- 北营
-
实数: 有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。
自然数:非负数
- 凡尘
-
实数是有理数和无理数的统称,有理数就是整数和分数,无理数就是无限不循环小数。自然数是就是非负整数,包括0和正整数,是整数的一部分。实数的范围比自然数大很多。
实数指的是什么?小数吗?
实数分为有理数和无理数,而小数是有理数和无理数的一种表现形式,应该说小数是无理数和有理数的一种表现形式,较为恰当些。2023-07-10 23:11:303
实数、虚数是什么 什么是实数、虚数
1、实数(realnumber)是有理数和无理数的总称。实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。 2、虚数。虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。2023-07-10 23:11:481
正实数是什么意思
正实数是大于0的所有实数,包括有理数和无理数两类、或代数数和超越数两类。正实数是数学术语,比0大的数叫正数,0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写,负数用负号“-”和一个正数标记,如-2,代表的就是2的相反数。整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。2023-07-10 23:12:071
实数包括什么小数算吗
小数是实数。实数,包括有理数和无理数。 其中有理数包括整数、分数;分数中包括有限小数、无限循环小数;无理数即无限不循环小数。任何纯小数和无限循环小数都可以化为分数,是有理数,任何无限不循环小数都是无理数,所以小数是实数。 数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数。实数可实现的基本运算有加、减、乘、除、乘方等,对非负数还可以进行开方运算。2023-07-10 23:12:241
自然数,有理数,整数,实数有什么区别
区别在于理解U0001f6022023-07-10 23:12:334
常数整数实数分别是什么
常数是确定不变的数整数是-1,-2,-3,0,1,2这样的数自然数是大于等于0的整数实数是有理数和无理数知道不2023-07-10 23:13:132
常数、有理数、无理数、实数、的概念是什么?
实数:你现在见过的所有的数都可以称之为实数,但凡一个数里面出现了i这个字母,那么这个数便不是实数。1、8、-900、45.97、√3、π等等~有理数:化简以后没有根号的数就是有理数(根号4、9、16、25等等是可以化简的)。1.3、68、70.9023都是有理数。整数:没有小数点,或者根号或者分数线的就是整数。-1、-5、-8、6、0、1000等等都是整数。自然数:整数的一部分,0、1、2、3、4、5、6……都是自然数。分数:只要不是整数的有理数就都可以称之为分数(小数),所以你所提出的所有的那些数都是分数~2023-07-10 23:13:221
全体实数是什么意思
全体实数是指所有的实数,有理数和无理数统称为实数。实数如果按有理数和无理数分类,则有实数、有理数 、正有理数,、零 、负有理数、有限小数或无限循环小数无理数、正无理数、负无理数、无限不循环小数。 全体实数是什么意思 有理数和无理数统称为实数。 实数有如下的分类方法: 如果按有理数和无理数分类,则有实数,有理数,正有理数,零 ,负有理数,有限小数或无限循环小数无理数、正无理数、负无理数、无限不循环小数,由于有理数和无理数都有正负之分,如果按正负概念为标准,实数又可分类为实数、正实数、正有理数、正无理数 零、负实数、负有理数负无理数。 有理数和无理数统称为实数。 这里应当注意: (1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数,例如1/2=0.5(有限小数),1/3=0.3(无限循环小数)。 (2)无理数是无限不循环小数,其中有开方开不尽的数,如 , 等,也像π这样的超越数. (3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不循环小数不能化为分数,它是无理数,包括分数,包括有理数(整数、分数、无限循环小数),和无理数(无限不循环小数,如圆周率)。 实数的性质 1、封闭性 实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。 2、有序性 实数集是有序的,即任意两个实数a 、b 必定满足并且只满足下列三个关系之一:a<b,a=b,a>b。 3、传递性 实数大小具有传递性,即若a>b且b>c,则有a>c。 4、阿基米德性质 实数具有阿基米德性质。 5、稠密性 实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。 6、完备性 作为度量空间或一致空间,实数集合是个完备空间。2023-07-10 23:13:281
什么是实数,是不是所有的数都叫实数?
不是的 与之对应的还有虚数 如-1开方就是一个虚数 单位为I 实数与虚数结合就是复数 之后会引进数域 当然有实变函数就有复变函数 不过那玩意有些难 初学者不宜掌握 现在高中只学了复数及其简单的运算法则。 很容易的。2023-07-10 23:13:491
实数集指的是什么
包含所有有理数和无理数的集合就是实数集。高中阶段之前接触到的数一般都是实数。高三会学到复数,不属于实数,但内容比较少,较简单。2023-07-10 23:14:003
实数的定义是什么?实数是无限不循环小数吗?
有理数和无理数统称实数.无限不循环小数只是无理数,它不是实数的全部。2023-07-10 23:14:261
什么是实数集
实数集通俗地说是指包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。1.实数集合R对加、减、乘、除(除数不为零)四则运算具有封闭性。即任意两个实数的和、差、积、商(不为零)仍为实数。实数集合是有序的,也就是说,任何两个实数a、b必然满足下列三种关系之一:ab。2.微积分学是以实数为基础的。但是,当时的实数还没有精确的定义。在1871年之前,德国数学家康托尔第一次对实数提出严格的定义。任一一集(包括R)非空上界必有上界。2023-07-10 23:14:351
什么是实数?
