增乘开方法

利用增乘开方法求x^3=54872

它的根的首位数是 3;(因为 64>54>27) 个位数是 8; (因为8³的个位数为2)
tt白2023-05-20 22:09:313

增乘开方法的创立是什么时候?

我国是世界数学史上最早提出开平方、开立方的法则的国家。早在中国古代数学著作《九章算术》中的《少广》章里就讲述了开平方与开立方的法则,这个法则对解方程起了重要作用。因此,在世界数学史上占有重要的地位。公元5世纪,南北朝时期祖冲之进一步推广了开平方、开立方的方法,能求出一般的二次方程式和三次方程式的正根。到隋唐时代,在数学著作中,则有开差幂(由长宽不等的长方形面积求其长宽)、开差立(由长宽高不等的立方体的体积求其长宽高)的问题。1050年左右,北宋数学家贾宪在他编著的《九章算法细算》中创造了开任意高次幂的“增乘开方法”。其做法与现代教科书中所用的步骤相同,用所拟定的根数,边乘边加,变换原方程式的系数。增乘开方法对以后求高次方程式正根,有很大影响。如1247年秦九韶的《数书九章》、1248年李冶的(测圆海镜》等著作中都用了增乘开方法。在欧洲许多数学家用了种种方法求三项与高次方程式的实根,都比较复杂和不切实际。直到1840年意大利人罗斐尼和1819年英国人霍纳等才找到了与中国增乘开方法大致相同的算法,但是他们都比贾宪晚了800多年,而比祖冲之则晚了1300多年。
mlhxueli 2023-05-20 22:09:301

请教数学:增乘开方法(即唔用计算机计平方根)

用人手计算平方根的方法,是要将被开方的数由个位开始会两个位作一单位, 以872开方为例,由个位开始每两个位作用单为,变成 8 及 72 两组 先将第一组数字8找出比它较少的完全平方,即2,2的平方为4,如下的方法写在下一行。用除数的相似方法 872 – 400 变成472 将第一次得的平方根数值2,乘20倍变成40,估计开方根的第二位数字a,使 a 乘 40 + a 可以最接近但不大于 472,因些估计平方根的个位 a 为 9,而 9 x 49 = 441,写在如图的下方,又如除法的将 472 – 441 = 31 因这数左方没有数字,所以好像除法的一样要补 0,不过是补2个0,不是一个,如下图 将开方得的这两位数字 29 乘 20,变成 580,写在下一行,再估小数后的第一位 b,便 b(580 + b) < 3100,因此得小数后的第一位为 5 585 x 5 = 2925 用除数方法 3100 – 2925 = 175,再补两个零变成 17500 将之前开方得的数字 x 20 295x20 = 5900 用以上的方法一次一次地找下一位,便可以计到这数字的开方根。        2  9. 5  2  9       ──────────────────────       )8 72        4       ──────────────────────     49)4 72        4 41       ──────────────────────    585)  31 00           29 25       ──────────────────────   5902)   1 75 00           1 18 04       ──────────────────────  59049)     56 96 00             53 14 41       ──────────────────────              3 81 59 用短除式 如64 因为不能打所以这样表示 64÷2=32 32÷2=16 16÷2=8 8÷2=4 4÷2=2 2÷2=1 现在有6个2 我地将佢地分成2组并做成质因数分解 即系有2个2的3次方 将其中1个2的3次方乘左佢 即系2x2x2 就知到64的平方根系8 参考: me
北境漫步2023-05-20 22:09:301