- 大鱼炖火锅
-
双曲线离心率公式推导是e=c/a=√(a2+b2)/a=√[1+(b/a)2]。
在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。焦点位于贯穿轴上它们的中间点叫做中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得,这里的所有系数都是实数,并存在定义在双曲线上的点对(x,y)的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。,双曲线的图像无限接近渐近线,但永不相交。
双曲线离心率公式是什么?
双曲线的离心率公式是e=c/a,其中e是离心率,c是焦距,a是实轴长。2023-08-04 02:35:104
双曲线的离心率是多少?
双曲线的离心率e的取值范围是(1,2)。双曲线中,c^2=a^2+b^2,离心率e=c/a>1。f的坐标是(-c,0),e的坐标是(a,0)。把x=-c,代入双曲线方程,得a(-c,b^2/a),b(-c,-b^2/a)。三角形abe是锐角三角形,则be的斜率:b^2/a÷(a+c)<1。所以b^20。所以2a-c>0。即c/a=e<2。所以双曲线的离心率e的取值范围是(1,2)。相关理解偏心因子广泛用作第三参数热力学计算,对于球形非极性分子的w为零,随着分子结构的复杂程度和极性的增加而增加,因此w数值的大小反映了分子的形状和分子的极性大小,一般小于1,大部分在0~0.4之间。w数据的可靠性不但影响许多化工计算。也直接影响对应态方法的可靠性及其发展。2023-08-04 02:35:561
双曲线的离心率是什么?
双曲线的离心率定义是动点到焦点的距离和动点到准线的距离之比。也称为偏心率,离心率。公式:e=a分之c。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。【特征介绍】1、分支可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。2、焦点在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c=a+b。3、准线在定义2中提到的给定直线称为该双曲线的准线。2023-08-04 02:36:111
双曲线的离心率
可知e=c/a2023-08-04 02:36:421
双曲线的离心率是什么东西?
就是e(离心率)=c/a。和椭圆一样,只不过椭圆的离心率<1,双曲线的>12023-08-04 02:36:527
双曲线离心率公式是?
公式:e=a分之c平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。扩展资料:双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。参考资料来源:百度百科-双曲线2023-08-04 02:37:121
双曲线离心率
双曲线的渐近线为y=b/a*x或y=-b/a*x.由点到直线的距离公式可知d=/a±b/除以根号a的平方加b的平方,在吧点p和距离带入其中的到a的平方=b的平方,由e=c/a,c=根号2倍a所以离心率为根号2.2023-08-04 02:37:432
双曲线的离心率范围是多少
双曲线的离心率范围是e>1。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。双曲线离心率特点定义:1、轨迹上一点的取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。2、对称性:关于坐标轴和原点对称。3、顶点:A(-a,0), A"(a,0),同时 AA"叫做双曲线的实轴且│AA"│=2a。2023-08-04 02:37:521
椭圆的离心率和双曲线的离心率一样吗
不一样。0<e<1,椭圆。e>1, 双曲线。在椭圆的标准方程X^2/a^2+Y^2/b^2=1中,如果a>b>0焦点在X轴上;如果b>a>0焦点在Y轴上。这时,a代表长轴b代表短轴 c代表两焦点距离的一半,存在a^2=c^2+b^2。偏心率e=c/a (0<e<1)中,当e越大,椭圆越扁平。在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。扩展资料:圆的离心率=0,椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) ),抛物线的离心率:e=1,双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为,ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。椭圆上任意一点到两焦点的距离等于a±ex。参考资料:百度百科-椭圆离心率2023-08-04 02:38:081
双曲线的三种离心率公式是什么?
双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。注意:在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。2023-08-04 02:38:271
焦点在y轴上的双曲线的离心率公式
焦点不论在x轴还是y轴离心率都是e=c/a2023-08-04 02:38:432
为什么双曲线的离心率用e=c/a来表示呢?
圆的离心率=0 椭圆的离心率:e=c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) ) 抛物线的离心率:e=1 双曲线的离心率:e=c/a(1,2023-08-04 02:38:501
双曲线离心率越大,开口越小还是越大?
例如:双曲线x^2/a^2-y^2/b^2=1离心率e=c/a=根号(a^2+b^2)/a^2=根号1+(b^2/a^2)比如考虑双曲线右支,因为b/a为渐近线斜率,e越大时,b/a越大,渐近线斜率越大,故开口越大.2023-08-04 02:39:241
离心率怎么计算?
