决策变量

遗传算法多目标优化 能取离散的决策变量吗 比如决策变量取1,2,3,4,5.谢谢!

应该是可以的。多目标优化的变量空间应该是可连续或可不连续的,而遗传算法只是优化这个问题的手段,它的变量空间也有很多类型,所以你要根据你所需要处理的问题仔细分析。
北有云溪2023-06-13 08:11:391

数学建模 matlab 0-1规划 当决策变量有100个的时候咋办

例 求解下列0-1整数线性规划 目标函数 max f=-3x1+2x2-5x3 约束条件 x1+2x2-x3≤2, x1+4x2+x3≤4, x1+x2≤3, 4x1+x3≤6, x1,x2,x3为0或1. 在Matlab命令窗口中输入如下命令: f=[-3,2,-5]; a=[1,2,-1,;1,4,1;1,1,0;0,4,1];b=[2;4;3;6]; [x,fval]=bintprog(-f,a,b) %因为bintprog求解的为目标函数的最小值,所以要在f前面加个负号。运行结果为: Optimization terminated. x = 0 1 0 fval = -2 表示x1=0,x2=1,x3=0时,f取最大值2。 当然,我们还可以在Matlab命令窗口中输入如下命令查询0-1整数规划命令的用法。 help bintprog
北境漫步2023-06-13 08:11:381

相比“抢单”模式,“智能派单”的优势体现在哪里?“智能派单”优化的决策变量

智能派单模式下出租车司机时薪比抢单模式下的时薪提高50%,空驶率最多降低36%。抢单的模式注定滴滴的应答率天花板不会太高。在15年,滴滴上线快车业务,我们从抢单演进到了派单模式。乘客的应答率有了20个点以上的提升,很多时候能够全天能够高达90+,高峰&局部供需紧张应答率会相对吃紧。乘客确定性再一次得到大幅的提升,由此可见,派单模式为滴滴创造了巨大用户价值。每一个时刻,都有N个订单在被乘客创建,同时有M个司机可以被滴滴用来进行分配。滴滴能够为派单算法给出司机的实时的地理位置坐标,以及所有订单的起终点位置,并且告诉我们每一个司机接到订单的实时导航距离。
LuckySXyd2023-06-13 08:11:381

周期检查的订货模型的决策变量是什么,该如何确定

订货量和再订货点,确定变量需要考虑多种因素,如需求量、成本、库存水平和服务水平。最优的订货量和再订货点,以实现最小化成本和最大化利润的目标。
LuckySXyd2023-06-13 08:11:381

满足所有约束条件的决策变量取值组合被称为

可行解
FinCloud2023-06-13 08:11:362

使用NSGA2算法是否需要先进行编码?还有怎么看自己的决策变量有几个?

BIAS0:= (C-MA(C,2))/MA(C,2)*100;BIAS1 := (C-MA(C,12))/MA(C,12)*100;BIAS2 := (C-MA(C,26))/MA(C,26)*100;BIAS3 := (C-MA(C,48))/MA(C,48)*100;HXL:=V/CAPITAL*100;D1:=INDEXC;D2:=MA(D1,56);DR2:=D1/D2<0.94;E1:=(C-HHV(C,12))/HHV(C,12)*10;E2:=(C-REF(C,26))/REF(C,26)*10;
小白2023-06-13 08:11:361

人多事少”或者“人少事多”的指派问题怎么设定决策变量?

指派问题是一种特殊的整数规划问题。有一定数量的任务和同等数量的人,每个人都可以完成任务,但花费的时间成本不同,所以需要找到一种指派方式,让总成本最低。这类问题建立的模型就是指派问题模型。指派问题是0-1整数规划的一种,决策变量x_ij取1时,第i个人完成第j项工作,花费的成本是c_ij,否则决策变量x_ij取0。匈牙利解法是用来求解指派问题的常用方法。
hi投2023-06-13 08:11:351

如何把二维决策变量变成一维决策变量

matlab reshape使用 reshape把指定的矩阵改变形状,但是元素个数不变, 例如,行向量: a = [1 2 3 4 5 6] 执行下面语句把它变成3行2列MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
wpBeta2023-06-13 08:11:351

