎么算

两个坐标向量相乘的计算:对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。向量的乘法分为数量积和向量积两种。对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。代数规则:1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
九万里风9 2023-05-14 10:43:491

为什么正交的向量相乘为0?

从几何角度理解,内积是一个向量a对另一个向量b的投影长度乘以向量b的长度,而且投影结果同向为正,反向为负,当正交的时候,投影长度为0,所以结果为0。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。 不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
真颛2023-05-14 10:43:491

两个向量相乘后的方向向量如何求?

两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向.如果向量是用坐标表示的,则可用行列式计算.(注意:向量a×向量b=-向量b×向量a)
北有云溪2023-05-14 07:05:391

两个向量相乘公式

两个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。 向量的乘积公式 向量a=(x1,y1),向量b=(x2,y2) a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角) PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b 向量积公式 向量积|c|=|a×b|=|a||b|sin<a,b> 向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘) 外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。 另外 外积可以表示以a、b为边的平行四边形的面积 =两向量的模的乘积×cos夹角 =横坐标乘积+纵坐标乘积
肖振2023-05-14 07:05:391

向量相乘怎么算?

[A×B]=[A]*[B]sin{A,B}设:A=ai+bj+ckB=di+ej+fkA×B=以上ABijk均是向量,ijk是空间坐标上的单位向量。。。画的那个结果是行列式。。。
拌三丝2023-05-14 07:05:391

两个向量相乘有公式吗?

向量的乘法有两种:两个向量的数量积(也叫内积、点积)以及两个向量的向量积(也叫外积、叉积)。a、b两个向量的数量积为a•b=|a||b|cos<a,b>,数量积为数值,没有方向;a、b两个向量的向量积为一个向量,其模长|axb|=|a||b|sin<a,b>,方向为与a、b垂直且满足a、b、axb符合右手法则。
Chen2023-05-14 07:05:382

两个向量相乘怎么求

如果是向量的内积(数量积),那么结果是一个数,等于这两个向量的模之积与夹角余弦值的积;如果是向量的外积(向量积),那么结果是一个向量,这个向量的大小等于这两个向量的模之积与夹角正弦值的积,方向为使得这三个向量构成右手直角坐标系的方向。
meira2023-05-14 07:05:382

关于两向量相乘的几何意义

你好。这是一个非常基本简单的问题,LZ所说的是点乘:点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos<a,b>。在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。点乘的定义即为向量a·向量b=|a||b|cos<a,b>那么显而易见就表示一向量在另一向量上的射影乘以另一向量了。除此外还有叉乘,有兴趣可以参考相关资料。
大鱼炖火锅2023-05-14 07:05:381

两向量相乘等于一说明什么

楼主想说的是向量的数量积吗?如果两向量数量积等于零,那么这两个向量垂直如果两向量数量积大于零,那么这两个向量夹角[0,90),同向或夹角为锐角如果两向量数量积小于零,那么这两个向量夹角(90,180],反向或夹角为钝角如果两向量数量积等与这两个向量模的乘积相同,那么这两个向量同向如果两向量数量积等与这两个向量模的乘积互为相反数,那么这两个向量反向
gitcloud2023-05-14 07:05:383

俩向量相乘的公式是?

向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘) 外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误 另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积
此后故乡只2023-05-14 07:05:383

向量相乘公式

向量相乘分为点乘和叉乘点乘的结果是一代数,而叉乘的结果是一向量.点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos在物理学中,已知力与位移求功,实际上就是求向量f与向量s的内积,即要用点乘。叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。|向量c|=|向量a×向量b|=|a||b|sin向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。将向量用坐标表示(三维向量),若向量a=(a1,b1,c1),向量b=(a2,b2,c2),则向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|ijk||a1b1c1||a2b2c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
凡尘2023-05-14 07:05:384

向量相乘公式?

向量积公式向量积|c|=|a×b|=|a||b|sin<a,b>向量相乘分内积和外积内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘)外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
gitcloud2023-05-14 07:05:381

两个向量相乘的公式是什么?

向量的乘法分为数量积和向量积两种。对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。对于向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为扩展资料两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|两个向量相乘公式是什么?两个向量相乘公式是什么?2个回答2357人在问为梦拼上命2020-06-11向量相乘分内积和外积内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘)外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积两个向量相乘公式:1、向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。2、向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为拓展资料:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b
Chen2023-05-14 07:05:381

两个坐标向量相乘怎么算

两个坐标向量相乘是a*b=x1x2+y1y2=|a||b|cosθ,一般向量之间不叫乘积,而叫数量积,如a*b叫做a与b的数量积或a点乘b。 平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
kikcik2023-05-14 07:05:381

向量相乘的坐标公式是什么?

