汉邦问答 / 问答 / 问答详情

分部积分公式

2023-07-10 09:11:52
TAG: 公式 积分
无尘剑

分部积分的公式,很容易找到吧?不知你究竟想问什么,我给你推一下吧。

(uv)"=u"v+uv"

得:u"v=(uv)"-uv"

两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx

即:∫ u"v dx = uv - ∫ uv" d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

分部积分的公式,很容易找到吧?不知你究竟想问什么,我给你推一下吧。

(uv)"=u"v+uv"

得:u"v=(uv)"-uv"

两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx

即:∫ u"v dx = uv - ∫ uv" d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

黑桃花

∫ u"v dx = uv - ∫ uv" dx。

分部积分:

(uv)"=u"v+uv"

得:u"v=(uv)"-uv"

两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx

即:∫ u"v dx = uv - ∫ uv" dx,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

扩展资料:

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

豆豆staR
小白

u222b v du = uv - u222b u dv

请教连续分部积分的公式

分部积分的公式,很容易找到吧?不知你究竟想问什么,我给你推一下吧。(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx即:∫u"vdx=uv-∫uv"d,这就是分部积分公式也可简写为:∫vdu=uv-∫udv希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
2023-07-10 08:08:461

用分部积分法求积分

首先需要去掉绝对值号。 则原式=∫(-√3到0) -arctanxdx +∫(0到√3) arctanxdx。 这一步或者用,|arctanx|是偶函数, 在对称区间上的积分可以2倍计算,即, 原式=2∫(0到√3) arctanxdx★ 分部积分公式是【∫UdV=UV-∫VdU,需带上积分限,下同。
2023-07-10 08:09:431

分部积分问题

因为(uv)"=uv"+vu",所以移项得uv"=(uv)"-vu",两边积分得∫uv"dx=∫(uv)"dx-∫vu"dx,即∫udv=uv-∫vdu
2023-07-10 08:09:512

定积分的计算中,如使用了分部积分法,积分的上下限不用变么?

定积分计算时有两种技巧:1、换元法:上下限要变2、分部积分法:上下限不变
2023-07-10 08:10:012

求高等数学定积分分部积分法的详细讲解,附例题,谢谢

蒙逼冒个泡⊙▽⊙
2023-07-10 08:10:114

分布积分法是什么?

分布积分法是微积分学中的一类重要的、基本的计算积分的方法。分布积分法是由微分的乘法法则和微积分基本定理推导而来的,它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。分部积分法四种典型模式一般地,从要求的积分式中将凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦,分布积分法最重要之处就在于准确地选取dv,因为一旦dv确定,则公式中右边第二项中的du也随之确定。但为了使式子得到精简,如何选取dv则要依du的复杂程度决定,也就是说选取的dv一定要使du比之前的形式更简单或更有利于求得积分,依照经验,可以得到下面四种典型的模式。记忆模式口诀反对幂三角指。常用的分布积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀反对幂三指,分别代指五类基本函数反三角函数,对数函数,幂函数,三角函数,指数函数的积分。
2023-07-10 08:10:391

见图
2023-07-10 08:11:063

积分怎么积啊?

分部积分:(uv)"=u"v+uv"。得:u"v=(uv)"-uv"。两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx。即:∫ u"v dx = uv - ∫ uv" dx,这就是分部积分公式。也可简写为:∫ v du = uv - ∫ u dv。相关信息:u2003u2003积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
2023-07-10 08:11:251

用分部积分法求∫x^3sinx^2dx

2023-07-10 08:11:413

分部积分法是根据求两个函数乘积的微分的公式变换来的//求一个例子

例如xe^x,根据函数乘积的微分公式,有d(xe^x)=dx*e^x+xd(e^x)=e^xdx+xe^xdx,因此有xe^xdx=d(xe^x)-e^xdx,两边积分得,∫xe^xdx=∫d(xe^x)-∫e^xdx=xe^x-∫e^xdx,这不正是和按照分部积分公式得出的结果一样吗,继续计算就有∫xe^xdx=xe^x-e^x
2023-07-10 08:12:101

求导数的原函数有没有统一的方法?