包括0! 有理数和无理数统称为实数. 实数有如下的分类方法: 如果按有理数和无理数分类,则有 实数 有理数 正有理数 零 负有理数 有限小数或无限循环小数无理数 正无理数 负无理数 无限不循环小数 由于有理数和无理数都有正负之分,如果按正负概念为标准,实数又可分类为 实数 正实数 正有理数 正无理数 零 负实数 负有理数负无理数 这里应当注意: (1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数,例如12=0.5(有限小数),13=0.3(无限循环小数). (2)无理数是无限不循环小数,其中有开方开不尽的数,如2,33等,也有π这样的数. (3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来 表示;而无限不循环小数不能化为分数,它是无理数.2023-07-10 23:14:431
实数的意思实数的意思是什么
实数的词语解释是:实数shíshù。(1)不存在虚数部分的数;有理数和无理数的总称。(2)实在的数字。实数的词语解释是:实数shíshù。(1)不存在虚数部分的数;有理数和无理数的总称。(2)实在的数字。结构是:实(上下结构)数(左右结构)。拼音是:shíshù。注音是:ㄕ_ㄕㄨ_。实数的具体解释是什么呢,我们通过以下几个方面为您介绍:一、引证解释【点此查看计划详细内容】⒈实际数目。引宋陆游《老学庵笔记》卷三:“一日,同见新守,守问天童觉老:‘山中几僧?"对曰:‘千五百。"又以问育王湛老,对曰:‘千僧。"末以问持持拱手曰:‘百二十。"守曰:‘三刹名相亚,僧乃如此不同耶?"持_拱手曰:‘敝院是实数。"守为抚掌。”毛泽东《井冈山的斗争》:“当革命初期,中间阶级表面上投降贫农阶级,实际则利用他们从前的社会地位及家族主义,恐吓贫农,延长分田的时间。到无可延宕时,即隐瞒土地实数,或自据肥田,把瘠田让人。”⒉数学术语。有理数和无理数的总称。二、国语词典有理数和无理数的总称。相对于虚数而言。三、网络解释实数实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。关于实数的诗句三万六千须实数一实数千年守者愆实数关于实数的成语踏踏实实数一数二虚虚实实数不胜数矮矮实实关于实数的造句1、他们只在乎两项实数价格与价值。2、波函数相对误差随时间的演变表现出一定的规律性,其实数部分和虚数部分的相对误差周期性地在正负之间来回变化。3、通常的实数类型,在当前的使用中,等同于双精度实数。4、将网络参数作为实数编码基因进行遗传选择,参数个体的受损率超过退化阈值时发生结构退化。5、先采用实数编码,即以染色体的基因座表示导弹系统各子系统编号并初始化。点此查看更多关于实数的详细信息2023-07-10 23:15:041
实数都是自然数吗? 什么是质数?
自然数就是正整数加上0 实数不都是自然数,比如0.5是实数,但不是自然数. 质数是除了1和它本身以外没有其它约数的数,比如:2,3,5,7,11,13,. 合数除了1和它本身还有其它约数.比如:4=2×2,6=2×3,8=2×4,. 1既不是质数也不是合数. 除了2,其它质数都是奇数.2023-07-10 23:15:101
实数指什么
1、实数,是有理数和无理数的总称。 2、数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。 3、实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。 4、所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。2023-07-10 23:15:281
实数是什么?
实数,就是:整数、小数,以及“带小数”的统称。实数包括了: 整数(正整数、负整数、零); 小数(正的、负的、有限的、无限的、循环的、不循环的)。 带小数(含有整数部分和小数部分)这些,都是小学学过的知识吧?实数,简单来说,就是:“数轴上所有的点”上的数字。--------------------------虚数,是“实数与虚单位 i 的乘积”。 其中 i * i =-1。 由于 i 的存在,虚数就是“i 轴上所有的点”的数字。--------------------------复数,包括实部和虚部两个部分。 一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。 复数就是:“复平面上所有点”上的数字。2023-07-10 23:15:432
实数的概念是什么?
实数,是有理数和无理数的总称。实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数和虚数共同构成复数。实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性。扩展资料:实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。2023-07-10 23:16:262
想知道实数是什么意思?
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数的性质(1)封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。(2)有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。(3)传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。(4)与数轴对应:任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。(5)稠密性:实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。2023-07-10 23:16:401
什么是实数(实数的分类)
什么是实数(实数的分类)实数分为两大类最先知道的是有理数,有理数是可以用整数表达的数,包括整数和分数,用小数表示就是无尽循环小数,因为整数后面也可以看做有无限个零循环,所以有理数是无尽循环小数。最开始古希腊的毕达哥拉斯提出万物皆数概念,认为一切数都可以用整数表示,但是勾股定理提出来后,希帕索斯发现以1为边的等边直角三角形的对边无法用整数表示,人类首次认识到无理数存在,实数系统就大大扩充了。我们后来知道,无理数不仅存在,而且在数轴上无理数还要远远多于有理数。而且一些重要的数学常数有很多是无理数,比如圆周率π,自然常数e,无理数可以表示为无限不循环小数的形式。总结起来,实数可以用一句话表达,那就是实数就是无尽小数,循环的是有理数,不循环的是无理数。2023-07-10 23:16:591
什么叫做实数
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(realnumbersystem)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。2023-07-10 23:17:081
实数是数还是什么?
