等比数

等比数列的通项公式是什么?

等比等差数列的公式如下图:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈Nu2217)m+n=p+q=2k(m,n,p,q,k∈Nu2217),则amu22c5an=apu22c5aq=a2kamu22c5an=apu22c5aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{anu22c5bn}{anu22c5bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,u22efan,an+k,an+2k,an+3k,u22ef为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2u22c5[1u2212(q2)n]1u2212q2S偶=a2u22c5[1u2212(q2)n]1u2212q2,S奇=a1u22c5[1u2212(q2)n]1u2212q2S奇=a1u22c5[1u2212(q2)n]1u2212q2,则S偶S奇=qS偶S奇=q。5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1u22c5qnu22121an=a1u22c5qnu22121。
meira2023-07-15 09:35:411

等比数列的通项公式

等比数列 (1)等比数列:An+1/An=q, n为自然数。(2)通项公式:An=A1*q^(n-1); 推广式: An=Am·q^(n-m); (3)求和公式:Sn=nA1(q=1)Sn=[A1(1-q)^n]/(1-q)(4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 ~ (^_^)~
FinCloud2023-07-15 09:35:411

等比数列q怎么求

等比数列q怎么求介绍如下:等比数列求q的公式:q=G/a。等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。等比数列的通项公式:an=a1×q^(n-1)(a1为等比数列首项,q为公比)。等比数列的前n项和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。等比数列求和公式:(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)Sn=a1(1-q^n)/(1-q)的推导过程:Sn=a1+a2+……+anq*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)Sn-q*Sn=a1-a(n+1)=a1-a1*q^n(1-q)*Sn=a1*(1-q^n)Sn=a1*(1-q^n)/(1-q)扩展资料等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
铁血嘟嘟2023-07-15 09:35:411

等比数列有什么通项公式?

等比数列的首项a1,公比为q,通项公式an=a1q^(n-1)
bikbok2023-07-15 09:35:401

求等比数列的通项公式。

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)且等比数列a1≠ 0。。注:q=1时, 为常数列。(1)通项公式:(2)求和公式:Sn=(a1-anq)/1-q求和公式用文字来描述就是:Sn=(首项-末项*公比)÷(1-公比)任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.(3)从等比数列的定义、通项公式、前n项和公式可以推出:(4)等比中项:若 ,那么 为 等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。等比中项公式: 或者 。(5)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。(6)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列1.若A=a1+a2+……+anB=an+1+……+a2nC=a2n+1+……a3n则,A、B、C构成新的等比数列,公比Q=q^n2.若A=a1+a4+a7+……+a3n-2B=a2+a5+a8+……+a3n-1C=a3+a6+a9+……+a3n则,A、B、C构成新的等比数列,公比Q=q性质(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。求通项方法(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an?构造等比数列a(n+1)+x=2(an+x)a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3∴(a(n+1)+3)/(an+3)=2∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3(2)定义法:已知Sn=a·2^n+b,,求an的通项公式?∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b∴an=Sn-Sn-1=a·2^n-1应用等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
ardim2023-07-15 09:35:401

等比数列的通项公式

证:等比数列的通项公式是:an=(ai)q^(n-1)显然:(ai)q^n=a(n+1),即:楼主所给等式的左边是a(n+1)。依据等比数列的定义:a(n+1)=a(n)q所以:(ai)q^n=a(n)q。证毕。补充答案:1、能不能单从题目的数据,直接说明它是哪种数列?答:不能。2、要证明吗?答:要。3、4(2n-1)-3]-[4(2n)-3]这一步怎么来的?答:依据题目中给出的[(-1)^(n-1)]×(4n-3),将2(n-1)、2n代替式中的n得来的。4、如果题目中没有17-21,那算式中17-21成立吗?可以根据规律来写?答:17-21,不能根据前边的数据给出,但可以根据后边的[(-1)^(n-1)]×(4n-3)推出。
meira2023-07-15 09:35:401

等比数列的通项公式 等比数列的通项公式介绍

1、通项公式为an=a1q^(n-1)。 2、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 3、等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
阿啵呲嘚2023-07-15 09:35:401

等比数列求和通项公式

a1(1-q^n)/1-q
此后故乡只2023-07-15 09:35:405

等比数列的通项公式是什么?

等比数列的通项公式是:An=A1*q^(n-1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。等比数列简介:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
善士六合2023-07-15 09:35:392

已知等比数列{an}的前n项和为Sn,若Sn,Sn+2,Sn+1成等差数列,则数列{an}的公比为______

简单分析一下,答案如图所示
Chen2023-07-01 13:32:571

设等差数列{an}的前n项和为Sn,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,ah+bh=8,T3-S3

(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,∵a1=1,b1=8,由a5+b5=8,七1+d+8q=8,①由T8-S8=15七8(q5+q+1)-(8+8d)=15②由①②七:8q+d=gq5+q?8d=5消去d七q5+4q-15=0,∴q=5或q=-三,又q>0,∴q=5,代入①七d=1.∴an=n,bn=8?5n-1.(5)∵an=n,∴c1+5c5+8c8+…+ncn=n(n+1)(n+5)+1①当n≥5时,c1+5c5+8c8+…+(n-1)cn-1=(n-1)n(n+1)+1②由①-②七:ncn=8n(n+1),∴cn=8n+8(n≥5).又由(1)七c1=g,∴cn=8n+8(n≥5)g(n=1).∴数列{an}的前n项和Wn=g+他+15+…+8n+8=1+三+8n+85?n=8n5+他n5+1.
tt白2023-07-01 13:32:481

已知{an}是等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于零,b2+b3=12,b3=a4-2a1