用C#语言调用cplex时怎么求决策变量的绝对值

九万里风9 2023-06-13 08:11:351

急!求救!引入一个决策变量如何在matlab中写程序

在布局问题求解中,为了好表达约束条件,需要引入一个决策变量Vik(i表示设备序号,i=1,2,3,....15!K表示第几行,k=1,2,3)因为一个设备只能在一行,而一行中最多布置设备数量不能超过设备总数15当设备i在第k行的时候Vik=1,else Vik=0 注意(i与k是两个不同的表示量)if ( ) Vik=1else Vik=0end%约束1^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^fVik=0;for k=1:3 %表示从第1到第3行循环 fVik=fVik+Vik;endfV1ik=fVik-1; % fV1ik=0就满足约束1%约束2^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^fVik=0;for i=1:15 fVik=fVik+Vik;endfV2ik=15-fVik; %fV2ik>=0就满足约束2现在问题是if 后面括号的程序应该如何写?
北境漫步2023-06-13 08:11:341

规划问题的约束条件含有多个决策变量

线性规划问题的数学模型的一般形式  (1)列出约束条件及目标函数   (2)画出约束条件所表示的可行域   (3)在可行域内求目标函数的最优解 [编辑本段]线性规划的发展  法国数学家 J.- B.- J.傅里叶和 C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。   1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。   1947年美国数学家G.B.丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。   1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。   1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。   50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。   线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。   1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。   1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。 建立线性规划模型的方法 [编辑本段]线性规划的模型建立  从实际问题中建立数学模型一般有以下三个步骤;   1.根据影响所要达到目的的因素找到决策变量;   2.由决策变量和所在达到目的之间的函数关系确定目标函数;   3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。   所建立的数学模型具有以下特点:   1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般式非负的。   2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。   3、约束条件也是决策变量的线性函数。   当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。   例:   生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获得最多?   解:   1、确定决策变量:设x1、x2为产品Ⅰ、Ⅱ的生产数量;   2、明确目标函数:获利最大,即求2x1+3x2最大值;   3、所满足的约束条件:   设备限制:x1+2x2≤8   原材料A限制:4x1≤16   原材料B限制:4x2≤12   基本要求:x1,x2≥0   用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:   max z=2x1+3x2   s.t. x1+2x2≤8   4x1≤16   4x2≤12   x1,x2≥0 [编辑本段]线性规划的解法  求解线性规划问题的基本方法是单纯形法,现在已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。   对于一般线性规划问题:   Min z=CX   S.T.   AX =b   X>=0   其中A为一个m*n矩阵。   若A行满秩   则可以找到基矩阵B,并寻找初始基解。   用N表示对应于B的非基矩阵。则规划问题1可化为:   规划问题2:   Min z=CB XB+CNXN   S.T.   B XB+N XN = b (1)   XB >= 0, XN >= 0 (2)   (1)两边同乘于B-1,得   XB + B-1 N XN = B-1 b   同时,由上式得XB = B-1 b - B-1 N XN,也代入目标函数,问题可以继续化为:   规划问题3:   Min z=CB B-1 b + ( CN - CB B-1 N ) XN   S.T.   XB+B-1N XN = B-1 b (1)   XB >= 0, XN >= 0 (2)   令N:=B-1N,b:= B-1 b,ζ= CB B-1b,σ= CN - CB B-1 N,则上述问题化为规划问题形式4:   Min z= ζ + σ XN   S.T.   XB+ N XN = b (1)   XB >= 0, XN >= 0 (2)   在上述变换中,若能找到规划问题形式4,使得b>=0,称该形式为初始基解形式。   上述的变换相当于对整个扩展矩阵(包含C及A) 乘以增广矩阵 。所以重在选择B,从而找出对应的CB。   若存在初始基解   若σ>= 0   则z >=ζ。同时,令XN = 0,XB = b,这是一个可行解,且此时z=ζ,即达到最优值。所以,此时可以得到最优解。   若σ >= 0不成立   可以采用单纯形表变换。   σ中存在分量<0。这些负分量对应的决策变量编号中,最小的为j。N中与j对应的列向量为Pj。   若Pj <=0不成立   则Pj至少存在一个分量ai,j为正。在规划问题4的约束条件(1)的两边乘以矩阵T。   T=   则变换后,决策变量xj成为基变量,替换掉原来的那个基变量。为使得T b >= 0,且T Pj=ei(其中,ei表示第i个单位向量),需要:   l ai,j>0。   l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。   n 若aq,j<=0,上式一定成立。   n 若aq,j>0,则需要βq / aq,j >=βi/ ai,j。因此,要选择i使得βi/ ai,j最小。   如果这种方法确定了多个下标,选择下标最小的一个。   转换后得到规划问题4的形式,继续对σ进行判断。由于基解是有限个,因此,一定可以在有限步跳出该循环。   若对于每一个i,ai,j<=0   最优值无界。   若不能寻找到初始基解   无解。   若A不是行满秩   化简直到A行满秩,转到若A行满秩。 [编辑本段]线性规划的应用  在企业的各项管理活动中,例如计划、生产、运输、技术等问题,线性规划是指从各种限制条件的组合中,选择出最为合理的计算方法,建立线性规划模型从而求得最佳结果
凡尘2023-06-13 08:11:331

线性规划中决策变量X=[x1,x2]T,这个式子中右上角的上标T表示?