如果你说统一的方法让你能根据这个方法就能得到答案,这是没有的,因为很多函数并没有原函数!而有原函数的函数求解原函数的方法也是非常复杂的。数学上很多方法只能告诉你基本原理,然后让你根据原理去推导出答案,不会给你机械的方法
2023-07-10 08:12:202

2023-07-10 08:12:371

分部积分的公式是什么

∫uv"dx=uv-∫u"vdx或∫udv=uv-∫vdu
2023-07-10 08:12:591

如何求定积分的分部积分法?

定积分的分部积分法公式如下:(uv)"=u"v+uv"。得:u"v=(uv)"-uv"。两边积分得:∫u"v dx=∫(uv)" dx -∫uv" dx。即:∫u"v dx = uv -∫uv" dx,这就是分部积分公式。也可简写为:∫v du = uv -∫u dv。(左下角的下方写下限a和左上角的上方写上限b)。定积分的相关介绍定积分是积分的一种,是函数在区间上积分和的极限。一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
2023-07-10 08:13:061

不定积分的分部积分法

  第三十六回:绣鸳鸯梦兆绛芸轩,识分定情悟梨香院
2023-07-10 08:13:472

用分部积分法求不定积分∫x2^xdx

请参考(图片)
2023-07-10 08:13:586

定积分的分部法

分部积分法公式是∫udv=uv-∫vdu,应用时关键在于正确地选择u和dv,一般v要容易求出,∫vdu比∫udv容易求出。
2023-07-10 08:14:161

分部积分如何理解?有一步骤(移项)不懂

微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。分别带指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。 原公式: (uv)"=u"v+uv" 求导公式 : d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为 :d(uv) = vdu + udv 移项后,成为:udv = d(uv) -vdu 两边积分得到:∫udv = uv - ∫vdu + c
2023-07-10 08:14:251

求不定积分的几种运算方法

换元法(三角代换、指数代换、倒代换……)分部积分法有理函数的积分:因式分解(拼凑法、待定系数法、混合法)、万能公式
2023-07-10 08:14:362

高等数学分部积分问题

乘积微分:d(uv)=udv+vdu 两端积分:uv=积分udv+积分vdu 即 积分udv= uv-积分vdu 这就是分部积分公式,用于乘积的整体不好积分,但一部分好微分,一部分好积分,经过微分积分后的整体也能积分.但在部分的选取中须有一定的经验. 例如:积分xe^xdx, 整体不好积分,但可认为是x与e^xdx两部分组成,x好微分,e^xdx容易积分,可令: u=x dv=e^xdx 则 du=dx v=e^x 代入分部积分公式:积分xe^xdx=xe^x-积分e^xdx=xe^x-e^x+C=(x-1)e^x+C
2023-07-10 08:15:001

分部积分交叉相乘公式

∫adx=ax+C,a和C都是常数。分部积分适用于对象是对于反对幂指三,反三函数,对数,幂函数,指数,三角函数等等。分部积分的具体公式∫u"vdx=uv-∫uv"dx。分部积分(uv)"=u"v+uv"得u"v=(uv)"-uv"两边积分得∫u"vdx=∫(uv)"dx-∫uv"dx即∫u"vdx=uv-∫uv"dx,这就是分部积分公式也可简写为∫vdu=uv-∫udv。
2023-07-10 08:15:111

分部积分公式是什么?

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:15:311

分布积分公式是什么?

分部积分:(uv)"=u"v+uv"。得:u"v=(uv)"-uv"。两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx。即:∫ u"v dx = uv - ∫ uv" dx,这就是分部积分公式。也可简写为:∫ v du = uv - ∫ u dv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:15:391

分部积分公式怎么写?