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。扩展资料:实数的性质有:一、高级性质实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。二、拓扑性质实数集构成一个度量空间:x和y间的距离定为绝对值(x-y),作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。三、完备性实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。参考资料来源:百度百科—实数2023-07-10 23:17:141
实数的概念都是什么
1、实数的概念是什么:实数是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。2、实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。3、所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。2023-07-10 23:17:261
数学里什么是实数?
数学里是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列。在实际运用中,实数经常被近似成一个有限小数。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。性质(1)封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。(2)有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。(3)传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。2023-07-10 23:17:351
什么是实数?实数包括什么数?
有理数和无理数统称为实数,即实数可以分为有理数和无理数。2023-07-10 23:18:033
什么是实数和虚数
大多数人最为熟悉的数有两种,即正数(+5, +17.5)和负数(-5,-17.5)。负数是在中世 纪出现的,它用来处理3-5这类问题。从古代人看来,要 从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪 的商人却已经清楚地认识到欠款的概念。“请你给我五个苹 果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。” 这就等于说:(+3)-(+5)=(-2)。 正数及负数可以根据某些严格的规则彼此相乘。正数乘 正数,其乘积为正。正数乘负数,其乘积为负。最重要的是, 负数乘负数,其乘积为正。 因此,(+1)×(+1)=(+1); (+1)×(-1)=(-1); (-1)×(-1)=(+1)。 现在假定我们自问:什么数自乘将会得出+1?或者用 数学语言来说,+1的平方根是多少? 这一问题有两个答案。一个答案是+1,因为(+1) ×(+1)=(+1);另一个答案则是-1,因为(-1) ×(-1)=(+1)。数学家是用√ ̄(+1)=±1来 表示这一答案的。(碧声注:(+1)在根号下) 现在让我们进一步提出这样一个问题:-1的平方根是 多少? 对于这个问题,我们感到有点为难。答案不是+1,因 为+1的自乘是+1;答案也不是-1,因为-1的自乘同 样是+1。当然,(+1)×(-1)=(-1),但这是 两个不同的数的相乘,而不是一个数的自乘。 这样,我们可以创造出一个数,并给它一个专门的符号, 譬如说#1,而且给它以如下的定义:#1是自乘时会得出 -1的数,即(#1)×(#1)=(-1)。当这种想法 刚提出来时,数学家都把这种数称为“虚数”,这只是因为 这种数在他们所习惯的数系中并不存在。实际上,这种数一 点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有 一些严格限定的属性,而且和一般实数一样,也很容易处理。 但是,正因为数学家感到这种数多少有点虚幻,所以给 这种数一个专门的符号“i”(imaginary)。我们可以把正 虚数写为(+i),把负虚数写为(-i),而把+1看作 是一个正实数,把(-1)看作是一个负实数。因此我们可 以说√ ̄(-1)=±i。 实数系统可以完全和虚数系统对应。正如有+5, -17.32,+3/10等实数一样,我们也可以有 +5i,-17.32i,+3i/10等虚数。 我们甚至还可以在作图时把虚数系统画出来。 假如你用一条以0点作为中点的直线来表示一个正实数 系统,那么,位于0点某一侧的是正实数,位于0点另一侧 的就是负实数。 这样,当你通过0点再作一条与该直线直角相交的直线 时,你便可以沿第二条直线把虚数系统表示出来。第二条直 线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。 这样一来,同时使用这两种数系,就可以在这个平面上把所 有的数都表示出来。例如(+2)+(+3i)或 (+3)+(-2i)。这些数就是“复数”。 数学家和物理学家发现,把一个平面上的所有各点同数 字系统彼此联系起来是非常有用的。如果没有所谓虚数,他 们就无法做到这一点了 所以复数的平方根是虚数2023-07-10 23:18:201
什么是实数什么是虚数
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”(任何实数都可在数轴上表示)。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。实数可以分为有理数和无理数(如π、√2)两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母"R"表示。而Rn表示n维实数空间。实数是不可数的。实数是实分析的核心研究对象。2023-07-10 23:18:541
实数的概念是什么
1、实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。2、实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。3、所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。4、实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示2023-07-10 23:19:042
数学中什么是实数?
实数包括整数如1、2、10 小数如1.1 非有理数派、根3andsoon数包括实数和虚数虚数是有i的2023-07-10 23:19:121
实数的定义是什么?
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。2023-07-10 23:19:482
实数是什么范围?
负的无穷大到正的无穷大,这个范围内的书都是实数。实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。扩展资料:注意事项:实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正,当负因数为奇数个时,积为负。参考资料来源:百度百科-实数2023-07-10 23:20:031
实数是什么范围 实数包括哪些范围
实数的范围是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。 1、封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。 2、有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。 3、传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。 4、与数轴对应:任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。 5、稠密性:实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。2023-07-10 23:20:201
什么是实数?给出证明
包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。http://baike.baidu.com/view/14749.htm2023-07-10 23:20:272
什么是实数
实数(real number)是有理数和无理数的总称。 实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。 实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。 所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。2023-07-10 23:20:481
在数学中什么叫实数?