在x>0的条件下,存在这样的情况。貌似对数函数的运算方法。这个题我们要严格按照题目中的f(x)是定义在(0,∞)上的增函数,且f(x/y)=f(x)-f(y)来思考,也就是说,这个是大前提。利用题目所给的条件f(x/y)=f(x)-f(y)f(x)-f(1/(x-3))=f(x的平方-3x)≤2我们可以将2拆分成11,也就是2=11=f(2)f(2)所以出现f(x的平方-3x)≤f(2)f(2)则有f(x的平方-3x)-f(2)≤f(2)再次利用条件f(x/y)=f(x)-f(y)f(x的平方-3x)-f(2)=f(x的平方/2-3x/2)≤f(2)已知f(x)是定义在(0,∞)上的增函数所以x的平方/2-3x/2≤2x的平方-3x-4≤0所以解出-1≤x≤4又因为f(x)是定义在(0,∞)上的增函数因此0<x≤4
bikbok2023-06-13 08:11:331

决策变量为正整数怎么编程?

编程时可以使用整数规划(Integer Programming)算法来处理决策变量为正整数的问题。其中,线性整数规划(Mixed Integer Linear Programming,简称MILP)是一种常见的方法。在使用MILP求解时,需要引入额外的约束条件,例如将所有决策变量限定为整数或者钦定某些变量为整数。一些优秀的商业和开源求解器如CPLEX、Gurobi和GLPK都支持整数规划建模和求解。
NerveM 2023-06-13 08:11:321

最优化问题中的决策变量用英语怎么说

目标函数 objective function约束条件 constraints决策变量 decision variable最优化问题 optimization problem
西柚不是西游2023-06-13 08:11:321

标准指派问题的规划模型中,有几个决策变量

3. 下列叙述中,不属于目标规划模型图解法解题步骤的...D. 20个决策变量 满分:8 分5. 任务分配问题有(...2. 指派问题最优解有这样的性质,若从系数矩阵(cij...
善士六合2023-06-13 08:11:321

配料问题设置决策变量时通常采用什么方法

通常采用算法实验之线性规划解决配料问题。控制变量法是指控制其他因素不变,集中研究其中一个因素的变化,保证实验不受干扰或将干扰因素降低到最低程度。包括严格地操纵实验变量,以获取反应变量,还要严格地均衡无关变量,以消除额外变量干扰。一句话,通过实验控制,尽量消除实验误差,以取得较为精确的实验结果。配料表是对食品进行营养信息和特性的说明,大家可以通过饮料的配料表了解营养成分和特征,正确的选择适合自己需要的饮料。另一方面,食品企业通过配料表进行正确标注,避免夸大宣传,同时也保护了消费者的知情权。
Ntou1232023-06-13 08:11:311

决策变量无约束如何标准化

决策变量无约束使用数据的四分位数进行标准化处理。根据相关资料查询,使用四分位数进行标准化,只取25%分位数到75%分位数的数据做缩放,在一定程度上减少了异常值对数据分析造成的影响,使得分析结果更加合理。
NerveM 2023-06-13 08:11:311

线性规划模型设置决策变量时为什么只用一个未知数

具体原因如下:变量一般是目标函数.把目标函数看做函数,找最优解就行了.变量函数一般是画成可行域来由目标函数求最优解的.线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示.
苏州马小云2023-06-13 08:11:311

规划求解对决策变量有限制吗

规划求解对决策变量有限制,Excel里面,有一个很有用,但是很少被大家重视的功能:规划求解。规划求解是MicrosoftExcel加载项程序,可用于模拟分析。使用规划求解查找一个单元格(称为目标单元格)中公式的优化(最大或最小)值,受限或受制于工作表上其他公式单元格的值。规划求解与一组用于计算目标和约束单元格中公式的单元格(称为决策变量或变量单元格)一起工作。规划求解调整决策变量单元格中的值以满足约束单元格上的限制,并产生你对目标单元格期望的结果。
gitcloud2023-06-13 08:11:301