贾政—王夫人 金钏、玉钏、彩霞、彩云、彩鸾、绣鸾、绣凤、小霞、周瑞、周瑞家的(陪房)
阿啵呲嘚2023-07-01 13:32:475

已知数列{an}(n为正整数)是首项是a1,公比为q的等比数列.(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+

(1)a1C20-a2C21+a3C22=a1-2a1q+a1q2=a1(1-q)2a1C30-a2C31+a3C32-a4C33=a1(1-q)2a1C30-a2C31+a3C32-a4C33=a1-3a1q+3a1q2-a1q3=a1(1-q)3;(2)归纳概括的结论为:若数列{an}是首项为a1,公比为q的等比数列,则a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn=a1(1-q)n,n为正整数证明:a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn=a1Cn0-a1qCn1+a1q2Cn2-a1q3Cn3+…+(-1)na1qnCnn=a1[Cn0-qCn1+q2Cn2-q3Cn3+…+(-1)nqnCnn]=a1(1-q)n;∴左边=右边,该结论成立.(3)∵数列{an}(n为正整数)是首项是a1,公比为q的等比数列,而且q≠1.∴Sn=a1?a1qn1?q=a1(1?qn)1?q,∴S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn=a11?q[(1-q)cn0-(1-q2)cn1+(1-q3)cn2-(1-q4)cn3+…+(-1)n(1-qn+1)cnn]=a11?q[C0n?C1n+C2n?C3n+…+(?1)nCnn]?a1q1?q[C0n?qC1n+q2C2n?q3C3n+…+(?1)nqnCnn]=a1qq?1(1?q)n.
小白2023-07-01 13:25:021

在等比数列{an}中,已知a1=3,a4=24. (1)求公比q的值; (2)求S4

q=2a1=3 a2=6 a3==12 a4=24S4=3+6+12+24=45
wpBeta2023-07-01 13:24:573

已知{an}是等比数列,各项都是正数,且a1,1/2a3,2a2成等差数列,求(a8+a9)/(a7+a6)=?

设公比为 q>0 ,则 a2=a1*q,a3=a1*q^2 ,由已知得 a1+2a2=a3 ,即 a1+2a1*q=a1*q^2 ,由于 a1>0,因此解得 q=1+√2(舍去 1-√2) ,所以 (a8+a9) / (a7+a6)=q^2=(1+√2)^2=3+2√2 。
康康map2023-07-01 13:24:531

等比数列前n项和公式是怎么推出来的?

qSn=A2+A3+A4+...A(n+1)Sn-qSn=A1-A(n+1)=A1(1-q^n)--->Sn=[A1(1-q^n)]/(1-q) 你也可以到看看http://hi.baidu.com/ephemerasylum/album/item/31354b0efe9416c1aa64575c.html
北有云溪2023-07-01 13:00:501

常数列是等比数列吗

不是。常数列一定是等差数列,公差为0。若常数列中常数为0,则不是等比数列。若常数不为0,则是等比数列,公比为1。若一个数列的每一项都为一个相等的常数,即an=a1(n∈N*),则数列{an}为常数数列。 常数列性质 常数数列的通项式:an=a1 常数数列的前n项和:Sn=na1 常数数列的前n项积:Tn=a1^n 常数数列的递推式:an=an+1 等比数列简介 等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列 在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每k项之和仍成等比数列。
Ntou1232023-07-01 13:00:471

等差数列和等比数列积的求和方法,比如An=n*p^n, (p>0), An的前n项和怎么求?

p*Sn-Sn=n*p^(n+1)-(p^n+p^(n-1)+.....+p)=n*p^(n+1)-(p^(n+1)-p)/(p-1)Sn=(n*(p-1)*p^(n+1)-p^(n+1)-p)/(p-1)^2
mlhxueli 2023-07-01 13:00:474

等比数列连续n项之积是否成等比数列

设等比数列{an}的公比为q设连续n项的积bk=aka(k+1)....a(k+n-1)=a1^nq^(k-1+k+...+k+n-2)=a1^nq^(2k+n-3)n/2=[a1^nq^(n(n-3)/2)](q^n)^k=[a1^nq^((n-1)(n-2)/n)](q^n)^(k-1)bk是等比数列,首项为a1^nq^(n-1)(n-2)/2),公比为q^n在数列{bk}中,n是固定的。
北境漫步2023-07-01 13:00:471

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}

令bn=SnTnTn(1)+Tn(2)+…+Tn(n),则bn=SnTnTna1+Tna2+…+Tnan=Sn1a1+1a2+…+1an,∵等比数列{an}的公比q=2,首项a1=1,∴数列{an}的前n项的和Sn=1?2n1?2=2n-1;又数列{1an}是以1为首项,12为公比的等比数列,∴1a1+1a2+…+1an=1?(12)n1?12=2(2n?1)2n,∴bn=Sn1a1+1a2+…+1an=2n-1.∵bn+1bn=2n2n?1=2,b1=1,∴{bn}是1为首项,2为公比的等比数列(即bn=an),∴b1+b2+…+bn=1+2+22+23+…+2n-1=1?2n1?2=2n-1.故答案为:2n-1.
西柚不是西游2023-07-01 13:00:471

等比数列前n项和的公式

等比数列公式就是在数学上求一定数量的等比数列的和的公式。下面是我整理的详细内容,一起来看看吧! 等比数列前n项和的公式 等比数列的有关概念 1、等比数列的定义: 一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于一个常数(不为0),那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q来表示。 定义可以用公式表达为:a(n+1)/an=q(式中n为正整数,q为常数)。特别注意的是,q是一个与项数n无关的常数。 2、等比中项: 三个数 a、G、b依次组成等比数列,则G叫做的等比中项,且G2=a+b(等比中项的平方等于前项与后项之积)。
北境漫步2023-07-01 13:00:461

等差乘等比数列前n项和公式

错位相减法
凡尘2023-07-01 13:00:463

等比数列!急!求赐教!!!~~~~~~~~~~

选A。可以用等比数列的性质来做。因为Tn、T2n-Tn、T3n-T2n成等比数列,由此便可算得T3n是3。这个性质你们老师没讲吗?
tt白2023-07-01 13:00:464

等比数列{an}的首项为a1=2002, 公比q=-1/2.