1、有理数和无理数统称为实数. 2、实数和数轴上的点是一一对应的 在数轴上,右边的点表示的数比左边的点表示的数大. 3、在实数范围内,相反数、倒数、绝对值的意义与有理数范围的相反数、倒数、绝对值的意义完全一样. 4、实数可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则与运算律对实数仍然适用.实数理论千百年来,数学爱们都在为整个数学寻找一个可靠的逻辑基础而不懈努力,然而分析的算术化,是以实数为基础的.不弄清实数的本质,不给实数以明确的定义、建立实数大小、运算等理论,连续函数的性质就无法彻底弄清,甚至连柯西收敛准则的充分性也无法严格证明. 这就迫使数学家们加快建立数学理论的步伐. 实数理论的核心问题是对无理数的认识,早在19世纪前期,柯西就已感到定义无理数的重要性.他在《分析教程》中,把无理数定义为收敛的有理数列的极限,设{yn}是一列有理数,如果存在一个数y,yn-->y,那么y就是一个无理数. 这个定义存在逻辑上的毛病.因为有理数序列{yn}不收敛于无理数(即y为有理数),则定义不出无理数;不收敛于有理数,那得不承认y是无理数才行,才能定义它是无是数,这就犯了循环定义的错误. 19世纪60年代末以后,出现了几种不同的无理数定义,分别出自维尔期特拉斯、梅雷、康托和戴德金等人之手,但不论他们定义实数的具体方法有何不同,都符合以下三个条件:第一,把不理数当作已知,从有理数出发定义无理数;第二,所定义的褛的性质及其运算律,与有理数所具有的一三,这样定义的实数是完备的,即在极限运算下不会再出现新数.为了避免柯西理数定义中的错误,维尔斯特拉斯坚持了他的表态观点,曾引入"复合数"概念.并用复合数定义有理数.如3(2/3)由3α和2β组成,其中α=1是主要单位,元素β=1/3.一个数已知它由什么元素组成,以及每个元素出现的次数时,就完全确定了,维尔斯特拉斯继而定义无理数如√2定义为1α,4β1γ----康托与梅雷定义的无理数基本相同,以有理数为出发点引进新数类----实数.该数类包括有理数和无理数.在褛理论建树中,戴德金的实数理论是最完整的.人用有理数分割来定义实数这一思想来源于对直线连续性的考虑.人和康托大致同时提出了实数集与直线上的点一一对应假设.这一假设后来称为“康托-戴德金"公理,他想,直线上的有理点是不连续的,必然由无量数填补空位,才能使直线成为连续.如何才能把这些补空位的无理数表示出来?戴德金用全体有理数的一个分割,来表示一个无理数. 上面所说的几种无理数定义,都把有理数当作已知的,因为任何一个有理数,都可以写成两个整数之比,因此问题归结为整数.那么对于整数需不需要再下定义呢?对这个问题也产生了分歧,维尔斯特拉斯就认为没必要,有理数逻辑地归为一对整数,对整数的逻辑无须做进一步研究. 戴德金则不然,他在《数的性质与意义》一书中,利用集合论思想给出了一个整数理论,虽因过于复杂未被采用,却给皮亚诺以直接启示. 1889年,意大利数学家皮亚诺在他的《算术原理新方法》一书中,用公理方法给出了自然数理论,从而完成了整个数系逻辑化工作. 皮亚诺出生于都灵,曾任都灵大学讲师和教授,是一位数理逻辑学家.他不像逻辑主义者那样,主张把数学建立在逻辑上,而是主张把逻辑作为数学工具. 皮亚诺在《算术原理方法》一书中,使用了一系列符号,如用∈,NO和a+分别表示属于、包含、自然数类和a的下一个自然数等;给出了四个不加定义的原始概念:集合,自然数,后继数和属于;还提出了自然数的五个公理: 1)1是自然数; 2)1不是任何自然数的后继数; 3)每个自然数a都不一个后继数a+; 4)如果a+=b+,则a=b; 5)如果s是一个含有1的自然数集合,且当s含有a时,也含有a+,则s含有全部自然数.这个公理是数学归纳法的逻辑基础. 接着,皮亚诺根据自然数定义整数:设a,b为自然数.则数对(a,)即"a-b"定义整数.当a>b,a/span> 有了整数概念,再通过有序对定义有理数:若n,m为整数,则有序对(n,m)(m0)即n/m定义一个有理数. 这样,皮亚诺应用数学符号和公理方法,在自然数公理的基础上,简明扼要地建立起自然数系、整数系和有理数系.当然用公理的、逻辑的方法构造出来的数系,使一数学家感到很不自然.他们认为这是将本一清楚的概念"做了不可理解的推广,然而,实数理论的建立,谱写了19世纪数学史上辉煌的一章.2023-07-10 23:20:571
实数是什么?0是不是实数?