为什么决策变量不小于零

决策变量不小于零的原因是决策变量由生产量、利率决定,生产量、利率不可能是负数。线性规划是为了解决经济模型的,代表的都是原材料,工时等,所以要限制为非负数.并不代表单纯性法不能解决其他问题。用线性规划解决实际问题时,一般如生产量、利率等变量都不可能是负数,因此决策变量一般都要限制为大于等于0。所以,决策变量不小于零。
FinCloud2023-06-13 08:11:281

matlab中解线性规划问题决策变量无约束怎么表示

-inf表示。如果某个变量无下界,则用-inf表示;如果某个变量无上界,则用inf表示,若决策变量无下界,则lb用[]代替;若决策变量无上界,则ub用[]代替。决策变量在进行科学实验的概念,是指那些除了实验因素(自变量)以外的所有影响实验结果的变量,这些变量不是本实验所要研究的变量,所以又称无关变量、无关因子、非实验因素或非实验因子。
凡尘2023-06-13 08:11:281

matlab mincx求解器里面的决策变量怎么确定

%LMIsetlmis([]);gama2 = lmivar(1,[1,0]);P=lmivar(1,[3 1]);Q1=lmivar(1,[3 1]);Q2=lmivar(1,[3 1]);Q3=lmivar(1,[3 1]);Z1=lmivar(1,[3 1]);Z2=lmivar(1,[3 1]);Z3=lmivar(1,[3 1]);Z4=lmivar(1,[3 1]);Z5=lmivar(1,[3 1]);epsilon=lmivar(1,[1 0]);X=lmivar(1,[3 1]);Y=lmivar(1,[3 1]);N1=lmivar(1,[3 1]);N2=lmivar(1,[3 1]);N3=lmivar(1,[3 1]);N4=lmivar(1,[3 1]);N5=lmivar(1,[3 1]);N6=lmivar(1,[3 1]);N7=lmivar(1,[3 1]);N8=lmivar(1,[3 1]);N9=lmivar(1,[3 1]);N10=lmivar(1,[3 1]);N11=lmivar(1,[3 1]);N12=lmivar(1,[3 1]);。。。lmisys1=getlmis;%--------------------------------------------------------------------------求gama2的最小值%----------------------------solver----------------------------------------C = mat2dec(lmisys1,... eye(1),zeros(3),... zeros(3),zeros(3),zeros(3),... zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),... zeros(1),zeros(3),zeros(3),... zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3))options = [1e-5 1000 0 0 0];[tmin,xfeas]=feasp(lmisys1)运行结果:??? Error using ==> mat2decToo many input arguments.Error in ==> lmi1 at 216C =mat2dec(lmisys2,eye(1),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),zeros(1),zeros(3),zeros(3),zeros(3),zeros(3),zeros(3),z
再也不做站长了2023-06-13 08:11:281

为什么原问题决策变量的检验数是对偶问题的松弛变量

原问题松弛变量的检验数的相反数就是对偶问题的最优解。。
瑞瑞爱吃桃2023-06-13 07:49:331

优化模型中的决策变量为什么要相互独立

多元回归中,自变量对因变量有没有影响,影响大小,主要看显著性检验,即P值。 P值小于0.05,则通过了检验,认为该因素对因变量有显著影响。 对于通过了影响的自变量,如果要比较哪个影响大,哪个影响小,除了看符号的正负外,还可以看标准后的回归系数。
北有云溪2023-06-13 07:18:182

标准指派问题的规划模型中,有几个决策变量

3.下列叙述中,不属于目标规划模型图解法解题步骤的...D.20个决策变量满分:8分5.任务分配问题有(...2.指派问题最优解有这样的性质,若从系数矩阵(cij...
拌三丝2023-06-12 06:32:231

问:LINGO 决策变量这个LINGO的问题一共有几个决策变量 某钻井队要从10个可供选择的井位

mlhxueli 2023-06-12 06:32:201

m个人有m个任务的指派问题有多少个决策变量

m个人有m个任务的指派问题有m乘以n个决策变量。根据查询相关信息显示,变量就是变化的数量,m个人乘以n个任务就等于决策变量。
凡尘2023-06-12 06:32:161