(1)an=a1*q^n-1=2002q^n-1f(n)=a1a2a3…an=2002*2002q*2002q^2…2002q^n-1=2002n*q^(n^2/2)=2002n*(-1/2)^(n^2/2) (q^(n^2/2)是由于有n-1个q的和得的,用等差前N项求和公式)(2)求出11的项绝对值大于12的项绝对值小于1,又因为1正1负,前11项乘出来为负,要使整个乘出来是正才行,所以n=9最大
九万里风9 2023-07-01 13:00:461

公比为4的等比数列 中,若 是数列 的前 项积,则有 也成等比数列,且公比为 ;类比上述结论,相应的

300 试题分析:由等比数列{b n }中,若T n 是数列{b n }的前n项积, 则有仍成等比数列,且公比为4 100 ;我们可以类比推断出:S 20 -S 10 ,S 30 -S 20 ,S 40 -S 30 也构成等差数列,公差为100d=300;故答案为300。点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
肖振2023-07-01 13:00:461

无线等比数列,如何求其前n项阶乘?

如图
墨然殇2023-07-01 13:00:451

求一个等差数列和一个等比数列乘积的前n项和的求法

等差数列:Sn=(a1+an)n/2 =a1+(n-1)nd/2等比数列Sn=a1(1-q^(n-1))/(q^n)这个?
NerveM 2023-07-01 13:00:452

等比数列连续n项之积是否成等比数列

设等比数列{an}的公比为q 设连续n项的积bk=aka(k+1)....a(k+n-1)=a1^n q^(k-1+k+...+k+n-2)=a1^nq^(2k+n-3)n/2 =[a1^nq^(n(n-3)/2)](q^n)^k =[a1^nq^((n-1)(n-2)/n)](q^n)^(k-1) bk是等比数列,首项为a1^nq^(n-1)(n-2)/2), 公比为q^n 在数列{bk}中,n是固定的。
Jm-R2023-07-01 13:00:451

等比数列前n项和公式是什么 如何运用

很多小伙伴都会学到等比数列前n项和,那么它的公式是什么,如何运用呢?下面是我整理的相关信息,感兴趣的小伙伴们快来查阅吧。 等比数列前n项和公式 等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。 等比数列前n项和公式如何运用 如何学好高中数学 1.先看笔记后做作业 老师一讲就懂了,自己动手做题就不会了,这是很多人都存在的问题。有一种奇怪的现象就是,老师总是会无形中把学生的水平和自己作对比,他认为大家都懂了,实际上很多人都不懂。所以在课后习题中,大部分同学还是一脸懵,不知所措。 课后做题之前记得复习,所谓的复习就是再看一遍课本,复习一遍笔记。只有这样才能心中有数,不然做题基本都是稀里糊涂,浪费了时间,成绩也得不到提升。在课后作业中,尽量把课本吃透,不要盲目的去做课外题,不然会导致最后悬空,无法落地,考试成绩必然一塌糊涂! 2.做题之后加强反思 平时的学习,毕竟没有高考压力那么大,所以,在平时的演练中,一定要学会一个好的学习方法和解题思路。要善于总结,毕竟刚上高一,还是需要知识和方法的积累,如果坚持做下去,在高三的时候成绩必然会突飞猛进,考上一所好大学还是不成问题的。 3.复习和总结 学习方式已经和以前不一样了,以前被动学习比较多,老师都给你做好了,你只要等着记忆就可以了,但是高中却是主动学习的时期,所以,不管老师怎么讲,下去自己都要复习,总结自己的学习方法,这才是学习的最高境界。 4.勇于改错 每个人都会犯错,但是犯错能够改错也是勇敢的,是难能可贵的,可怕的就是一些人总是犯错,而且是犯同样的错误,这样的就不能原谅了。 5.错题重现 错题也是经常有的,不管是单元测试,还是月末考试,只要是出现错题,就记得去整理,因为所有的错误都整理起来,就可以集中解决了,而且在期末的时候可以拿出来多复习几次,尤其是高考的时候,这些错题就是宝贝。 6.阅读 很多人对此不理解,数学和阅读有什么关系呢,其实不然,数学主要就是审题,如果语文的阅读理解能力不行,你是如何审题的,你根本不懂什么意思,所以,阅读是和理科有直接关系的。 阅读可以让你增加知识,也可以让你增加阅历,当然最直接的还是可以让你其他科成绩也有所提高,所以,课外阅读显得格外重要。虽然是阅读,但是也要读经典图书,而不是随便找几本网络小说去读,没有营养的书籍还是不要浪费时间。 7.合理的学习计划 好计划就可以提前成功了一半,很多人学习都是盲目的,要想学习进步快,还是需要有详细的学习计划,而且这个计划是要合理的,适合自己的,而不是随便找一个人的学习计划就去执行,大家的情况不同,要根据自己的实际情况去指定可行性的方案。而且要坚决去执行,这样才能取得巨大的成功。
余辉2023-07-01 13:00:451

等差数列和等比数列的通式和求和、求积公式

等差数列通项公式:an=a1+(n-1)d前n项和:Sn=na1+n(n-1)d/2 或 Sn=n(a1+an)/2前n项积:Tn=a1^n + b1a1^(n-1)×d + …… + bnd^n其中b1…bn是另一个数列,表示1…n中1个数、2个数…n个数相乘后的积的和等比数列通项公...
水元素sl2023-07-01 13:00:441