基本概念实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括无限循环小数、有限小数、整数。 数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。 实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。 实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。0是实数2023-07-10 23:21:063
实数的概念是什么,实数包括0吗
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。实数包括02023-07-10 23:21:3212
实数和整数是什么意思
我们以0为界限,将整数分为三大类:正整数、零、负整数。实数可以分为有理数和无理数两类,或代数数和超越数两类。 整数的意思 整数是正整数、零、负整数的集合。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。 实数的意思 实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。 实数和整数的区别 1.分类不同: 实数可以分为有理数和无理数两类,或代数数和超越数两类;整数分为正整数、零、负整数三大类。 2.是否含有小数位不同 实数含有小数位,包括有限小数与无限小数;整数不含小数位,是像-3,-2,-1,0,1,2,3,10等这样的数。2023-07-10 23:22:101
grey ant英语怎么读
灰色英语[ɡ re]美丽[ɡ再]灰色;烟灰色;灰白色;灰马;白马;灰色的;烟灰色;灰白色;灰白的头发;苍白;暗淡;沉闷;没意思;老年人的;变成灰色;变白;在城市里,干净的白雪已经变成了灰色的雪泥。在城市里,白雪已经变成了灰色的雪泥。【其他】比较级:grey最高级:grey第三人称单数:greys复数:greys现在分词:grey过去式:grey过去分词:grey一站式出国留学攻略 http://www.offercoming.com2023-07-10 23:12:531
公元前27年对应我国哪一个朝代?
西汉,汉成帝年间。这一年,成帝等王姓五侯。2023-07-10 23:12:543
这是我看过的最没意思的书用英语怎么翻译
您好,可翻译为:Thisistheleastinterestingbook thatIhaveeverseen. 满意速速采纳并给予好评,谢谢合作!2023-07-10 23:13:021
公元前202年发生了什么事?
扎马之战(公元前202年)扎马之战是第二次布匿战争的最后一次会战。在这次会战中,普布利乌斯·科尔内利乌斯·西庇阿(后尊称为阿非利加努斯)打败了迦太基将军汉尼拔。到公元前6世纪中叶以前,迦太基已成为西地中海的主要大国。在这以后的数世纪期间,迦太基进行了频繁的征战,并把它的商业帝国扩展到了北非、西班牙、西西里岛和撒丁岛。但是,到公元前3世纪中叶,它和与之保持了几乎300年同盟关系的罗马发生了冲突。那时,罗马主宰着整个意大利半岛,它对迦太基人距自己如此之近深感不安,而且,它对西西里岛早已垂涎三尺。所以,公元前264年,罗马发动了第一次布匿战争。 这场战争一直持续到公元前241年。在战争过程中,由于在陆地和海上(这场战争主要是海战)作战的迦太基将领们没有得到国内政治家的有力支持,结果,他们的舰队被歼灭,西西里岛和撤丁岛落入敌手。在后来的许多年里,哈米尔卡·巴卡在西班牙大力增强迦太基人的实力。公元前218年罗马人发动第二次布匿战争后,哈米尔卡·巴卡的儿子汉尼拔就是从西班牙向罗马发起陆路进攻的。 汉尼拔在意大利转战16载,取得了(特别是在初期)巨大的战果,赢得了诸如特雷比亚、特技西梅诺湖、坎尼等会战的胜利。 然而,他在征战中并没有得到迦太基的大力支持。公元前207年,他的弟弟哈斯德鲁巴率军增援,结果却在意大利北部的梅陶罗河畔战败而死。事实上汉尼拔在被召回迦太基之前已在意大利南部陷入困境。 与此同时,迦太基人还在其他战场作战,其中最重要的战场是西班牙。战争爆发后不久,罗马派西庇阿两兄弟(巴布利阿斯与尼阿斯,他们分别是阿非利加努斯的父亲和叔叔)前往西班牙摧毁迦太基的实力,并切断汉尼拔的补给线。起初,他们取得了很大的胜利,但当哈斯德鲁巴和他的弟弟马戈以及另一个哈斯德鲁巴(吉斯戈的儿子)统帅的3个迦太基军团增援伊比利亚半岛后,西庇阿两兄弟随即遭到失败,并在战斗中阵亡。这场灾难后不久,罗马元老院作出了一个大胆而理智的决定,即派遣24岁的普布利乌斯·科尔内利乌斯·西庇阿到西班牙指挥那里的军队。西庇阿随后在那里取得了一系列引人注目的战绩。 西庇阿曾跟随其父在意大利北部与汉尼拔作战,后来又在坎尼与汉尼拔交锋。