圆锥的侧

圆锥的侧面积怎么算?

圆锥侧面积计算公式:。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。设圆锥的高为h,设圆锥的表面积为st,侧面积为sc,侧面积(也就是扇形的面积)可以用以下公式计算:扩展资料:计算公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数)==1/2×母线长×底面周长=π×底面圆的半径×母线;2、圆锥的表面积=底面积+侧面积 S=πr²+πrl (注l=母线);3、圆锥的体积=1/3底面积乘高 或 1/3πr^2*h。
豆豆staR2023-05-13 01:01:011

圆锥的侧面积公式 是??×l×r 吗

圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径)圆锥侧面积=1/2×母线长×圆锥底面的周长,两个等式可以转化的
NerveM 2023-05-13 01:01:011

圆锥的侧面是什么面?

圆锥侧面是个扇形面(曲面),圆锥的底面是一个圆;圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形;从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有且只有一条高。圆锥和圆柱的区别:圆柱有两个底面和一个侧面,底面是完全相同的两个圆,侧面是一个曲面,沿高展开是一个长方形或正方形;圆锥的底面是一个圆,它的侧面是一个曲面。圆柱有无数条高,所有的高都相等;从圆锥的顶点到底面圆心的距离就是圆锥的高,圆锥只有一条高。圆柱与圆锥的计算公式:圆柱的表面积=圆柱的侧面积+两个底面的面积,用公式表示:S=S侧+2S底;圆柱的侧面积=底面周长×高,用公式表示:S侧=Ch;圆柱的体积=底面积×高,用公式表示:V=S底h。圆锥的体积等于和它等底等高的圆柱的体积的1/3;圆锥的体积=圆柱的体积×1/3=底面积×高×1/3,用公式表示:V锥=1/3V圆柱=1/3S底h。 
墨然殇2023-05-13 01:01:011

圆锥的侧面积公式

S=母线长*底面周长/2圆锥的侧面展开是扇形,所以根据扇形的面积计算公式得到圆锥侧面积=πLR(L是圆锥的侧长,R是圆锥半径)
可桃可挑2023-05-13 01:01:0014

圆锥的侧面积怎样计算?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。以上内容参考:百度百科-圆锥
mlhxueli 2023-05-13 01:01:001

圆锥的侧面积公式是什么?

圆锥的侧面积公式:S=侧表面积+圆面积=πγL+πγ²圆锥的侧表面积公式:M=πγL=πγ√γ²+h²参考资料:实用五金手册 (第8版)
西柚不是西游2023-05-13 01:01:003

圆锥的侧面积怎么求?

圆锥的侧面积公式:S=1/2αl²=πrl圆锥可以通过一个直角三角形沿一条直角边旋转而成,这种构造方式恰可以从直角三角形上看到圆锥的几个重要组成部分:1、直角三角形中作为不动旋转轴的直角边构成圆锥的高,上端点为圆锥的顶点,下端点恰为圆锥底面圆心;2、直角三角形另一条直角边为圆锥的底面半径,记作r;3、直角三角形的斜边在圆锥上我们称之为母线,记作L。母线是圆锥侧面这个曲面上能找到唯一一组线段(只有它们是直的,其他的都是曲线。)扩展资料:圆锥的组成:1、圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;2、圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。3、圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。4、圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。参考资料来源:百度百科-圆锥
肖振2023-05-13 01:01:002

圆锥的侧面积公式

约分后为S锥侧表=πRL(L为三角形的斜边)如底边半径为4,高为3,侧面积求法4*π*5因为勾3股4玄5(5为斜边长)
北境漫步2023-05-13 01:01:005

圆锥的侧面是什么形状?

有两个面,底面和侧面。圆锥体的组成:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高; 圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。扩展资料:一、等底等高的圆柱和圆锥的关系:1、圆锥体积是圆柱的1/3;2、圆柱体积是圆锥的3倍;3、圆锥体积比圆柱少2/3;4、圆柱体积比圆锥多2倍。二、圆锥体积公式的推导过程:1、找来等底等高的空圆锥和空圆柱各一只。2、将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。3、通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。参考资料来源:百度百科-圆锥体
再也不做站长了2023-05-13 01:01:001

圆锥的侧面积怎么求?