等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a9a10-1>0,a9a10-a9-a10+1<0.给出下列

∵a9a10-1>0,∴a12?q17>1,∴q>0,又∵a9a10-a9-a10+1=(a9-1)(a10-1)<0.∴a9,a10一个大于1,一个小于1,而a1>1∴数列不会是单调递增的,只能单调递减,∴必是a9>1,a10<1,∴0<q<1,故①正确,由a10<1可得T10<T9,故②错误;又T19=a1a2??a19=(a10)19><1,T18=a1a2…a17a18=(a9?a10)9>1,故③正确.故答案为:①③
FinCloud2023-07-01 13:00:431

等比数列an的首项a1=2006,公比q=1/2,设前n项的积为pn,则n=?时,pn最大

a(n)=2006/2^(n-1)>0,p(n)=(2006)^n/2^[1+2+...+(n-1)] = (2006)^n/2^[n(n-1)/2]>0,ln[p(n)] = nln(2006) - n(n-1)/2*ln(2) f(x) = xln(2006) - x(x-1)/2*ln(2), x>0,f"(x)=ln(2006) - (x-1/2)ln(2) = -ln(2)[x - 1/2 - ln(2006)/ln(2)],0<x< 1/2 + ln(2006)/ln(2)时, f"(x)>0, f(x)单调增, ln[p(n)]单调增, p(n)单调增.x>1/2 + ln(2006)/ln(2)时, f"(x)<0, f(x)单调减, ln[p(n)]单调减,p(n)单调减. 9.5=1/2+ln(512)/ln(2)<1/2+ln(2006)/ln(2) < 1/2+ln(2014)/ln(2) = 10.5,n<=9<1/2+ln(2006)/ln(2)时, p(n)单调增, n>=11>1/2+ln(2006)/ln(2)时,p(n)单调减。p(n)的最大值只可能在p(9), p(10)和p(11)中取得。p(9)=(2006)^9/2^(36),p(10)=(2006)^(10)/2^(45),p(11)=(2006)^(11)/2^(55),p(11)/p(10)=2006/2^(10)=2006/2014<1, p(11)<p(10).p(10)/p(9)=2006/2^9 = 2006/512 > 1, p(10) >p(9).因此,n=10时,p(n)最大。
小菜G的建站之路2023-07-01 13:00:431

等比数列{an}的首项为a1=2020,公比q=?12.设f(n)表示该数列的前n项的积,则当n=______时,f(n)有最

∵等比数列{an}的首项为a1=2020,公比q=?12.∴an=a1qn-1=2020(?12)n?1=20202048?(?1)n?1?212?n.当n为奇数时an>0,当n为偶数时,an<0.f(n)f(n?1)=a1a2???ana1a2???an?1=an=20202048?(?1)n?1?212?n.则|f(n)f(n?1)|=20202048?212?n,当n≤11时,|f(n)f(n?1)|>1,此时|f(n)|单调递增,当n≥12时,|f(n)f(n?1)|<1,此时|f(n)|单调递减,当n=11时,f(11)<0,当n=12时,f(12)>0,∴当n=12时,f(n)有最大值.故答案为:12.
kikcik2023-07-01 13:00:431

等差数列和等比数列的通式和求和、求积公式

等差数列 通项公式: an=a1+(n-1)d等比数列 通项公式: An=A1*q^(n-1)
康康map2023-07-01 13:00:431

等差数列和等比数列的求和、求积公式

等差数列通项公式:an=a1+(n-1)d前n项和:Sn=na1+n(n-1)d/2 或 Sn=n(a1+an)/2前n项积:没有相关的公式等比数列通项公式:An=A1*q^(n-1)前n项和:Sn=[A1(1-q^n)]/(1-q) (q≠1)前n项积:Tn=A1^n*q^(n(n-1)/2)【【...
苏州马小云2023-07-01 13:00:431

等差数列和等比数列前几像求和公式

解:等差数列Sn=(A1+An)/2=nA1+n*(n-1)d/2a1为首相d为公差等比数列Sn=a1*(1-q的n次方)/(1-q)q为公比不为1a1为首相当q=1时sn=n*a1
LuckySXyd2023-07-01 13:00:433

等比数列{an}的首项a1=1536,公比q=-0.5,它前n项积中,最大的是

前N项积为a1*a1*(-o.5)*a1*(-o.5)^2*……*a1*(-o.5)^(n-1)=a1^n*(-o.5)^(n*(n-1)/2)由于|An|递减,当n=12时,|a12|<1,所以,直接将前12个数列出来:1536-768384-19296-4824-126-31.5-0.75由于-3*1.5*-0.75>1;所以最大的是前12项
小白2023-07-01 13:00:421

记数列An前n项积为Tn=1-An,记Cn=1/Tn.(1)证明Cn是等比数列;(2)求An?

1. Tn=1-An=1-Tn/T(n-1) 两边除以Tn: 1=1/Tn-1/T(n-1) 1/Tn-1/T(n-1)=1 Cn-C(n-1)=1 则Cn是首项为1/(1-A1),公差为1的等差数列. 2. Tn=1-An T1=1-A1=A1 A1=1/2 Cn-C(n-1)=1 Cn=C1+1*(n-1) =1/(1-A1)+(n-1) =1/(1-1/2)+(n-1) =n+1 Cn=1/Tn=n+1 Tn=1/(n+1) 1-An=Tn=1/(n+1) An=1-1/(n+1) =n/(n+1),2,T(n-1)=Tn/An=Tn/(1-Tn) 1/T(n-1)=1/Tn-1 明显Cn是等差数列,怎么成等比了……,2,A1*A2^^^^An=1-An; A1*A2^^^An-1=1-An-1; 相除得,An=(1—An)/(1-An-1); 整理得:1/Tn-1=(1—Tn)/Tn 于是[(1/Tn)-(1/Tn-1)]=1;也就是说Cn是等差数列。。。。。,0,记数列An前n项积为Tn=1-An,记Cn=1/Tn.(1)证明Cn是等比数列;(2)求An 如题 确实是等差,我打错字了%>_
可桃可挑2023-07-01 13:00:421