离心率e=c/a=√[(a2-b2)/a2]=√[1-(b/a)2]。离心率是动点到焦点的距离和动点到准线的距离之比。椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c=半焦距;a=长半轴)。圆的离心率=0椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线))抛物线的离心率:e=1双曲线的离心率:e=c/a(1,+∞)(c=半焦距;a=半长轴(椭圆)/半实轴(双曲线))偏心因子计算:对应态蒸气压关联方程法:基于Pitzer定义式的对应态蒸气压关联方程法,具有代表性的如基于Clapeyron方程的Edmister方程法、Lee—Kesler方程法和最近Daniel基于Antoine方程提出的计算法等。每一个蒸气压温度关系式都对应一个w估算关系。2023-08-04 02:39:431
双曲线为什么离心率越大开口越大?【开口指的是哪个?】具体些!
解:焦点在x轴上的双曲线的渐近线斜率为:b/a=根号下(e的平方-1)e越大,渐近线斜率越大,两渐近线的张角越大,双曲线的开口就越大 焦点在y轴上的双曲线的渐近线斜率为:a/b=1/根号下(e的平方-1) e越大,渐近线斜率越小,两渐近线的张角越小,张角的补角(夹双曲线的角)越大所以,无论焦点在x或y轴,都有离心率越大开口越大2023-08-04 02:39:591
双曲线的离心率等于2,且与椭圆 有相同的焦点,求此双曲线方程
试题分析:解:∵ 椭圆 的焦点坐标为(-4,0)和(4,0),则可设双曲线方程为 ( a >0, b >0),∵ c =4,又双曲线的离心率等于2,即 ,∴ a =2.∴ =12.故所求双曲线方程为 .点评:主要是考查了双曲线的性质与方程的之间的关系,属于基础题。2023-08-04 02:40:061
在双曲线中,如果a,b,c满足2b=a+c,求离心率e的值
两边平方得 4b^2=a^2+2ac+c^2 ,即 4(c^2-a^2)=a^2+2ac+c^2 ,所以 3c^2-2ac-5a^2=0 ,两边同除以 a^2 得 (注意到 e=c/a)3e^2-2e-5=0 ,解得 e=5/3 。(舍去-1)2023-08-04 02:40:481
双曲线焦点在X轴或Y轴上离心率还会一样吗?
解:离心率是一样的,举个例子: x^2/2-y^2/4=1 这里a^2=2 b^2=4 c^2=6 所以这里的离心率e=√3 当在焦点在y轴上时: y^2/2-x^2/4=1 此时a^2=2 b^2=4 c^2=6 同理e=√3 故离心率相同 证毕如有疑问,可追问!2023-08-04 02:40:583
什么是离心率,如何计算?
离心率根据不同的条件有五种求法:一、已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c/a来解决。二、构造a、c的齐次式,解出e 根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于a、c的一元方程,从而解得离心率e。三、采用离心率的定义以及椭圆的定义求解四、根据圆锥曲线的统一定义求解五、构建关于e的不等式,求e的取值范围2023-08-04 02:41:104
双曲线离心率公式有哪些?
① 知识点定义来源与讲解:双曲线是一种常见的数学曲线,具有特殊的形状和性质。离心率是描述双曲线形状的重要参数之一。离心率定义为焦距与准线之比的绝对值,表示椭圆较两焦点之间的拉伸程度。离心率的计算公式可以根据双曲线的方程推导出来。② 知识点运用:离心率不仅仅用于描述双曲线,还可以应用于其他几何图形、物理学、天文学和工程学等领域。在几何学中,离心率被用来描述圆锥曲线和椭圆轨道的形状。在物理学中,离心率可用于描述行星轨道的偏心程度。在工程学中,离心率常用于描述压力容器和泵的性能。③ 知识点例题讲解:双曲线的离心率公式与双曲线方程有关。以下是几种常见类型的双曲线及其离心率的计算公式:1. 水平方向双曲线:方程形式:(x^2 / a^2) - (y^2 / b^2) = 1离心率公式:e = √(a^2 + b^2) / a2. 垂直方向双曲线:方程形式:(y^2 / a^2) - (x^2 / b^2) = 1离心率公式:e = √(a^2 + b^2) / a3. 标准形式的水平方向双曲线:方程形式:(x^2 / a^2) - (y^2 / b^2) = -1离心率公式:e = √(a^2 + b^2) / a4. 标准形式的垂直方向双曲线:方程形式:(y^2 / a^2) - (x^2 / b^2) = -1离心率公式:e = √(a^2 + b^2) / a这些公式可用于计算双曲线的离心率,通过确定双曲线的方程中的参数值,可以进一步确定双曲线的形状和性质。需要注意的是,不同形式的双曲线具有不同的离心率计算公式。2023-08-04 02:42:242
双曲线的离心率公式怎么求?