圆锥的侧面积公式有两种:S=1/2RL(R为圆锥体底面圆的周长,L为圆锥的母线长)S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr   第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr  圆锥侧面积=(1/2)(2πr)l=πrl  第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl
mlhxueli 2023-05-13 01:01:001

圆锥的侧面积公式推导过程

圆锥的侧面积公式推导过程:设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^),圆锥侧面展开图是一个扇形,半径为l,弧长为2πr,圆锥侧面积=(1/2)(2πr)l=πrl。圆锥是一个立体图形,它是由一个直角三角形把它的任意直角边作为转轴,斜边作为圆锥的母线,三百六十度旋转得出的图形,它的底边是由另一直角边旋转得到的圆形。将圆锥沿着母线剪开,展开后就将圆锥化成了一个平面上的扇形。已知求扇形面积的公式是2分之1*扇形弧长*扇形半径,假如设圆锥的底圆半径是R,母线长是L,那么圆锥的侧面积就等于2分之1乘以2πR乘以L,化简可得圆锥的侧面积计算公式就是S=πRL。
此后故乡只2023-05-13 01:01:001

圆锥的侧面在哪里

  圆锥的侧面在直角三角形的直角边所在直线为旋转轴,垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面,不垂直于轴的边都叫做圆锥的母线。生活中沙堆、漏斗、帽子、陀螺、斗笠、铅笔头、钻头、铅锤等都可以近似地看作圆锥。圆锥在日常生活中也是不可或缺的。
LuckySXyd2023-05-13 01:01:001

圆锥的侧面是三角形对还是错

◆这种说法错误.我们知道圆锥的侧面是个曲面,而三角形则是平面图形,因此不能说圆锥的侧面是三角形.如果我们沿圆锥的一条母线剪开,把其侧面展成平面图形后,则是个扇形;此外,圆锥的两种视图(主视图,左视图)都是三角形.
wpBeta2023-05-13 01:01:001

什么是圆锥的侧面

就是指从圆锥顶端到底面的外表面,
mlhxueli 2023-05-13 01:01:002

请问圆锥的侧面积公式是什么?

圆锥的侧面积公式是S=πrL。r是圆锥底面的半径,L是圆锥的母线长,圆锥的侧面积是扇形,扇形的弧长是圆锥的底面周长2πr,展开后扇形的半径为母线L,所以扇形的面积为S=Lr/2=πrL。圆的面积是πr²。扇形的弧长l=(α/2π)*2πr=αr,α是扇形角度,r是圆半径。扇形面积s=(α/2π)*πr²=(rl)/2。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
mlhxueli 2023-05-13 01:01:001

圆锥的侧面积是多少?

圆锥侧面积公式为:S侧=πrl,l为母线。圆锥的表面积由侧面积和底面积两部分组成。全面积S=S侧+S底。圆锥侧面积1圆锥圆锥是一种几何图形,有两种定义。几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
可桃可挑2023-05-13 01:01:001

圆锥的侧面积怎么算

解:设圆锥的母线长为L,设圆锥的底面半径为R,则展开后的扇形半径为L,弧长为圆锥底面周长(2πR)我们已经知道,扇形的面积公式为:S=(1/2)×扇形半径×扇形弧长。=(1/2)×L×(2πR)=πRL即圆锥的侧面积为:圆锥底面半径与圆锥母线长的乘积的π倍。
陶小凡2023-05-13 01:01:003

算圆锥的侧面怎么算??

底面周长乘母线........2派lr
tt白2023-05-13 01:01:002

圆锥的侧面积怎样求?

圆锥侧面积计算公式:正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。设圆锥的高为h,设圆锥的表面积为st,侧面积为sc,侧面积(也就是扇形的面积)可以用以下公式计算:与圆相关的公式:1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)。7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
左迁2023-05-13 01:01:001

圆锥的侧面积公式是什么?