设等比数列的前n项积为Tn,若au2083=2,则T5=

T5=a1a2a3a4a5=(a1a5)(a2a4)a3=a3的5次方=32
tt白2023-07-01 13:00:421

等比数列{an}的首项a1=1536,公比q=-0.5,它前n项积中,最大的是

只需考虑绝对值大于1的项2^10=10242^11=2048所以,前11项的绝对值大于1注意到奇数项为正,偶数项为负,如果是11,10项,则有5项负数,乘积为负而9项时,有四个负数项,所以,前9项积最大
善士六合2023-07-01 13:00:422

等差数列等比数列前n项和以及前n乘积的公式

an=a1q^(n-1)Sn = a1+a2+...+an = a1(q^n-1)/(q-1)Tn = a1.a2.a3.....an = (a1)^n ( q.q^2...q^(n-1) ) =(a1)^n . q^[n(n-1)/2]bn = b1+(n-1)dSn =b1+b2+...+bn = (2b1+(n-1)d)n/2Tn = b1.b2....bn = b1(b1+d)(b1+2d)...(b1+(n-1)d)
九万里风9 2023-07-01 13:00:421

在等比数列{an}中,Tn表示前n项积,若T5=32,则a3的值为(  )A.2B.-2C.±2D.不确

由题意得,T5=a1a2a3a4a5=32,∵{an}是等比数列,∴a1a2a3a4a5=a35=32,即a3=2,故选A.
瑞瑞爱吃桃2023-07-01 13:00:421

等差数列等比数列前n项和以及前n乘积的公式

an=a1q^(n-1)Sn = a1+a2+...+an = a1(q^n-1)/(q-1)Tn = a1.a2.a3.....an = (a1)^n ( q.q^2...q^(n-1) ) =(a1)^n . q^[n(n-1)/2]bn = b1+(n-1)dSn =b1+b2+...+bn = (2b1+(n-1)d)n/2Tn = b1.b2....bn = b1(b1+d)(b1+2d)...(b1+(n-1)d)
tt白2023-07-01 13:00:421

设Sn为等差数列{An}的前n项和,Tn为等比数列{Bn}的前n项积。求证数列S10,S20-S10.S30-S20成等差数列

设Sn为等差数列{An}的前n项和,Tn为等比数列{Bn}的前n项积。求证数列S10,S20-S10.S30-S20成等差数列若T10=10.T20=20.求T30的值?
tt白2023-07-01 13:00:422

等比数列an是递减数列 其前n项的积为Tn,若T13=4T9 a8乘a15等于?

等比数列{an}是递减数列其前n项的积为Tn,若T13=4T9a8*a15等于?等比数列{an}是递减数列--->公比0<q<1T13=4T9--->a10*a11*a12*a13=4--->a11*a12=a10*a13=a9*a14=a8*a15=√4=2
小白2023-07-01 13:00:421

等比数列{a}中,Sn表示前n项的积,若S5=1,问a的第几项为1?

a1*a2*a3*a4*a5=1,又a1*a5=a2*a4=a3*a3,所以a3^5=1,a3=1
西柚不是西游2023-07-01 13:00:421

等比数列与等差数列的积是什么数列

这是一个复合型的数列,解这类题一般乘以公比错位相减
北有云溪2023-07-01 13:00:414

数学,等差、等比数列有关的全部公式,谢了

记公式没用的。你公式全记住了,也不代表你会做题。在做题的过程中,所有公式自然就记住了。以下的所谓的公式,是我根据09、10年各省市高考题总结的。事实上,单纯的记忆没用的,只有做题才有用。等差数列通项公式,两元素为首项a1和公差d等比数列通项公式,两元素为首项a1和公比q,注意取值范围a1≠0,q≠0等比数列各项为正,即a1>0且q>0等比数列前n项和公式Sn,主要分q=1和q≠1讨论,当q≠1时,公式可变形为Sn=k-kq^(n-1),其中k为常数,是指数函数形式,注意其常数项和q^(n-1)前的系数一定是相等的等比数列中,同时出现前m项和Sm以及前2m项和S2m或前nm项和Snm(n表示m的倍数)时,注意两者联立后整体代换,注意因式分解等比中项、等差中项的定义等差数列前n项和的公式,注意公式有多个,根据场合运用。Sn=(a1+an)n/2=a1n+n(n-1)d/2=dn^2/2+(a1-d/2)n=k1n^2+k2n,其中k1,k2为常数,注意是二次函数形式,但一定没有常数项注意对数函数、指数函数中,等差数列和等比数列的穿插应用,以对数为例,lna+lnb=lnab,由此和的形式变成了积的形式,等式左边可以出等差数列的题目,等式右边可以出等比数列的题目注意等差数列、等比数列的证明方法,以等差数列为例,可以证明其通项公式为一次函数形式,或证明相邻两项等差,或证明中间项的2倍为前后两项的和,等等注意有限项等比数列、等差数列中运用基本不等式注意非0常数数列既是等差数列,也是等比数列注意一个公式的运用,两个等差数列{an}和{bn}的前n项和分别为An和Bn,则恒有ai/bi=A[2i-1]/B[2i-1],其中i为任意正整数注意,证明一个3项数列不为等比数列的方法(以下结论都可以推广到任意有限项或无限项),其一,若证得相邻两项同正或同负,另一项符号相反,则得证;其二,只要证得有1个0,就一定不是等比数列;等等,方法很多,也很灵活推荐一道有关等差、等比数列的高考压轴题,有难度。08上海高考最后一大题。
kikcik2023-07-01 13:00:411