三下标的决策变量如何染色体编码

常用的编码介绍1、二进制编码:(1)定义:二进制编码方法是使用二值符号集{0,1},它所构成的个体基因型是一个二进制编码符号串。二进制编码符号串的长度与问题所要求的求解精度有关。(2)举例:0≤x≤1023,精度为1,m表示二进制编码的长度。则有建议性说法:使 2m-1≤1000(跟精度有关)≤2m-1。取m=10则X:就可以表示一个个体,它所对应的问题空间的值是x=175。(3)优缺点优点:符合最小字符集原则,便于用模式定理分析;缺点:连续函数离散化时的映射误差。2、格雷码编码(1)定义:格雷码编码是其连续的两个整数所对应的编码之间只有一个码位是不同的,其余码位完全相同。它是二进制编码方法的一种变形。十进制数0—15之间的二进制码和相应的格雷码分别编码如下。二进制编码为:0000,0001,0010,001 1,0100。0101,0110,0111,1000,1001,1010,1011,1100,1101,1110,1111;格雷码编码为:0000,0001,0011,0010,0110,0111,0101,0100,1100,1101,1111,1110,1010,1011,1001,1000。(2)举例:对于区间[0。1023]中两个邻近的整数X1=175和X2=176,若用长度为10位的二进制编码,可表示为X11:和X12 ,而使用同样长度的格雷码,它们可分别表示为X21:和X22:。(3)优点:增强了遗传算法的局部搜索能力,便于连续函数的局部控件搜索。3、浮点数(实数)编码(1)定义:浮点数编码是指个体的每个基因值用某一范围内的一个浮点数来表示,而个体的编码长度等于其决策变量的个数。因为这种编码方法使用的决策变量的真实值,也称之为真值编码方法。(2)举例:(3)优点:实数编码是遗传算法中在解决连续参数优化问题时普遍使用的一种编码方式,具有较高的精度,在表示连续渐变问题方面具有优势。4、排列编码排列编码也叫序列编码,是针对一些特殊问题的特定编码方式。排序编码使问题简洁,易于理解。该编码方式将有限集合内的元素进行排列。若集合内包含m个元素,则存在m!种排列方法,当m不大时,m!也不会太大,穷举法就可以解决问题。当m比较大时,m!就会变得非常大,穷举法失效,遗传算法在解决这类问题上具有优势。如解决TSP问题时,用排列编码自然、合理。5、其它编码方式多参数级联编码等
凡尘2023-06-12 06:32:161

盈亏平衡模型的决策变量有哪三个

通过分析产品成本、销售量、和销售利润这三个变量之间的关系,掌握盈亏变化的临界点(保本点)而进行选择的方法。
CarieVinne 2023-06-12 06:32:151

物流系统最重要的决策变量有哪些

有序竞争会给消费者带来更多质优价廉的东西,他们比的是质量,服务,更具竞争力的产品;如果竞争围绕价格展开,商家到了无利可图的地步,那对消费者来说,将是一种灾难,因为商家必是以牺牲产品质量或是服务以及其他原本属于消费者应有的条件,来适应更低的售价。
阿啵呲嘚2023-06-12 06:32:151

线性规划模型的解是指决策变量的取值还是目标函数的取值?

线性规划模型的解是指决策变量的取值。线性规划是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
康康map2023-06-12 06:32:141

线性规划模型中决策变量约束中出现unr是什么意思

这个代表unrestricted,就是说x取值是从负无穷到正无穷的。
北境漫步2023-06-12 06:32:091

0-1规划中可不可以有多个决策变量?

可以的。并且其他的决策变量可以不服从0-1分布。比如决策工厂选址问题,X是0-1变量,代表是否在该地建厂;那么Y>0也是一个决策变量,代表该厂的产能。Y和X的关系:Y<M*X,M是该厂的最大产能。
善士六合2023-06-12 06:31:501

LINGO 决策变量

设10个0-1决策变量。
hi投2023-06-12 06:31:501

为什么选择thetai对应的决策变量出基

选择thetai对应的决策变量出基的原因是参数的波动会对CB造成改变。根据查询相关资料信息显示,用单位阵的每一个列向量对应的决策变量作为基变量,选择下标最小的决策变量作为出基变量,不会出现循环运算,选择thetai参数对应的决策变量是基变量,参数的波动会对CB造成改变,需要对所有非基变量的检验数进行校核。
铁血嘟嘟2023-06-12 06:31:491