正圆锥的侧面积公式:S=πrl,S为侧面积。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的斜高,对应的圆弧长为底部圆形的周长。其他条件下,圆锥的侧面积可用以下公式:1、圆锥的侧面积=母线的平方×π×(360分之扇形的度数);2、圆锥的侧面积=1/2×母线长×底面周长;3、圆锥的侧面积=π×底面圆的半径×母线。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。因为圆锥侧面展开图是一个扇形,根据扇形的面积公式:扇形的面积等于圆心角,圆周率与扇形的半径的平方的积,除以360度;即扇形的面积是圆的面积分成360分之后,得到圆心角等于1度的扇形的面积,再乘以原扇形的圆心角。这样就可以得到圆锥侧面积最原始的公式。只要知道圆锥侧面展开图得到的扇形的圆心角以及圆锥的母线,圆锥的母线就是展开得到的扇形的半径,就可以求圆锥的侧面积了。圆锥体的特点1、侧面展开是一个扇形;2、只有下底为圆。所以从正上面看是一个圆;3、从侧面水平看是一个等腰三角形;4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥;5、圆锥体是轴对称的;6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形;7、所有母线的长度都相等;母线的长度大于锥体的高。
大鱼炖火锅2023-05-13 01:01:001

圆锥的侧面积公式

圆锥的侧面积公式:设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^)圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积=(1/2)(2πr)l=πrl
CarieVinne 2023-05-13 01:01:001

圆锥的侧面展开图是什么样的图形?

圆锥的侧面展开图为扇形。扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长。面积公式:圆锥侧面展开图S侧=πrl=(nπl^2)/360拓展资料:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴 。(1)以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所(2)圆锥由一个顶点,一个侧面和一个底面组成,从顶点到底面圆心的距离是圆锥的高。(3)圆锥有两个面,底面是圆形,侧面是曲面。(4)让圆锥沿母线展开,是一个扇形。圆柱的体积等于和它等底等高的圆锥的体积的三倍是叫圆锥形。(5)圆锥的体积公式:三分之一底面积乘高,用字母表示为1/3πr²h。
善士六合2023-05-13 01:00:591

圆锥的侧面积公式

圆锥侧面积公式为S圆锥侧=(1/2)(2pi;r)l=pi;rl。设圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^);圆锥侧面展开图是一个扇形,半径为l,弧长为2pi;r。因此,得出圆锥侧面积=(1/2)(2pi;r)l=pi;rl。nbsp; 圆锥的侧面就是一个扇形。所以圆锥的侧面积就是扇形的面积。计算扇形面积:1.非弧度算法。把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。 所以扇形面积是(顶角)/360deg;乘以圆的面积。nbsp; 2.弧度算法。 同理,把扇形当作是一个圆的一部分。圆的面积是pie乘以r平方。因为360deg;在弧度表示法中为2pie,所以为(顶角(弧度))/2pie乘以圆的面积,带入圆面积公式并整理,得(顶角(弧度))/2pie*(pie*r平方)=顶角乘以半径的平方再除以2。由于顶角(弧度)乘以半径为顶角所对弧的长度(弧度定义),所以,顶角乘以半径的平方再除以2=弧长乘以半径除以2。
小菜G的建站之路2023-05-13 01:00:591

圆锥的侧面积是什么公式?

设圆台r1和r2是两个底面的半径,圆台的高为:h,l是母线长,则母线长为l=√[(r2-r1)^2+h^2]下底:下口径的周长=2πr2,上底:上口径的周长=2πr1,设小扇形的半径为a,则:r2/r1=(a+l)/a 所以,a=rl*l/(r2-r1) 所以,圆台的侧面积: S=1/2*2πr2*(a+l)-1/2*2πr1*a=π(r1+r2)l=π(r1+r2)√[(r2-r1)^2+h^2]拓展资料:
铁血嘟嘟2023-05-13 01:00:593

圆锥的侧面积公式是什么?