等比数列的前n项的积的公式是什么?

a1的N次方 乘以 公比的 n(n-1)/2 次方
墨然殇2023-07-01 13:00:411

等比数列an中,Tn表示前n项的积,若Tn=1,则

∵数列{an}为等比数列∴a1*a5=a2*a4=a3^2……(这是等比数列的性质)∴t5=a1*a2*a3*a4*a5=a3^5=1∴a3=1
苏萦2023-07-01 13:00:412

等比数列的前n项积为Tn,若a4乘a5=2,则T8=

因为是等比数列,有公式am*an=ap*aq (m+n=p+q) 故a1*a8=a2*a7=a3*a6=a4*a5=2 故T8=a1*a2*a3*a4*a5*a6*a7*a8=16
黑桃花2023-07-01 13:00:411

等比数列{an}中,Tn表示前n项的积.若T5=32

T5=a1*a2*a3*a4*a5=a1*a1q*a1q^2*a1q^3*a1q^4=(a1q^2)^5=32=2^5a1q^2=a3=2
阿啵呲嘚2023-07-01 13:00:413

公比为4的等比数列bn中,若Tn是数列bn的前n项积,求证T20/T10,T30/T20,T40/T30也成等比数列

因为bn=a1*4^(n-1) 所以Tn=a1^n*4^[(n*(n-1)/2]所以T10=a1^10*4^45 T20=a1^20*4^190 T30=a1^30*4^435 T40=a1^40*4^780所以T20/T10=a1^10*4^145 T30/T20=a1^10*4^245 T40/T30=a1^10*4^345所以(T30/T20)/(T20/T10)=(T40/T30)/(T30/T20)=4^100所以T20/T10,T30/T20,T40/T30也成等比数列。
阿啵呲嘚2023-07-01 13:00:401

已知正项等比数列{an}中,首项a1>1且a5^3*a7^5=1,若此数列的前N项积为Tn,问Tn是否存在最值?说明理由

由a5^3*a7^5=1得a5和a7必有一个数大于1,一个数小于1。(因为:若同时等于1,则q=1,与a1>1矛盾,a5a7同时大于或小于1其积也必然大于或小于1,均不符)进而a5>1,a7<1,否则有q^4=a5/a1<1而q^2=a7/a5>1矛盾现在需要判别a6跟1的大小a5^3*a7^5=1 得a6^6*a7^2=1,因为a7<1,所以a6大于1T6=T5*a6>T5T7=T6*a7<T6Tn在n=6存在最大值
拌三丝2023-07-01 13:00:401

公比为4的等比数列{bn}中,若Tn是数列{bn}的前n项积,则有T20T10,T30T20,T40T30仍成等比数列,且公比为

由等比数列{bn}中,若Tn是数列{bn}的前n项积,则有T20T10,T30T20,T40T30仍成等比数列,且公比为4100;我们可以类比推断出:S20-S10,S30-S20,S40-S30也构成等差数列公差为100d=300;故答案为:S20-S10,S30-S20,S40-S30,300
kikcik2023-07-01 13:00:401

在数1和100之间插入n个实数,使得构成等比数列,求这n个数的积n

西柚不是西游2023-07-01 13:00:402

等比数列与等差数列综合问题

上期为大家分享了等差数列前n项和的最值问题。我们都知道,有两类特殊的数列:等差数列和等比数列。那么当这两种数列结合在一起会产生什么样的问题呢?本期就为大家带来几道这样的题。 来看下面这道题虽然这是一个等比数列,但是用到了一个概念叫做等差中项利用等比数列的性质,把所有项都用a2和q表示,等号两边同时约去a2即可得到一个关于q的一元二次方程解这个方程,又因为各项均为正数,舍去负值,即得最终答案等差和等比这两种特殊的数列,可以通过取对数或者取指数幂这两种运算相互转化。所以有时候等比数列的题目会结合对数运算的性质来考查,比如下面这道题同底的对数相加,底数不变,真数相乘根据等比中项的性质,前五项的乘积只与第三项有关。最后再结合对数运算法则,即可得出最终答案最后再来看一道这样的题,这是江苏宿迁2021期末考试题我们需要先根据已知条件求出数列{an}的通项公式最后把an化成以2为底指数幂的形式,方便我们进一步观察接下来该如何去做。 我们要求的是数列{an}前n项积的最值,an都是以2为底的指数幂,而同底数幂相乘,底数不变指数相加,最终转化成一个等差数列前n项和的最值问题如何得出这个等差数列{bn}呢?很简单,对an取以2为底的对数即可下面就看小伙伴们对上期的内容掌握如何了,求等差数列前n项和最值的两种方法,你都还记得吗?这里我们采用二次函数的方法,先求出前n项和Sn接着判断开口方向和对称轴,就可以求出Sn的最大值。注意n取正整数即可最后设数列{an}的前n项积为Tn,得出Tn与Sn的关系,就可以由Sn的最大值求出Tn的最大值
tt白2023-07-01 13:00:401

等比数列

bn=b1乘以(q)^(n-1)Sn=当q=1时,为nb1, 当q≠1时,为b1(1-q^n)/(1-q)=(b1-bnq)/(1-q)
凡尘2023-07-01 13:00:403

设各项都是正数的等比数列{an}的前n项之。积。为Tn,且T10=32,则a5分1+a6分之1的最

a1xa10=a2xa9...=.a5a6=五次根号下32=2,也就问二分之a5+a6最小又因为a5+a6大于等于2根a5a6=2根2,所以最小是根2
韦斯特兰2023-07-01 13:00:392