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:15:541

请问分部积分怎么求?

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:16:011

分部积分公式怎么读出来

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:16:091

分部积分公式?

∫(xe^2x)dx=∫1/2xd(e^2x)=1/2xe^2x-1/2∫e^2xdx=1/2xe^2x-1/4∫e^2xd(2x)=1/2xe^2x-1/4e^2x+C=1/4(2x-1)e^2x+C扩展资料运用的方法:分部积分法分部积分法是由微分的乘法法则和微积分基本定理推导而来的。原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。在运用分部积分法时,恰当地选取u 和d v 是解决问题的关键。选取u 和d v 的经验顺序是反对幂指三,其表示反三角函数、对数函数、幂函数(多项式函数)、指数函数和三角函数。即被积函数中出现上述五类函数中的两个函数乘积时次序在前的通常设为u,次序在后的与d x 结合在一起设为d v 。在进行分部积分运算时,如能把上述规律和一些常用的积分技巧和方法相结合,常常能收到事半功倍的效果。参考资料:百度百科–分部积分法
2023-07-10 08:16:541

分部积分法?

定义域 x > -1.∫xln(1+x)^(1/3)dx = (1/3)∫xln(1+x)dx = (1/6)∫ln(1+x)d(x^2)= (1/6)[x^2ln(1+x) - ∫x^2dx/(1+x)]= (1/6)x^2ln(1+x) - (1/6)∫(x^2+x-x-1+1)dx/(1+x)= (1/6)x^2ln(1+x) - (1/6)∫[x-1+1/(1+x)]dx= (1/6)x^2ln(1+x) - x^2/12 + x/6 - (1/6)ln(1+x) + C
2023-07-10 08:17:173

分部积分法的公式

分部积分法:微积分学中的一类重要的、基本的计算积分的方法。它的主要原理是利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。分部积分法的公式及其推导过程:
2023-07-10 08:18:101

求分部积分的公式,谢谢

分部积分的公式,很容易找到吧?不知你究竟想问什么,我给你推一下吧。(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx即:∫ u"v dx = uv - ∫ uv" d,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。
2023-07-10 08:18:311

分部积分法公式怎么用

根据(uv)"=u"v+uv"移向的uv"=(uv)"-u"v,对等式两边求不定积分,得[uv"dx=uv-[u"vdx[udv=uv-[vdu这就是所谓的分部积分公式。手机上输不出那个特殊的数学符号,像f去掉一横(£)。分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
2023-07-10 08:18:401

不定积分分部积分法公式是什么?

不定积分分部积分法公式是Sudv=uvSvdu。不定积分的分部积分法为Sudv=uvSvdu。由于积分号是英文字母S的拉长,为了手机编辑方便,这里我用大写英文字母S表示积分号。之所以积分号用英文字母S的拉长来表示,主要是因为S是英文单词Sum的首字母。不定积分分部积分法介绍:不定积分分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。一般地,从要求的积分式中将凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。分部积分法最重要之处就在于准确地选取dv,因为一旦dv确定,则公式中右边第二项中的du也随之确定,但为了使式子得到精简,如何选取dv则要依du的复杂程度决定。也就是说,选取的dv一定要使du比之前的形式更简单或更有利于求得积分。依照经验,可以得到下面四种典型的模式。记忆模式口诀:反对幂三指。
2023-07-10 08:18:491

∫uvdx的分部积分公式?

分部积分:(uv)"=u"v+uv"。得:u"v=(uv)"-uv"。两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx。即:∫ u"v dx = uv - ∫ uv" dx,这就是分部积分公式。也可简写为:∫ v du = uv - ∫ u dv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:19:051

sin(x^2)的积分公式是什么?

sin(x^2) 的 不定积分不能用初等函数表示
2023-07-10 08:19:182

不定积分的分部积分法公式是什么?