圆锥的表面积公式:高: (l:母线长,r:底面半径)底面周长: (r:底面半径,  :侧面展开图圆心角弧度,l:母线长)圆锥的表面积由侧面积和底面积两部分组成。全面积(S)=S侧+S底;其中,S侧=  (r:底面半径,l:圆锥母线,  :侧面展开图圆心角弧度)扩展资料:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)∵弧AB=⊙O的周长∴弧AB=πd∵弧AB=2πa(∠1/360°)∴2πa(∠1/360°)=πd∴2a(∠1/360°)=d将a,d带入2a(∠1/360°)=d得到∠1的值。这样绘制展开图的所有所需数据都求出来了。根据数据即可画出圆锥的展开图。母线长等于底面圆直径的圆锥,展开的扇形就是半圆。所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。生活中沙堆、漏斗、帽子、陀螺、斗笠、铅笔头、钻头、铅锤等都可以近似地看作圆锥。圆锥在日常生活中也是不可或缺的。参考资料来源:百度百科——圆锥
此后故乡只2023-05-13 01:00:591

圆锥的侧面积公式是怎么得到的啊

圆锥弧长公式是:弧长=底面圆周长=2πr=πd;具备公式如下:1、圆锥的底面积=圆的面积(π×r×r)或(π(d÷2)×(d÷2)(圆锥只有一个底面)。2、圆锥的体积:V=sh÷3(S是底面积,h是圆锥高)。3、圆锥全面积=πr²+πrl。4、侧面展开图面积=1/2×2πr×l=πrl(r是底面半径,l是母线)。5、侧面展开图弧长=底面圆周长=2πr=πd。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长,圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
再也不做站长了2023-05-12 14:08:501

圆锥的侧面是一个什么面?

圆锥的侧面是一个曲面。它是由一个直角三角形绕着它的直角边进行旋转一周得到的几何体,所以侧面是曲面,但是若沿着圆锥的母线剪开然后把圆维的侧面拉开则成为了一个扇形,扇形的半径是圆锥的母线长,扇形的弧长是圆锥的底面周长。圆锥组成圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
肖振2023-05-12 14:08:491

圆锥的侧面积怎样算?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。以上内容参考:百度百科-圆锥
北境漫步2023-05-12 14:08:471

圆锥的侧面是什么面

问题一:圆锥的底面是______形,圆锥的侧面是一个______面 圆锥的底面是圆,侧面是一个曲面.故答案为:圆,曲面. 问题二:圆锥的底面是一个什么,它的侧面是一个什么面 圆锥的底面是一个圆 侧面看过去是一个三角形 如图: 圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边) 问题三:圆柱和圆锥都是什么图形,它们的底面是什么,它们的侧面都是什么面 长方体的各个面都是(四边形 )图形(不能写长方形,有可能是正方形) 圆柱的侧面是个(曲 )面 它的底面是(圆 )图形 问题四:圆柱的外侧面是什么 圆柱体的侧面展开图是矩形,也有正方形。 其侧视图也是矩形。 1、以矩形的一边所在直线为旋转轴,其余三边旋转360°形成的曲面所围成的几何体叫作圆柱(circular cylinder),即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线。DA和D"G旋转形成的两个圆叫做圆柱的底面,DD"旋转形成的曲面叫做圆柱的侧面。 2、在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果母线是和轴平行的一条直线,那么所生成的旋转面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。 问题五:圆锥的底面是一个______形,它的侧面是一个______面,圆锥的顶点到底面圆心的距离就是圆锥的______,圆锥 根据分析,圆锥的底面是一个圆形,它的侧面是一个曲面,圆锥的顶点到底面圆心的距离就是圆锥的高,圆锥的高有k条.故答案为:圆、曲、高、k. 问题六:1.圆锥有一个( )面和一个( )面,圆锥的底面是一个( ),侧面展开图是( 5分 1.圆锥有一个( 平面 )面和一个( 曲 )面,圆锥的底面是一个( 圆形),侧面展开图是( 扇形 )形。 2.从圆锥的( 顶点 )到底面的( 圆心 )距离是圆锥的(高 )。圆锥有( 1 )条高。把一个圆锥沿着它的平均切成两半,切面是一个( 等腰三角 )形
小白2023-05-12 14:08:461