双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。简介在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。2023-08-04 02:44:141
双曲线的离心率公式是什么?
双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。简介在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。2023-08-04 02:45:021
双曲线离心率所有公式是什么?
双曲线的离心率公式是 e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。相关信息:双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。2023-08-04 02:46:061
双曲线的离心率怎么求?
求圆锥曲线的离心率关键是找到a与c的一个齐次方程解:有题意可知p=b^2/ap/2=c把p消去,b^2=c^2-a^2替换得到只有a和c的齐次方程2c=c^2-a^2/a即2ac=c^2-a^2两边同除a^2,得2e=e^2-1解这个一元二次方程,为1+根2和1-根2双曲线离心率大于1知道选哪个了吧2023-08-04 02:48:071
椭圆和双曲线的离心率取值范围是多少?
圆的离心率等于0椭圆的离心率大于0小于1抛物线的离心率等于1双曲线离心率大于12023-08-04 02:49:133
双曲线离心率ab表示
很多人都说错了。应该是根号下a方分之a^2+b^2。等于根号下1+a^2分之b方。2023-08-04 02:49:452
双曲线的离心率公式是什么?
双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。简介在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。2023-08-04 02:51:181
双曲线的离心率公式?
双曲线离心率用e来表示=双曲线的焦距与实轴长的比值(c/a)2023-08-04 02:51:441
如何证明双曲线的离心率公式?
双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。简介在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。2023-08-04 02:53:551
双曲线的离心率反映双曲线的什么几何特征?
越小(接近于1) 双曲线开口越小(扁狭) 越大 双曲线开口越大(开阔)2023-08-04 02:55:121
双曲线为什么离心率越大开口越大?【开口指的是哪个?】具体些!
焦点在x轴上的双曲线的渐近线斜率为:b/a=根号下(e的平方-1) e越大,渐近线斜率越大,两渐近线的张角越大,双曲线的开口就越大 焦点在y轴上的双曲线的渐近线斜率为:a/b=1/根号下(e的平方-1) e越大,渐近线斜率越小,两渐近线的张角越小,张角的补角(夹双曲线的角)越大 所以,无论焦点在x或y轴,都有离心率越大开口越大2023-08-04 02:55:211
高中数学中椭圆和双曲线的离心率e和形状有什么关系?
离心率大于1是双曲线小于1是椭圆肯定对!!!2023-08-04 02:55:313
双曲线的离心率公式
双曲线离心率公式:e=c/a面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。扩展资料:特征:1、分支可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。2、焦点在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c=a+b。3、准线在定义2中提到的给定直线称为该双曲线的准线。2023-08-04 02:56:201
双曲线的离心率范围是e>1吗?
双曲线的离心率范围是e>1。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。双曲线离心率特点定义:1、轨迹上一点的取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。2、对称性:关于坐标轴和原点对称。3、顶点:A(-a,0), A"(a,0),同时 AA"叫做双曲线的实轴且│AA"│=2a。2023-08-04 02:57:291
已知双曲线两渐近线夹角为60°,求双曲线的离心率
如图所示.∵双曲线两条渐近线的夹角为60° ∴如图①时,其中一条渐近线的倾斜角为60°,如图②时,则为30°, 所以该渐近线的斜率 或 当双曲线焦点在x轴上时, 则有 或 . 又b 2 =c 2 -a 2 . 或 , ∴e 2 =4或 ∴e=2或 当双曲线焦点在y轴上时,则应有 或 或 同理可得 或e=2. 综上所述,e=2或2023-08-04 02:58:161
椭圆和双曲线的离心率怎么求
椭圆和双曲线的离心率都是:e=c/a2023-08-04 02:59:473
双曲线离心率的取值范围是多少?