不定积分分部积分法公式是Sudv=uvSvdu。不定积分的分部积分法为Sudv=uvSvdu。由于积分号是英文字母S的拉长,为了手机编辑方便,这里我用大写英文字母S表示积分号。之所以积分号用英文字母S的拉长来表示,主要是因为S是英文单词Sum的首字母。不定积分分部积分法介绍:不定积分分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。一般地,从要求的积分式中将凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。分部积分法最重要之处就在于准确地选取dv,因为一旦dv确定,则公式中右边第二项中的du也随之确定,但为了使式子得到精简,如何选取dv则要依du的复杂程度决定。也就是说,选取的dv一定要使du比之前的形式更简单或更有利于求得积分。依照经验,可以得到下面四种典型的模式。记忆模式口诀:反对幂三指。
2023-07-10 08:19:421

∫vdx的积分公式是什么

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:20:161

怎么来的,分部积分公式我知道"∫udv=u

分部积分的公式,很容易找到吧?不知你究竟想问什么,我给你推一下吧.(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx即:∫ u"v dx = uv - ∫ uv" d,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv
2023-07-10 08:20:401

积分基本公式有哪些?

分部积分公式:∫u"vdx=uv-∫uv"dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫u"vdx=∫(uv)"dx-∫uv"dx。即:∫u"vdx=uv-∫uv"dx,这就是分部积分公式,也可简写为:∫vdu=uv-∫udv。积分基本公式1、∫0dx=c2、∫x^udx=(x^u+1)/(u+1)+c3、∫1/xdx=ln|x|+c4、∫a^xdx=(a^x)/lna+c5、∫e^xdx=e^x+c6、∫sinxdx=-cosx+c7、∫cosxdx=sinx+c8、∫1/(cosx)^2dx=tanx+c9、∫1/(sinx)^2dx=-cotx+c
2023-07-10 08:21:051

求定积分(用分部积分公式)

∫ u"v dx = uv - ∫ uv" dx。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx即:∫ u"v dx = uv - ∫ uv" dx,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv扩展资料:不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C求不定积分的方法:第一类换元其实就是一种拼凑,利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
2023-07-10 08:21:261

sin(x^2)的积分是:原函数没有初等解,其中S(x)是菲涅尔积分。如果求的是(sinx)^2的不定积分,就有初等解:∫(sinx)^2dx=0.5*∫(1-cos2x)dx=x/2-1/4sin2x+C不定积分求解的一般方法:积分公式法:直接利用积分公式求出不定积分。换元积分法:不定积分换元积分法可分为第一类换元法与第二类换元法。一、第一类换元法(即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。二、注:第二类换元法的变换式必须可逆,并且ψ(x)在相应区间上是单调的。第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:1、 根式代换法,2、 三角代换法。在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。链式法则是一种最有效的微分方法,自然也是最有效的积分方法。分部积分法:设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu。两边积分,得分部积分公式∫udv=uv-∫vdu。 ⑴称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.分部积分公式运用成败的关键是恰当地选择u,v。参考资料:百度百科-不定积分
2023-07-10 08:21:401

分部积分法公式例题是什么?

分部积分法公式是∫ u"v dx = uv - ∫ uv" dx。定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。黎曼积分:定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。
2023-07-10 08:21:541

udv=uv-vdu是什么公式?

分部积分的公式。分部积分:(uv)"=u"v+uv"得:u"v=(uv)"-uv"两边积分得:∫ u"v dx=∫ (uv)" dx - ∫ uv" dx即:∫ u"v dx = uv - ∫ uv" d,这就是分部积分公式也可简写为:∫ v du = uv - ∫ u dv求不定积分的方法:第一类换元其实就是一种拼凑,利用f"(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
2023-07-10 08:22:071

分部积分怎么算

分部积分∫lnx dx=xlnx-∫x d lnx=x lnx-∫dx=xlnx-x+C扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
2023-07-10 08:24:311

分部积分怎么算?