圆锥的侧面是个什么面

圆锥侧面是个扇形面(曲面)。扩展:圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。圆锥展开面旋转轴叫做圆锥的轴。 垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)
再也不做站长了2023-05-12 14:08:461

圆锥的侧面是个什么面

  圆锥的侧面是个扇形,一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。显然,它是由圆周的一部分与它所对应的圆心角围成。   圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)。
meira2023-05-12 14:08:461

什么是圆锥的侧面积,如何计算?

圆锥侧面积的公式:圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。第一种方法:把展开的扇形的弧微分为许多小段,那么每一个小段和扇形顶点形成一个三角形,扇形的面积就是这些小三角形的和。设每小段长度为x,则每个小三角形的面积是(1/2)xl,所有x加起来为扇形弧长2πr。所以圆锥侧面积=(1/2)(2πr)l=πrl。第二种方法:因为圆锥侧面是展开后大圆的一部分,占大圆的面积为(弧长/大圆周长)=2πr/2πl。因为大圆面积为πl^2,所以圆锥侧面积=(πl^2)·(2πr/2πl)=πrl。圆锥组成:圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。圆锥有一个底面、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
阿啵呲嘚2023-05-12 14:08:451

圆锥的侧面积公式,圆锥的底面半径

侧面积:S=πRL(R为圆锥体底面圆的半径,L为圆锥的母线长);其实也可以按照扇形的面积算;底面积:S=πRR;R未知的话一般可以在母线、底面半径、圆锥的高组成的直角三角形中用勾股定理求解。
bikbok2023-05-12 14:08:453

圆锥的侧面是一个______面.

圆锥的底面是圆,侧面是一个曲面; 所以圆锥的侧面是一个曲面. 故答案为:曲.
豆豆staR2023-05-12 14:08:451

圆锥的侧面是一个什么面?

是扇形圆锥的底面是一个圆形,侧面是一个三角形,侧面展开是一个扇形。圆锥立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。所以圆锥的底面可以得出是圆形。
韦斯特兰2023-05-12 14:08:454

圆锥的侧面是个什么面

圆锥的侧面是个扇形,一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。显然,它是由圆周的一部分与它所对应的圆心角围成。 圆锥是一种几何图形,有两种定义。解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。(边是指直角三角形两个旋转边)。
bikbok2023-05-12 14:08:441

圆锥的侧面积计算公式是什么?

圆锥的侧面积计算公式如下:1、圆锥侧面积=圆锥底面周长X母线/2,即S侧=Cl/2。2、圆锥侧面积=圆锥底面半径X圆周率X母线,即S侧=πrl。3、圆锥侧面积=侧面展开扇形圆心角X母线的平方X圆周率/180度,即S侧=nπl^2/360度。前面三个公式是按使用的频率排列的,第一个公式用得最多,第二个公式次之,最后一个公式用得较少。然而事实上圆锥侧面积最根源的公式却是最后一个。圆锥的特点:1、侧面展开是一个扇形。2、只有下底为圆。所以从正上面看是一个圆。3、从侧面水平看是一个等腰三角形。4、由等腰三角形绕底边的高旋转得到一个圆锥;也可以由直角三角形绕一个直角边旋转得到一个圆锥。5、圆锥体是轴对称的。6、圆锥侧面展开扇形的弧长等于底边圆的周长;横截面是一个圆形;纵截面是一个等腰三角形。7、所有母线的长度都相等;母线的长度大于锥体的高。以上内容参考:百度百科-圆锥
可桃可挑2023-05-12 14:08:441
 首页 上一页  1 2