双曲线的离心率范围是e>1。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。双曲线离心率特点定义:1、轨迹上一点的取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。2、对称性:关于坐标轴和原点对称。3、顶点:A(-a,0), A"(a,0),同时 AA"叫做双曲线的实轴且│AA"│=2a。2023-08-04 02:59:551
双曲线的焦距公式和离心率公式
2c和c/a2023-08-04 03:01:061
离心率秒杀36个公式
离心率秒杀36个公式如下:离心率统一定义是动点到焦点的距离和动点到准线的距离之比椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。圆的离心率=0椭圆的离心率:e=c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )抛物线的离心率:e=1双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。焦点到最近的准线的距离等于ex±a。且离心率和曲线形状对照关系综合如下:e=0, 圆0<e<1, 椭圆e=1, 抛物线e>1, 双曲线双曲线的离心率公式是e=c/a,一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处2023-08-04 03:01:131
已知双曲线的离心率为2,求它的两条渐近线所成的锐角
离心率为2,则c/a=2则c^2/a^2=4所以c^2=4a^2因为a^2+b^2=c^2所以a^2+b^2=4a^2所以b^2=3a^2所以b/a=根号3所以一个渐近线与y轴的夹角是30度所以两条渐近线所成的锐角是60度明白?!~~~~2023-08-04 03:01:471
双曲线的开口大小与离心率的关系
开口越大离心率越大2023-08-04 03:02:082
共焦点的椭圆与双曲线离心率的关系是什么?
共焦点的椭圆与双曲线离心率是没有关系的。离心率是c/a,这里c相同,但a可以任意变化。偏心因子也称为偏心率或离心率,反映出物质分子形状与物质极性大小。偏心因子越大,分子的极性就越大。离心率的理解偏心因子广泛用作第三参数热力学计算,对于球形非极性分子的w为零,随着分子结构的复杂程度和极性的增加而增加,因此w数值的大小反映了分子的形状和分子的极性大小,一般小于1,大部分在0~0.4之间。w数据的可靠性不但影响许多化工计算。也直接影响对应态方法的可靠性及其发展。按照偏心因子的定义可知,w值并不能直接测量出,而是由三部分的实验数据确定的,也就是临界温度值、临界压力值和包括对比温为0.7在内的蒸气压值及其温度关联式。2023-08-04 03:02:151
怎么求双曲线渐近线与离心率的关系公式?
简单分析一下,详情如图所示2023-08-04 03:02:421
双曲线中点弦成比例则离心率是什么
双曲线的离心率定义是动点到焦点的距离和动点到准线的距离之比。也称为偏心率,离心率。公式:e=a分之c。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。【特征介绍】1、分支可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左轴与右轴;当焦点在y轴上时,为上轴与下轴。2、焦点在定义1中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。焦点的横(纵)坐标满足c=a+b。3、准线在定义2中提到的给定直线称为该双曲线的准线。2023-08-04 03:03:511
双曲线的焦点三角形离心率公式。
是的,有相似的公式。可以这样推:不防设双曲线焦点在x轴,P点在右支曲线上。在三角形PF1F2由正弦定理得sina/PF2=sinb/PF1=sin(pi-(a+b))/F1F2=sin(a+b)/F1F2,再由分式性质得:(sinb-sina)/(PF1-PF2)=sin(a+b)/F1F2,注意到双曲线中,PF1-PF2=2a,F1F2=2c,于是导出双曲线离心率表达式e=2c/(2a)=F1F2/(PF1-PF2)=sin(a+b)/(sinb-sina)。同理若P在左支曲线则e=sin(a+b)/(sina-sinb),希望对你有所帮助。2023-08-04 03:04:001