然而,当他去西班牙走马上任时,他的军事才能还鲜为人知。不久,他就用行动证明了自已是历史上最伟大的将军之一。他对各种作战原则,特别是对坚持既定目标、保持机动以及节约兵力等原则都有着深刻的理解。他是一个勇敢的统帅,一个天生的领导者。他总是尽可能地做好充分准备后才进行战斗。 汉尼拔是他在扎马之战中的杰出对手,但论才能,汉尼拔比他要略逊一筹。尽管他的战略有时遭到非议,但从他在意大利的大多数作战表现来看,这些诋毁之词并没有多少证据。扎马之战时,西庇阿已成为第一流的军人,因而他能够发号施令。 到公元前205年,经过贝库、伊利巴和埃布罗河会战的胜利之后,西庇阿已把迦太基人赶出了西班牙,并已能够返回罗马。 但他深知,只有在迦太基,而不是在意大利,才能彻底打败汉尼拔。在取得最后胜利之前,他不得不攻入迦太基本土。当他还在西班牙时,他采取了一个极端冒险而又颇有勇气的行动,即到北非访问,目的是争取很有力量的努米底亚国王西法克斯的支持,结果,他如愿以偿。另一个努米底亚的王公马西尼萨,以前曾在西班牙为迦太基而战,这时也和罗马达成了协议。从军事角度来看,进军非洲的通路已经扫清,但在政治上,西庇阿却有许多对手。不过,公元前205年他被选为执政官,并被委派兼管西西里剩众所周知,那里将是进攻非洲的跳板。 在西西里岛时,西庇阿为了清除政治上的障碍,会见了努米底亚的使节。他从这位使节那里得知:西法克斯已经和哈斯德鲁巴·吉斯戈的女儿索福尼斯芭结婚,并已废止与罗马签订的和约;在今后任何战斗中,西法克斯都将站在迦太基人一边。鉴于这种情况,西庇阿立刻采取了行动。公元前204年的春天,他率领约2.8万人(其中有2000骑兵)的部队扬帆起航,在非洲的法雷纳海角登陆。迦太基城位于突尼斯湾内,大约在两个海角,即法雷纳角和邦角的中间。即将发生的战斗是在现在的突尼斯,即埃尔卡夫-苏塞一线以北的地方展开的。这个地方虽然夏季用水是一个问题。但气候还比较宜人。 西庇阿很快得到了马西尼萨率领的200名努米底亚骑兵的援助。在乌提卡西南方向约3英里的一次战斗中,这些骑兵将汉诺将军率领下的一支迦太基军队诱入西庇阿设下的埋伏圈,使西庇阿彻底击败了这支前来对付他的军队。此后,西庇阿曾试图攻陷乌提卡,但由于那里的防御十分坚固,他采用了多种围攻方法也未能攻下。鉴于哈斯德鲁巴·吉斯戈率领的大批迦太基军队(可能有3.5万名士兵)正在逼进,同时,西法克斯正威胁着他的后方,因此,西庇阿决定在该城东部约2英里处扎寨过冬。 然而,公元前203年春,西庇阿取得了两项重大胜利。他派自己的舰队和2000人的兵力封锁乌提卡,自己则率兵南进,在马西尼萨的巨大帮助下,采取某种欺骗手段首先突袭了西法克斯的营地,继而又袭击了哈斯德鲁巴的营地。西庇阿用火攻摧毁了这两个营地,数以千计的敌人从大火中逃出时被砍杀。虽然哈斯德鲁巴和西法克斯在这场杀戮中死里逃生,但1个月后,他们又在一个叫做大平原的地方惨遭失败。该地位于巴格拉达斯谷地,在迦太基西南方向约8英里的地方。这两个迦太基统帅又一次安全脱逃。但西庇阿在突尼斯一带攻城掠地的同时,又派出副将莱利乌斯和马西尼萨前去追击西法克斯。经过激烈战斗,他们终于擒获了西法克斯。2023-07-10 23:13:101
这是我曾经看过的最没意思的书。英文翻译是什么?
This is the least interesting book I have ever read .2023-07-10 23:13:111
瑞比英文怎么拼???
Rabby没意思,就是英文名2023-07-10 23:13:181
亲爱的不在家 没意思了 睡觉吧用英语怎么说
亲爱的不在家,没意思了,睡觉吧.Mydearisnotathome,it"sboring,soIgotosleep.希望可以帮到你望采纳2023-07-10 23:12:421
公元前180年至公元前142年是什么朝代
在反抗秦二世的暴政中,项羽和刘邦成为最大的起义军,楚汉相争又归于刘邦建立的汉朝,而这个汉朝是最有名气的,不仅因为开国皇帝刘邦被后人熟知,还因为汉武大帝是千年一帝,但这个汉朝在历史上叫做西汉。而历史上并不是只有这一个汉朝,据考证历史上的汉朝至少有十个以上。 1 西汉。 为什么以后的中国人每每自诩为汉人,就是因为西汉打下的江山很强大,让很多人引以为荣,很多小的国家也要称自己为汉朝,因为他们想要和西汉一样强大。 其实刘邦本人最开始并不喜欢"汉"这个称号,还想要废除这个称号,因为刘邦起家于汉中,因此得到这个称号,但在和项羽多次交锋中,刘邦都以失败告终,因此也觉得这个称号有些晦气,想要废除。 可很多时候,并不是说你认为这个名字不够好就可以不用的,就在刘邦下定决心要把汉这个称号给换掉的时候,一件事的发生改变了刘邦的想法。 当时的楚怀王义帝可以说是项羽跟刘邦的老上司,说白了大家都是楚国人,推翻大秦的统治也是为了楚国的复位。 