向量相乘的坐标公式是:a·b=x1x2+y1y2=|a||b|cosθ,θ是向量a和b的夹角,在数学中,向量是指具有大小(magnitude)和方向的量。长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示。代数规则:1、反交换律:a×b=-b×a。2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
水元素sl2023-05-14 07:05:381

两个向量相乘,结果是个向量还是一个数?

没错,结果一定是一个数 a向量与b向量的数量积可理解为:a向量的模与b向量的a向量方向上的射影的乘积 或:b向量的模与a向量的b向量方向上的射影的乘积 乘积当然是一个数娄~
西柚不是西游2023-05-14 07:05:381

向量相乘的公式是什么

=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积
NerveM 2023-05-14 07:05:382

两个向量相乘的计算公式是什么?

向量的乘法分为数量积和向量积两种。对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。对于向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为扩展资料两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|两个向量相乘公式是什么?两个向量相乘公式是什么?2个回答2357人在问为梦拼上命2020-06-11向量相乘分内积和外积内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘)外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积两个向量相乘公式:1、向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。2、向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为拓展资料:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b
人类地板流精华2023-05-14 07:05:381

两个向量相乘

/pf1/·/pf2/不是两个向量相乘,是两个向量的模相乘,结果为一个数。向量的模即向量的长度。
Chen2023-05-14 07:05:384

向量相乘怎么做

向量x=(a,b),y=(c,d)则x 点乘 y= ac+bd答案前一个是对的,后一个应该是(-8,-12)
mlhxueli 2023-05-14 07:05:383

两个向量相乘代表什么?有什么公式

代表两向量的模乘以它们夹角的余弦a=(x1,y1)b=(x2,y2)a*b=x1y1+x2y2
wpBeta2023-05-14 07:05:382

两个坐标向量相乘怎么算

两个坐标向量相乘是a*b=x1x2+y1y2=|a||b|cosθ。一般向量之间不叫乘积,而叫数量积,如a*b叫做a与b的数量积或a点乘b。平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
凡尘2023-05-14 07:05:381

关于直角坐标系内向量相乘法则

遵循数字加法,因为计算数量积答案是数字根据数量积的公式,各部分用坐标形式表示,可以推出坐标计算公式三角函数也要转化
LuckySXyd2023-05-14 07:05:371

向量相乘

向量相乘会等于向量
wpBeta2023-05-14 07:05:372

平面向量与向量相乘公式??

两个向量的摸相乘再乘以夹角的余弦值已知a向量和b向量他们的夹角为α则a向量*b向量=|a向量||b向量|cosa如果是坐标计算的话:如a向量(x1,y1),b向量(x2,y2)则a向量*b向量=(x1x2+y1y2)
hi投2023-05-14 07:05:372

两个向量相乘会怎么样?

两个向量相乘有两种形式:叉积和点积。(1)向量叉积=向量的模乘以向量夹角的正弦值;向量叉积的方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)(2)向量点积=向量的模乘以向量夹角的余弦值。向量叉积a×b=|a||b|sin<a,b>,向量点积a·b=|a||b|cos<a,b>。映射给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” ,这些由V到W的映射都有共同点就是它们保持总和及标量商数。这个集合包含所有由V到W的线性映像,以 L(V,W) 来描述,也是一个F场里的向量空间。当V及W被确定后,线性映射可以用矩阵来表达。同构是一对一的一张线性映射。如果在V 和W之间存在同构, 我们称这两个空间为同构。一个在F场的向量空间加上线性映像就可以构成一个范畴,即阿贝尔范畴。
肖振2023-05-14 07:05:371

向量相乘公式

向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘) 外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误 另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角 =横坐标乘积+纵坐标乘积
瑞瑞爱吃桃2023-05-14 07:05:371

两个向量相乘公式是什么?

向量的乘法分为数量积和向量积两种。对于向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。对于向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为扩展资料两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b|两个向量相乘公式是什么?两个向量相乘公式是什么?2个回答2357人在问为梦拼上命2020-06-11向量相乘分内积和外积内积 ab=丨a丨丨b丨cosα (内积无方向 叫点乘)外积 a×b=丨a丨丨b丨sinα (外积有方向 叫×乘)那个读差 即差乘 方便表达所以用差,别理解错误另外 外积可以表示以a、b为边的平行四边形的面积=两向量的模的乘积×cos夹角=横坐标乘积+纵坐标乘积两个向量相乘公式:1、向量的数量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),A与B的数量积为x1x2+y1y2+z1z2。2、向量的向量积,计算公式为:A=(x1,y1,z1),B=(x2,y2,z2),则A与B的向量积为拓展资料:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。向量的数量积的坐标表示:a·b=x·x"+y·y"。两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b垂直,则∣a×b∣=|a|*|b
wpBeta2023-05-14 07:05:371

向量相乘公式 向量相乘公式是什么

1、向量a=(x1,y1),向量b=(x2,y2);a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角) 2、PS:向量之间不叫乘积,而叫数量积。如a·b叫做a与b的数量积或a点乘b 3、向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。
豆豆staR2023-05-14 07:05:371

两个向量相乘的公式是什么?