设{an}是公比为q的等比数列,其前n项的积为Tn,并且满足条件a1>1

很明显,这个人是抄别人的啊,怎么还给满意回答?对此表示无语。。。
水元素sl2023-07-01 13:00:384

等比数列{an}中,a1=512,公比q=-1/2,用bn表示它的前n项之积,这bn中最大的是

楼上的回答,答案是正确的,但是步骤出了错误,会让人误解。这个题目关键之处在于通项的化简。an=a1q^(n-1)=512×(-1/2)^(n-1)=(-1)^(n-1) * 2^(n-10) 注意最后一个是乘以 不是除以,不然再怎么算也是大错特错!! bn=a1a2...an=[(-1)^(0+1+2+3+.....] * 2^9*2^8*2^7.....*2^2*2^1,之后我们观察这个n-10,这个是关键。到底n是取10呢 还是取9呢?取10的时候2^0=1,或许会让人疑惑。但是没有关系没有关系,职业玩家告诉你,前面只有在奇数项的时候[(-1)^(0+1+2+3+.....] 得到的才是正数,所以只能取9了,虽然个人也喜欢10这个幸运数字,但是很不幸啊。。╮(╯▽╰)╭少年,此题算中等数列题目,少玩DOTA,少撸LOL,少上WOW,切忌勿玩DNF,进舞厅等脑残游戏。师兄的忠告!!
u投在线2023-07-01 13:00:381

已知在等比数列{an}中,首相a1=2012,公比q=-1/2,记Tn为它的前n项之积,则Tn最大时,正整数n的值为?

Tn最大,则一定为正,Tn=a^n*(-1/2)^(n(n-1)/2),则n(n-1)/2被2整出,故n被4整除。 由此,n-2项与第n相均为负,其乘积取正,则需要满足,a(n-2)*an>=1。a(n-2)*an=2012^2*(1/2)^(2n-4)<2048^2*(1/2)^(2n-4)=2^(26-2n)<=1=2^0则,26-2n>0,n<13.又n为偶数,因而n=12。 即前12项乘积最大,为Tn=2012^12*(1/2)^66<2^54.不知道看得懂不,呵呵符号有点肯跌;另外一种方法,由于n被4整除,则连续4相的乘积一定>1,只有这样才能使得Tn最大,a(n-3)a(n-2)a(n-1)an>1,即2012^4*(1/2)^(4n-6)>1.于是2048^4*(1/2)^(4n-6)>1,推出25/2>n,n为整数,n=12.
Chen2023-07-01 13:00:381

等比数列求积公式的推导

mlhxueli 2023-07-01 13:00:371

等比数列{an}中,a1=512,公比q=负1/2,用Tn表示它的前n项之积:Tn=a1*a2*...*an,则T1,T2,...中最大的是?

显然An=512*(-1/2)(n-1) 注:表示n-1次方则:|An|=512*1/2(n-1) 令|An|=1 得n=10因此|II(n)|最大值在n=10之时取到 因为之后的|An|<1会使II(n)越乘越小 很容易看出所有n为偶数的An为负 所有n为奇数的An为正又因为 II(n)=A1*A2*...*An所以II(n)的最大值要么是A10要么是A9又因为II10中有奇数个小于零的偶数项即A2,A4,A6,A8,A10则 II10<0 而II9中有偶数个小于零的偶数项即 A2 A4 A6 A8 因此II9>0>II10所以最大的是II9 选C
tt白2023-07-01 13:00:361

等比数列{an}的首项为2002,公比为1/2,前n项积为Tn,求Tn的最大值

a(n)=2002×(1/2)^(n-1)∴T(n)=a1a2a3……an=(2002^n)[(1/2)^(0+1+2+……+n-1)]=(2002^n)×(1/2)^[n(n-1)/2]设T(k)最大,则T(k)≥T(k+1)且T(k)≥T(k-1)解方程组就可以了
北营2023-07-01 13:00:352

若等比数列的各项均为正数,前n项和为S,前n项积为P,前n项倒数和为T

等比数列的各项均为正数=>a0>0,q>0a0(1-q^n)/(1-q)=S,P=a0^n*q^0*q*q^2*...*q^(n-1)=a0^n*q^(n*(n-1)/2),前n项倒数和:也是等比数列b0=1/a0,p=1/qT=(1-q^n)/(a0*q^(n-1)*(1-q))S/T=a0^2*q^(n-1)(S/T)^n=a0^(2n)*q^(n*(n-1))P^2=a0^(2n)*q^(n*(n-1))所以,P^2=(S/T)^n
墨然殇2023-07-01 13:00:351

数学卷17:等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1

等比数列{an}的公比为q,其前n项的积为Tn,并且满足条件a1>1,a99a100-1>0,(a99-1 ) / (a100-1)<0.给出下列结论:①0<q<1;②a99u2022a101-1<0;③T100的值是Tn中最大的;④使Tn>1成立的最大自然数n等于198.其中正确的结论是(  )A.①②④ B.②④ C.①② D.①②③④ ∵a99a100-1>0,∴a12u2022q197>1,∴(a1u2022q98)2>1.∵a1>1,∴q>0.又∵(a99-1 ) / (a100-1)<0,∴a99>1,且a100<1.∴0<q<1,即①正确.∵a99u2022a101=a100^2 ;0<a100<1 ∴0<a99u2022a101 <1,即 a99u2022a101-1<0,故②正确.由于 T100=T99u2022a100,而 0<a100<1,故有 T100<T99,∴③错误.④中T198=a1u2022a2…a198=(a1u2022a198)(a2u2022a197)…(a99u2022a100)=(a99u2022a100)99>1,T199=a1u2022a2…a199=(a1u2022a199)(a2u2022a198)…(a99u2022a101)a100<1,∴④正确.∴正确的为①②④,故选A.
余辉2023-07-01 13:00:351

等比数列前n项积的和,求详细步骤,手写最好

(2a).[ (3/2)a].[ (4/3)a]....[(n+1)a/n]=2(3/2)(4/3)...[(n+1)/n] . a^n=(n+1). a^n
左迁2023-07-01 13:00:341

有没有等差或者等比数列前n项积公式

等差数列前n项和公式推导:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)=n(a1+an)所以Sn=[n(a1+an)]/2如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+[n(n+1)d]/2(II)没有等差数列前N项积公式
陶小凡2023-07-01 13:00:341

等比数列{an}是递减数列,其前n项积为Tn,若T13=4T9,则a8*a15=?