双曲线离心率与抛物线的关系
离心率就是 c/a双曲线的 离心率 范围为 (1,正无穷)椭圆的的 离心率 范围为 ( 0 , 1 )抛物线的离心率是 1因为抛物线上任何一点到焦点的距离都等于到准线的距离所以 大小关系为椭圆离心率 小于 抛物线离心率 小于 双曲线离心率2023-08-04 03:04:071
双曲线离心率
双曲线 中,c^2=a^2+b^2,离心率e=c/a>1f的坐标是(-c,0),E的坐标是(a,0)把x=-c,代入双曲线方程,得A(-c,b^2/a),B(-c,-b^2/a)三角形ABE是锐角三角形,则BE的斜率:b^2/a÷(a+c)<1所以b^2<a(a+c)即c^2-a^2<a^2+ac所以(2a-c)(a+c)>0所以2a-c>0,即c/a=e<2所以双曲线的离心率e的取值范围是(1,2)2023-08-04 03:04:151
请告诉我中国清朝与外国签订的所有不平等条约的内容
自1840年鸦片战争爆发到1912清朝灭亡的72年间,清朝政府同外国政府或外商、国际组织签订的不平等条约、契约、协约和合约共1175件。这些约章主要是中国同俄国、英国、美国、法国、德国、日本、意大利、奥地利、比利时、西班牙、葡萄牙、荷兰、丹麦等西方列强和其它国家、国际组织签订的,按性质分为八类:1、通商、通邮;2、租地、购地;3、借款、垫款;4、产业、技术;5、军事、占领;6、勘界、划界;7、电信、航空;8、综合、其它。 不言而喻,任何一个民族都不会心甘情愿地将那些理应自己拥有的主权拱手送给别人,任何一个侵略者也都不可能仅仅通过"友好交往"就把这些"特权"轻易攫取到手。事实上,在每一个较为重要的不平等条约订立之前,殖民主义、帝国主义都曾动用兵舰大炮,通过血与火的残暴手段,用野蛮的军事侵略来达到他们的目的。因此,在每一个不平等条约的背后,都蕴含着一个对于中国人民来说是血泪斑斑的悲惨故事。我们从西方列强强加给中国的一系列条约、协定中,清清楚楚地看到:中国作为一个国家为什么地位低下?中国人作为一个民族为什么低下! 积弱的清王朝在强权的威迫下,唯有任人宰割而无力反抗。前后签定了一千一百多个不平等的可耻条约。其中四十多个条约影向深重。条条和约事可鉴,自古外交看强权。强者刀俎弱鱼肉,闭关自守太可怜。 清王朝签定了一千一百多个不平等的可耻条约。其中四十多个条约影向深重。下面的是其中的四十多个条约 和约 中方签约人 失地 赔款 签日 1. 中英 广州和约 余保纯 六百七十万两 27-5-1841; 2. 中英 南京条约 耆英,伊布里 二千一百万两 29-8-1842; 3. 中英 南京条约补充条款 耆英 22-7-1843; 4. 中英 虎门条约 耆英 8-10-1843; 5. 中美 望厦条约 耆英 3-7-1844; 6. 中法 黄埔条约 耆英 24-10-1844; 7. 中俄 瑗珲条约 奕山 六十万方公里 28-5-1858; 8. 中俄 天津条约 桂良,花沙纳 13-6-1858; 9. 中美 天津条约 桂良,花沙纳 18-6-1858; 10. 中英 天津条约 桂良,花沙纳 26-6-1858; 11. 中法 天津条约 桂良,花沙纳 27-6-1858; 12. 中英 天津条约补充 桂良 8-11-1858; 13. 中英 北京条约 奕欣 一千叁百万两 24-10-1860; 14. 中法 北京条约 奕欣 25-10-1860; 15. 中俄 北京条约 奕欣 四十多万方公里? 4-11-1860; 16. 中俄 勘分西北界约记 明谊 四十四万方公里 10-7-1864; 17. 中美 增续条约 前美公使蒲安臣 7-28-1868; 18. 中英 新修条约普后章程 不详 23-10-1869; 19. 中日 修好条约 李鸿章 13-8-1871; 20. 中日 北京条约 奕欣 31-10-1874; 21. 中英 烟台条约 李鸿章 13-9-1876; 22. 中俄 里瓦几亚条约 崇厚 2-10-1879; 23. 中俄 伊黎条约 曾纪泽 七万方公里 二百八十万两 24-2-1881; 24. 中法 会议简明条款 李鸿章 11-5-1884; 25. 中日 天津条约 李鸿章 18-4-1885; 26. 中法 新约 李鸿章 9-6-1885; 27. 中英 烟台条约 续增条约 不详 9-6-1885; 28. 中葡 北京条约 奕□ 1-12-1887; 29. 中英 印藏条约 升泰 17-3-1890; 30. 中美 华工条约 杨儒 7-3-1894; 31. 中日 马关条约 李鸿章 二亿两 外送台湾岛 琉球属国 7-4-1895; 32. 