最初的时候,无论是刘邦还是项羽实力都不是很强大,于是就拿出来一个所谓的大义名分来号召天下群英来投奔自己,所以楚怀王义帝就出现了。 而刘邦的汉王称号其实就是楚怀王给封的,原本刘邦打算不用这个封号的时候,楚怀王被项羽给杀害了。 虽说楚怀王在名义上是项羽的上司,可实际上楚怀王也只是项羽当年拉出来的挡箭牌而已,现在大秦已经被推翻了,那么这个所谓的楚怀王也就没有什么用了。 而此时刘邦看到了机会,大家以前都认楚怀王为上司,可是现在项羽却以下犯上杀掉了楚怀王,如果借着这个由头来反抗项羽的话,说不定可以在一瞬间拉起很多心中有共鸣的人。 也就是这样的原因,所以汉王这个称号又保留了下来,一直到刘邦创立了自己的大汉王朝,心中更是对汉这个称号情有独钟,于是就成了自己的国号。 2 东汉。 在王莽篡位之后,有一位起义军领袖想要夺回刘氏江山,他就是刘秀,刘秀在打了多次胜仗之后逐渐树立了威信,之后利用联姻的方式发展壮大,最后建立了东汉王朝。 虽然刘秀的名气没有刘邦那么大,东汉也没有西汉那么强盛,但东汉末年的纷乱却广为大众所熟知。 毕竟我们所看的《三国演义》电视剧或者小说当中,第一句就是东汉末年,耳熟能详的情况下,大家也对东汉有了很清晰的认识。 虽说刘秀的名气没有刘邦大,但是这个所谓的名气只是指在正史当中,实际上身为位面之子的刘秀怎么可能没有名气,当时把身为穿越者的王莽打到生活不能自理,就可以想象一下刘秀有多猛了。 正是王莽这个疑似穿越者的身份,才会让大家对于东汉有了一个明确的概念。 也不知道是不是因为汉朝就是这么一个传统,到了中后期的时候各种外戚干涉朝政要事,最终到了汉灵帝年间,直接爆发了著名的黄巾之乱,将本已摇摇欲坠的大汉朝再一次推向了深渊。 3 蜀汉。 蜀汉是三国时期的一个国家,由刘备建立,刘备是汉室宗亲,因此想要恢复汉朝的统治也是理所当然,为了表明自己是正统的,因此改国号为蜀汉,表示要继承东汉的正统。 说实话刘备这个所谓的中山靖王后代的身份,一直就是个迷,也许当时的汉献帝急需要一个类似刘皇叔这样的外援,所以才会亲口承认刘备这个刘皇叔。 也正是从这一天开始,刘备原本不甘平凡的内心开始了巨大的波动,当时本已经认命的刘备,开始想尽一切办法要搞垮曹操,再次成就汉朝的辉煌。 于是自己的两个兄弟关羽和张飞开始了漫长的创业之路,虽然历经了千难万阻,但是最终的结果还是让刘备成了自己的蜀汉,当然了所谓的人生巅峰,也很可能就是自己一辈子最出色的那一天,而刘备可能是把自己的后半生的运气一次用光了,所以才会在夷陵被东吴一把火烧到了一穷二白。 如果不是自己在临终前托孤诸葛亮,说不定刚刚创立的蜀汉直接就消失在历史的长河之中。 刘备一生的梦想就是统一全天下,让汉王朝重回巅峰,这个梦想也感召到了孔明这样的奇才,但可惜的是,孔明数次北伐都失败了,最后大汉王朝没有复辟,反而让晋朝统一了天下。 4 玄汉。 这个玄汉并不是一个稳定的政权,也没有维持多长时间,但依然被很多人知道,在王莽篡位之后,不光有刘秀这个反对者,还有很多股反抗势力,其中就有刘玄带领的一支起义军,而为了表明自己是汉室正统,因此刘玄还被众人拥上了皇帝宝座,因此他们被称为玄汉。 但是在历史上玄汉其实就相当于接力赛当中的一个小小的按力而已,如果不是为了区分当时的这么一段时间,也许这个玄汉可能就不存在了。 但是不管怎么说当时的刘秀也是跟随刘玄一起打拼天下的,虽说到了后期刘秀跟刘玄之间产生了矛盾,最终分道扬镳,可是最初的引路人还是刘玄。 再说了英雄总是要有足够强大的敌人来衬托,才会显得自己更加的英明神武,刘秀跟王莽之间的战斗看似精彩,但是身为位面之子的刘秀真正跟王莽之间并没有太多的争斗,几乎就是带着主角光环一样把王莽给放倒了。 唯一让刘秀有点成就感的,可能就是跟刘玄之间的各种争斗,这才是刘秀引以为傲的资本,所以刘玄这个所谓的玄汉是一定要突显出来。 可以说这个所谓的玄汉名声越响亮,刘秀的能力也就越突出,对于将来治理整个天下起到了不可估量的作用。 5 前汉。 在西晋末年的时候,刘渊建立了前汉,至于刘渊是不是刘邦的后人,其实不好考证,但他觉得汉朝就是辉煌的代名词,因此自己建立的朝代也要叫汉朝。 为什么要说刘渊不一定是刘邦的后人呢,因为刘渊是匈奴首领冒顿单于的后裔,当年汉高祖为了缓解匈奴的压力,所以就从自己的汉室宗亲当中挑了一位宗室之女,然后当成了公主嫁给了当时的冒顿单于。 要不是当时的汉朝刚刚成立,实力还不足以将匈奴消灭,根本就不可能有和亲这么一说,可是没办法忍一时风平浪静,为了迷惑当时的匈奴,只好出此下策。 可以说当时所谓的公主直接就是被放弃掉的,是汉室宗亲的可能性非常小,说不定只是某个汉室手下的侍女而已,所以说刘渊一直自命为刘邦的后人,这个说法其实根本就不成立。 当然了也有可能刘渊的血脉当中带有汉族的血脉,毕竟当时的所嫁之女哪怕只是一名侍女,也是汉族的血脉呀,所以说刘渊要说自己是汉族的血脉,这个肯定正确,可要说是刘邦的血脉,只能说他想的太多了。 