不晓得
无尘剑 2023-05-14 07:05:379

两个向量相乘怎么算?

如果向量是用坐标表示的,则可用行列式计算。(注意:向量a×向量b=-向量b×向量a):两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向。扩展资料:代数规则1、反交换律:a×b=-b×a2、加法的分配律:a×(b+c)=a×b+a×c。3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。6、两个非零向量a和b平行,当且仅当a×b=0。
mlhxueli 2023-05-14 07:05:372

两个向量相乘是什么

向量a与向量b设这两个向量的夹角为<a,b>则这两个向量的内积为a*b=|a|*|b|*cos<a,b>当向量a=(x,y)b=(j,k)此时内积为a*b=xj+yk
阿啵呲嘚2023-05-14 07:05:378

向量相乘

"向量相乘等于数字"你的提法非常不恰当,第一,没有“向量相乘”的说法,可以说“向量点乘”或者“两个向量做数量积运算”.....第二,“等于数字”的说法也是错误的,应该说“结果为数量”......“向量点乘,结果为数量”为什么?因为向量点乘的定义是这么规定的.......
韦斯特兰2023-05-14 07:05:372

两个向量相乘怎么计算?

两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向。如果向量是用坐标表示的,则可用行列式计算。(注意:向量a×向量b=-向量b×向量a)扩展资料:几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
u投在线2023-05-14 07:05:362

两个向量相乘

向量a与向量b设这两个向量的夹角为<a,b>则这两个向量的内积为a*b=|a|*|b|*cos<a,b>当向量a=(x,y)b=(j,k)此时内积为a*b=xj+yk
西柚不是西游2023-05-14 07:05:363

向量相乘是什么?

向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。★A向量乘B向量等于什么点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量★向量相乘可以分内积和外积内积就是:ab=丨a丨丨b丨cosα(注意:内积没有方向,叫作点乘)外积就是:a×b=丨a丨丨b丨sinα(注意:外积是有方向的。)
水元素sl2023-05-14 07:05:361

两个向量相乘如何计算

· 就是结果是一个数 每个向量求积加起来就好× 结果是向量 按行列式乘法算就行
此后故乡只2023-05-14 07:05:364

向量相乘怎么算?

向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。扩展资料:点乘向量A=(x1,y1)向量B=(x2,y2)向量A·向量B=|向量A||向量B|cosu=x1x2+y1y2=数值u为向量A、向量B之间夹角。叉乘向量A×向量B=(x1y2i,x2y2j)=向量
苏州马小云2023-05-14 07:05:361

向量相乘如何理解

向量相乘也就是点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a·向量b=|a||b|cos。在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。 点乘的定义即为 向量a·向量b=|a||b|cos,那么显而易见就表示一向量在另一向量上的射影乘以另一向量了。
kikcik2023-05-14 07:05:361

两个向量相乘如何计算

向量a与向量b设这两个向量的夹角为则这两个向量的内积为a*b=|a|*|b|*cos当向量a=(x,y)b=(j,k)此时内积为a*b=xj+yk
FinCloud2023-05-14 07:05:363

两个向量相乘公式

两个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。 向量的乘积公式 向量a=(x1,y1),向量b=(x2,y2) a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角) PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b 向量积公式 向量积|c|=|a×b|=|a||b|sin<a,b> 向量相乘分内积和外积 内积 ab=丨a丨丨b丨cosα(内积无方向,叫点乘) 外积 a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。 另外 外积可以表示以a、b为边的平行四边形的面积 =两向量的模的乘积×cos夹角 =横坐标乘积+纵坐标乘积
Ntou1232023-05-14 07:05:361

向量相乘怎么做

向量相乘运算有两种运算:点乘叉乘有向量ab两向量的模对应为ab两向量方向间夹角为α点乘:点乘计算为c=a·b=abcosα计算结果为标量(无方向)叉乘:点乘计算为c=a×b=absinα计算结果为向量(有方向与ab向量确定的平面垂直)
hi投2023-05-14 07:05:361
 首页 上一页  1 2 3  下一页  尾页