分部积分=xlnx-∫xdlnx=xlnx-∫x*1/x dx==xlnx-∫dx=xlnx-x+C扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
2023-07-10 08:24:371

分部积分怎么算

分部积分=xlnx-∫xdlnx=xlnx-∫x*1/x dx==xlnx-∫dx=xlnx-x+C扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
2023-07-10 08:25:041

sinx的平方求不定积分可以用分部积分法吗

可以sin(x^2)的积分是:原函数没有初等解,其中S(x)是菲涅尔积分。如果求的是(sinx)^2的不定积分,就有初等解:∫(sinx)^2dx=0.5*∫(1-cos2x)dx=x/2-1/4sin2x+C不定积分求解的一般方法:积分公式法:直接利用积分公式求出不定积分。换元积分法:不定积分换元积分法可分为第一类换元法与第二类换元法。一、第一类换元法(即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。二、注:第二类换元法的变换式必须可逆,并且ψ(x)在相应区间上是单调的。第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:1、 根式代换法,2、 三角代换法。在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。链式法则是一种最有效的微分方法,自然也是最有效的积分方法。分部积分法:设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu。两边积分,得分部积分公式∫udv=uv-∫vdu。 ⑴称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.分部积分公式运用成败的关键是恰当地选择u,v。
2023-07-10 08:25:191

以一当十的歇后语前面一句是什么

“以一当十”的歇后语前面一句是“韩信用兵”。以一当十,汉语成语,拼音是yǐyīdāngshí,意思是一个人可以抵挡十个人,形容军队来势汹汹,非常厉害。出自《战国策·齐策一》:“一而当十,十而当百,百而当千。”近义词:以一顶百。反义词:一夫之用、卵与石斗。用法:作谓语、宾语、定语;形容人能力大。造句:1、撷取了最富有典型意义的形象,可谓一以当十。2、楚军战士无不一以当十,士兵们杀声震天,诸侯军人人战栗胆寒。3、在岳飞的鼓舞下,士气大振,骑兵们无不一以当十,奋勇冲杀。韩信(?-前196年),泗水郡淮阴县(今江苏省淮安市淮安区、一说淮阴区)人。西汉开国功臣、军事家,“汉初三杰”,“兵家四圣”,古代军事思想“兵权谋家”的代表人物,后人奉为“兵仙”、“神帅”。
2023-07-10 08:16:461