因为 T13=T9*(a10*a11*a12*a13)=4T9 , 所以 a10*a11*a12*a13=4 , 而 a10*a13=a11*a12=a8*a15 , 因此 a8*a15= ±2 , 又由于数列为递减数列,而 a8 与 a15 分别是偶数项和奇数项,不可能异号, 所以可得 a8*a15=2 .
陶小凡2023-07-01 13:00:341

等比数列的概念和通项、前n项和、公比、定义

1、等比数列的定义  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.注意2、等比数列的通项公式  由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.注意3、等比中项  如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项.注意4、等比数列的判定方法(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.(2)、an2=an-1·an+1(n≥2,an-1,an,an+1≠0){an}是等比数列.(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.5、等比数列的性质  设{an}为等比数列,首项为a1,公比为q.(1)、当q>1,a1>0或01,a1<0或00时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.(2)、an=am·qn-m(m、n∈n*).(3)、当m+n=p+q(m、n、q、p∈n*)时,有am·an=ap·aq.(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.(6)、在{an}中,每隔k(k∈n*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.(9)、若m、n、p(m、n、p∈n*)成等差数列时,am、an、ap成等比数列.6、等比数列的前n项和公式  设等比数列a1,a2,a3,…,an,…,它的前n项和是sn=a1+a2+…+an,根据等比数列的通项公式可将sn写成sn=a1+a1q+a1q2+…+a1qn-1.…①①两边乘以q得qsn=a1q+a1q2+a1q3+…+a1qn…②两式相减得(1-q)sn=a1-a1qn,由此得q≠1时等比数列{an}的前n项和的公式.因为an=a1qn-1,所以上面公式还可以写成.当q=1时,sn=na1.注意7、等比数列前n项和的一般形式  一般地,如果a1,q是确定的,那么8、等比数列的前n项和的性质(1)、若某数列前n项和公式为sn=an-1(a≠0,±1),则{an}成等比数列.(2)、若数列{an}是公比为q的等比数列,则(ⅰ)、sn+m=sn+qn·sm.(ⅱ)、在等比数列中,若项数为2n(n∈n*),则(ⅲ)、sn,s2n-sn,s3n-s2n成等比数列.
meira2023-07-01 13:00:341

等比数列 的前N项的乘积为Tn,若Tn=1,T2n=2,则T3n=

Tn=a1*a2*...*an=1 T2n=T1*a(n+1)*..*a(2n)=2 因此a(n+1)*..*a(2n)=2=a1*a2*...*an*q^(n*n) q^(n*n)=2 a(2n+1)*..*a(3n)=a1*a2*...an*(q^(n*n))^2=4 T3n=T2n*a(2n+1)*..*a(3n)=2*4=8
余辉2023-07-01 13:00:341

等比数列an中,Tn表示前n项的积,若Tn=1,则

K
阿啵呲嘚2023-07-01 13:00:322

关于等比数列的前n项的积

a3a6a18是一个确定的常数,即[a1*(q^2)]*[a1*(q^5)]*[a1*(q^17)]为常数,即(a1^3)*(q^24)=[a1*(q^8)]^3也是常数。即 a9 也是常数。则由等比中项:T17=a1*a2*……a17=(a1*a17)*(a2*a16)*……*(a8*a10)*a9=(a9^2)*(a9^2)*……a9=a9^17
瑞瑞爱吃桃2023-07-01 13:00:312

用A1和An表示等比数列前n项积

解:由已知得:a1an=a2an-1=a3an-2~~~~~~~~~~所以等于(a1*an)的n/2次方
真颛2023-07-01 13:00:313

等比数列 表示它的前n项之积,即 则 中最大的是( ) A. B. C. D

B 试题分析:由已知 ,所以 = = · ,要 最大,则 应为正, 应为偶数2k,n(n-1)=4k,n、n-1中必有一奇一偶,因此n是4的倍数或n-1是4的倍数。 = = = , 随 增大而增大,又n是4的倍数或n-1是4的倍数,当n=9时,n-1=9-1=8是4的倍数。此时, 有最大值90,此时, = 。 中最大的是 ,故选B点评:综合题,能将 化为 = = = ,并发现 随 增大而增大,又n是4的倍数或n-1是4的倍数,当n=9时,n-1=9-1=8是4的倍数是解题的关键。
tt白2023-07-01 13:00:311

等比数列前n项积公式

An=A1×q^(n-1)
kikcik2023-07-01 13:00:307

等比数列的前n项和公式

铁血嘟嘟2023-06-28 09:45:273

等比数列公式是什么,怎么写?

(1)等比数列的通项公式是:an=a1×q^(n-1)若通项公式变形为an=a1/q*q^n(n∈n*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2)任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
凡尘2023-06-28 09:45:271

等比数列求q的公式

等比数列求q的公式:q=G/a。等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
tt白2023-06-28 09:45:261
 首页 上一页  1 2 3 4 5 6 7 8  下一页  尾页