中日 辽南条约 李鸿章 叁千万两 8-11-1895; 33. 中俄 密约 李鸿章 3-6-1896; 34. 中德 胶澳租借条约 李鸿章 6-3-1896; 35. 中英 展拓香港界址条约 李鸿章 9-6-1898; 36. 八国联军 辛丑条约 李鸿章 十亿二千二百七十万两 7-9-1901; 37. 中英 续定印藏条约 罗生戛尔曾 7-9-1904; 38. 中日 会议[满州善后条约] 22-12-1905; 39. 中日 二十一条条约 陆征祥 9-5-1915; 40. 中日 军事协定 □云鹏 16-5-1918; 资料来自辞海及"出卖中国"一书。 一. 辛丑赔款本为四亿五千万两,平均每名中国人赔款一两,卅九年还清, 年率四厘,母子利息,共约十亿两库平银。另加民间赔款二千多万两。以关税,盐税作保。中国从此失去关税主权,国内工业倍受摧残。 二. 以上是收集到的较为重要的条约资料。 三. 中美增续条约是美前公使蒲安臣未经中国政府同意而私自签定的,当时他任中国顾问。 四. 更须估计当时货币的购买力,如以现时货币计算,可能是百倍或千倍之巨。 五. 列强所强加於中国的灾难是无限的,敬希慎思。 六. 根据瑷珲历史陈列馆的档案,在北京条约中失去领土四十馀万方公里。外蒙未分界中有廿馀万方公里被强夺。加上外蒙的独立,中国共失领土约叁百卅馀万方公里。 七. 根据辞海记载:根据北京条约的内容,才有勘分西北界记约。故两条约中的失地只一次,即四十四万平方公里 (不知那一项符合史实)。 损失最大,掠夺最残酷的主要条约具体内容: 一、1842年中英《南京条约》主要内容:①割香港岛给英国;②赔款2100万银元;③开放广州、厦门、福州、宁波、上海五处为通商口岸;④英商进出口货物缴纳的税款,中国须同英国商定。 二、1858年中俄、中美、中英、中法《天津条约》主要内容:①外国公使常驻北京。②增开牛庄(后改营口)、淡水、汉口、南京等十处为通商口岸。③外国军舰和商船可在长江各口岸自由航行。④外国人可以到中国内地游历、通商、传教。⑤清政府赔偿英法两国军费各200万两,赔偿英商损失200万两白银 三、1860年中英、中法《北京条约》主要内容:①清政府承认《天津条约》有效;②增开天津为商埠;③割让九龙司地方一区给英国;④准许英、法招募华工出国;⑤对英、法两国赔款各增至 800 万两白银。 四、1895年中日《马关条约》主要内容:(1)中国割让台湾及及所有附属岛屿、澎湖列岛和辽东半岛给日本;(2)赔偿日本军费白银二亿两,相当于当时清朝五年的全部经济总收入.(3)开放沙市、 重庆、苏州、杭州为商埠,日本轮船可以沿内河驶入以上各口;(4)允许日本在中国通商口岸开设工厂,产品运销中国内地免收内地税。 五、1901年清政府与英、美、俄、德、日、奥、法、意、西、荷、比十一国《辛丑条约》主要内容:(1)中国赔款白银四亿五千万两,分三十九年还清,本息折合九亿八千多万两。(2) 将北京东交民巷划为使馆界,界内由各国驻兵保护,中国人概不准居住。(3)拆毁北京至大沽的所有炮台,准许外国军队驻守北京至山海关铁路沿线要地。(4)惩办义和团运动中参加反帝斗争的官吏,永远禁止中国人民成立或参加反帝性质的组织,对反帝运动镇压不力的官吏,立即革职,永不叙用。(5)改总理各国事物衙门为外务部,班列六部之前。(6)修订商约。清政府同意将各条约中通商行船的内容加以修订,以便利帝国主义扩大对中国的侵略。 六,1858年5月28日签订《中俄瑷辉条约》 规定黑龙江以北外兴安岭以南60多万平方公里的广袤富饶的领土,割让给沙皇俄国。同时还规定乌苏里江以东40万平方公里的土地为中俄共管。两年后,共管被沙皇俄国取消,40万平方公里的土地又落入沙俄之手。恩格斯曾经说的“大小等于法、德两国面积的领土和多瑙河一样长的河流”划归了沙俄。 1915年中日“二十一条"主要内容:第一号共四条,要求承认日本继承德国在山东的一切权益,并加以扩大。第二号共七条,要求承认日本在南满和内蒙古东部的特殊权利。日本租借旅顺、大连及南满、安奉两铁路期限均延长至99年。第三号共两条,要求把汉冶萍公司改为中日合办,中国不得自行处理。第四号一条,要求所有中国沿海港湾、岛屿概不租借或割让给他国。第五号共七条,要求中国政府聘用日本人为政治、军事、财政等顾问,中日合办警政和兵工厂。 参考资料:上海市启秀实验中学论坛2023-08-04 03:01:501
学富五车的意思
知识渊博2023-08-04 03:01:5712
什么成语?
是不是学富五车?2023-08-04 03:01:3212