孙武有什么故事

  孙武,字长卿,是春秋战国时期齐国乐安人,被后人称为孙子。是我国早期著名的 军事 家, 政治 家,尊称兵圣。下面是我搜集整理的孙武的 故事 ,希望对你有帮助。  孙武的故事   孙武生活的齐国内乱不止,等他去了吴国认识了伍子胥,成为好友,当时吴国的局势也是动荡不安,两人便隐居起来,待机而发。公元前515年,伍子胥在吴王阖闾身边得到重用,吴国渐渐繁荣起来。在伍子胥的推荐下,孙武开始帮助吴王攻打楚国,让楚国几乎灭亡。   孙武个性严谨认真,阖闾曾经下令让他训练一支女子军队,后来因为宫女们并不听令,斩杀了吴王阖闾的两位宠妃,这也体现了他对军队管理的严肃严厉,不惧强权。   但吴王称霸后,日渐疏于朝政,沉迷酒色,贪图享乐,并将直言进谏的伍子胥杀死,孙武兔死狐悲,于是退隐朝堂,专心修订《孙子兵法》。最终因为忧国忧民,长期的郁郁不得志而病逝。葬于吴都郊外。   《孙子兵法》一书,总共大概有五千多个字,其中最为主要的是兵法十三篇。是中国现存的最早的兵书。他内容非常强大,论述也非常精深,后人几乎没有可以和他相比较的。   它是中国古代军事 文化 遗产的瑰宝,同时也是我国 传统文化 的重要组成部分,被后人奉为兵学经典,在中国乃至世界的军事史上都占据着重要地位,发挥着重要的作用。在政治、经济、文化、生产等各个领域广泛的应用。   孙武用兵的故事   俗话说孙武用兵,以一当十。这样说并不是空穴来风,是有 历史 依据的,后世史料中在评价孙武时说到,有率领三万军队就能够 天下 无敌的,就是孙武了。   这再次证实了孙武用兵,确实可以以一当十,能够让这些说法成立且实至名归的,是春秋末期规模相当宏大,影响力极其深远的大战,被史学家称为“东周时期第一个大战争”的柏举之战。在孙武的劝谏下,吴国国君阖闾没有选择在灭掉楚国的附属小国时,顺应时机对楚国发起进攻,而是利用了六年的时间,让三支吴军轮番去骚扰楚军,因常年要应对吴军,使得楚国在人力和物力上被大大的消耗,楚国的将士们也都因为吴军长期的消耗,斗志渐渐的都变得沮丧了起来。在“疲楚”的这六年里,吴军却利用时机,养精蓄锐,等待着能够一举将楚国歼灭的时机。   公元前506年,吴国以救其附属小国蔡国为由,与楚国发生了正面的交战,孙武以三万兵力,击败了楚国的二十万大军,使得吴国在柏举之战一举就战胜了多年的强劲敌国楚国,让一直称霸称雄的楚国受到了重大的创伤,也使得吴国的声威因此一战而大振,为吴国后来称霸中原奠定了坚实有力的基础。这正说明了,用兵不再数量上,而在谋略部署上,孙武是个懂得用兵的人,更能把每个兵都用到该用的地方,遂才有了孙武用兵,以一当十。   孙武的结局是怎样的   公元前543年,一声婴儿响亮的啼哭声打破了孙家的平静,一代著名的军事家孙武降临到孙家。祖父孙书满怀期望,为其取名为“孙武”,以期婴孩能继承自己的衣钵,继续为国家和百姓效力。果如祖父所愿,孙武在不断的刻苦学习与成长中,展现了自己独特的军事才能,并著有《孙子兵法》。   孙武的一生是传奇的一生,出生在显赫的贵族世家,后来因为父亲孙凭参与到一起政治纠纷中被父亲安排逃往吴国,为此,孙武品尽了人情冷暖,也在途中游历,渐渐有了自己对军事的独特见解,写下了后世传颂的《孙子兵法》。   孙武后在吴国为吴王阖闾效力,然而阖闾死后夫差即位,对于一些包括孙武在内的老臣并不看重,终日只顾着自己贪图享乐,这使得孙武心灰意冷,于是孙武向夫差提出回家探亲后便借机离开了吴国。   孙武的结局也是充满传奇的色彩,因为至今仍有多种关于孙武结局的说法。孙武向夫差请辞之后,有人说见到孙武回到了自己出生的故土——齐国,与齐国的家人共聚天伦。也有人说孙武是隐居在山林之中,去世时终年七十五岁,《唐太宗李卫公问对》中就曾对此有所记载。然而因为相关史料记载的缺失,孙武最后的结局仍不为人所知,现在的一些说法也是后人从现在仅存的一些史料记载中推测出来的。   虽说孙武的结局与孙武本人一样都是充满了传奇的色彩,然而孙武为后世所留下的智慧与军事见解却是毋容置疑的,至今仍为后世所乐道,也向各国展示了中国古代的军事风采。
2023-07-10 08:16:541

( )误闯白虎堂----单刀直入

(林冲 )误闯白虎堂----单刀直入 (诸葛亮)用兵--以一当十(曹操)败走华容道---不出所料(包公 )断案---铁面无私
2023-07-10 08:16:195

歇后语.( )的居处――开门见山( )的用兵―

(愚公)的居处----开门见山(林冲)误闯白虎堂----单刀直入(韩信)用兵----多多益善
2023-07-10 08:16:092