6 后汉。 是唐朝人刘知远建立的政权,刘知远出生于唐昭宗时期,最开始只是一个士兵,由于作战勇敢,多次受到上级提拔,后成为军阀首领。 在大唐晚年的时候,藩镇割据的情况非常严重,地方势力各自为政,根本不受朝廷的掌控,因此才带来了五代十国的混乱场面。 而刘知远就是趁着这个天下大乱之时,建立了一个后汉政权,而这个朝代也是被历史学者承认的。 其实刘知远就跟后来的宋朝赵匡胤差不多,都是被自己的手下硬逼着当上了皇帝。 自从石敬瑭将燕云十六州送给契丹之时,天下万民已经对后晋不报一点希望,尤其是契丹俘虏了后晋少帝石重贵之后,后晋已经名存实亡。 此时整个中原相当于无主之地,刘知远身边的文臣武将纷纷上书劝刘知远登上帝位,可能是刘知远此时想到了三国时期刘备的三让徐州事迹,于是就小小的装了一下。 一直等到众大臣第三次上书之后,才答应了登位,之后看准了时机在太原成立了后汉。 7 北汉。 由刘崇建立,共有4位皇帝,统治了不到30年就被宋朝给灭了,北汉的势力范围在山西附近,北汉之所以能延续近30年,主要是大辽国在帮助,北汉也是五代十国中的最后一个政权。 其实北汉相对来说已经跟汉没有什么关系了,只是刘崇依就还是延用这个称号而已,要知道汉族的主势力在中原,而刘崇却是依靠北方的辽国来支撑自己的政权。 说白了就是趁着郭威灭掉后汉的同时,在北方占了点小便宜而已,借着汉族的名义在弄了个北汉,可是又担心郭威顺手灭了自己,所以才会投靠辽国。 原本刘崇忍辱负重多年,以为自己可以在中原有一番作为,谁知道被当时的后周柴荣直接打到怀疑人生,哪怕当时跟辽国一起联合,可结果依然很不乐观,大军被后周柴荣击败不说,之后还被柴荣围困在城中两个月之久。 可以说经此一战,整个北汉已经名存实亡,再也无力南下,被之后的赵匡胤所成立的北宋所灭。 总结 要整个中国古代历史当中,汉朝这个名字可能是因刘邦将期发挥到了最大,而且整个中原的所有百姓都是汉族人民,所以才会产生这么多汉朝,有些是自家的传承,所以被称之为汉朝的一种,另外一些就是单纯的蹭热度而已,比如刘崇所创立的北方就是如此。2023-07-10 23:12:331
没什么英文意思?
没什么意思英文怎么说``帮忙谢谢了! 你这个都没有语境啊 如果是说生活没什么意思,那就是 life is quite boring. 如果说是词语没意思,那就是no meaning 如果人家问你:“你说这话啥意思?”你说:“没什么意思.?”弧就是 nothing没有英语怎么说 没有 [几种含义] 1. (无) not have; there is not; be without: not sure of; not confident; 没有把握 fall flat; 没有达到预期效果 2. (不及; 不如) not so ...as: You are not as tall as he. 你没有他高。 3. (不到) less than: She was here less than five minutes. 她呆了没有5分钟就走了。 4. (表示 “已然”“曾经”的否定: 未): I didn"t see him this morning. 我今早没有见到他。 希望我的回答 对你有所帮助 如有疑问 请在线交谈 祝你:天天开心 心想事成 O(∩_∩)O ... “没有为什么"用英语怎么说? No why! “我没什么可说的了”用英语怎么说? 谢谢 40分 I have nothing to say . 没有没有我没有这个意思英语翻译 No no that"s not what I meant 请采纳 没有什么好说的 用英文怎么说 i have nothing to say. no mand无可奉告口语里面就用that"s it.作为谈话的结束 一点意思都没有,用英语怎么说 一点意思都没有 英文:Not at all。 或者:There is nothing at all。 “并没有”翻译成英文怎么说 语境不清楚。 一定要把全句说完,这样才能得到准确的翻译…… 没意思。英语怎么说? It"处 boring! 或 It"s uninteresting!2023-07-10 23:12:291
我感觉越来越没意思了,用英语怎么说?
这句话不能逐字翻译,应该这样表达完整些:gradually, I feel bored about it.用bored,无聊,没意思grandually,渐渐地2023-07-10 23:12:231
我感觉越来越没意思了,用英语怎么说?
这句话不能逐字翻译,应该这样表达完整些:gradually, I feel bored about it.用bored,无聊,没意思grandually,渐渐地2023-07-10 23:12:031
生活真的没意思 用英语怎么说
Life is so boring.2023-07-10 23:11:552