规划问题的约束条件含有多个决策变量

线性规划问题的数学模型的一般形式  (1)列出约束条件及目标函数   (2)画出约束条件所表示的可行域   (3)在可行域内求目标函数的最优解 [编辑本段]线性规划的发展  法国数学家 J.- B.- J.傅里叶和 C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。   1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。   1947年美国数学家G.B.丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。   1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。   1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。   50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。   线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。   1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法。   1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。 建立线性规划模型的方法 [编辑本段]线性规划的模型建立  从实际问题中建立数学模型一般有以下三个步骤;   1.根据影响所要达到目的的因素找到决策变量;   2.由决策变量和所在达到目的之间的函数关系确定目标函数;   3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。   所建立的数学模型具有以下特点:   1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般式非负的。   2、目标函数是决策变量的线性函数,根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。   3、约束条件也是决策变量的线性函数。   当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。   例:   生产安排模型:某工厂要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示,表中右边一列是每日设备能力及原材料供应的限量,该工厂生产一单位产品Ⅰ可获利2元,生产一单位产品Ⅱ可获利3元,问应如何安排生产,使其获得最多?   解:   1、确定决策变量:设x1、x2为产品Ⅰ、Ⅱ的生产数量;   2、明确目标函数:获利最大,即求2x1+3x2最大值;   3、所满足的约束条件:   设备限制:x1+2x2≤8   原材料A限制:4x1≤16   原材料B限制:4x2≤12   基本要求:x1,x2≥0   用max代替最大值,s.t.(subject to 的简写)代替约束条件,则该模型可记为:   max z=2x1+3x2   s.t. x1+2x2≤8   4x1≤16   4x2≤12   x1,x2≥0 [编辑本段]线性规划的解法  求解线性规划问题的基本方法是单纯形法,现在已有单纯形法的标准软件,可在电子计算机上求解约束条件和决策变量数达 10000个以上的线性规划问题。为了提高解题速度,又有改进单纯形法、对偶单纯形法、原始对偶方法、分解算法和各种多项式时间算法。对于只有两个变量的简单的线性规划问题,也可采用图解法求解。这种方法仅适用于只有两个变量的线性规划问题。它的特点是直观而易于理解,但实用价值不大。通过图解法求解可以理解线性规划的一些基本概念。   对于一般线性规划问题:   Min z=CX   S.T.   AX =b   X>=0   其中A为一个m*n矩阵。   若A行满秩   则可以找到基矩阵B,并寻找初始基解。   用N表示对应于B的非基矩阵。则规划问题1可化为:   规划问题2:   Min z=CB XB+CNXN   S.T.   B XB+N XN = b (1)   XB >= 0, XN >= 0 (2)   (1)两边同乘于B-1,得   XB + B-1 N XN = B-1 b   同时,由上式得XB = B-1 b - B-1 N XN,也代入目标函数,问题可以继续化为:   规划问题3:   Min z=CB B-1 b + ( CN - CB B-1 N ) XN   S.T.   XB+B-1N XN = B-1 b (1)   XB >= 0, XN >= 0 (2)   令N:=B-1N,b:= B-1 b,ζ= CB B-1b,σ= CN - CB B-1 N,则上述问题化为规划问题形式4:   Min z= ζ + σ XN   S.T.   XB+ N XN = b (1)   XB >= 0, XN >= 0 (2)   在上述变换中,若能找到规划问题形式4,使得b>=0,称该形式为初始基解形式。   上述的变换相当于对整个扩展矩阵(包含C及A) 乘以增广矩阵 。所以重在选择B,从而找出对应的CB。   若存在初始基解   若σ>= 0   则z >=ζ。同时,令XN = 0,XB = b,这是一个可行解,且此时z=ζ,即达到最优值。所以,此时可以得到最优解。   若σ >= 0不成立   可以采用单纯形表变换。   σ中存在分量<0。这些负分量对应的决策变量编号中,最小的为j。N中与j对应的列向量为Pj。   若Pj <=0不成立   则Pj至少存在一个分量ai,j为正。在规划问题4的约束条件(1)的两边乘以矩阵T。   T=   则变换后,决策变量xj成为基变量,替换掉原来的那个基变量。为使得T b >= 0,且T Pj=ei(其中,ei表示第i个单位向量),需要:   l ai,j>0。   l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。   n 若aq,j<=0,上式一定成立。   n 若aq,j>0,则需要βq / aq,j >=βi/ ai,j。因此,要选择i使得βi/ ai,j最小。   如果这种方法确定了多个下标,选择下标最小的一个。   转换后得到规划问题4的形式,继续对σ进行判断。由于基解是有限个,因此,一定可以在有限步跳出该循环。   若对于每一个i,ai,j<=0   最优值无界。   若不能寻找到初始基解   无解。   若A不是行满秩   化简直到A行满秩,转到若A行满秩。 [编辑本段]线性规划的应用  在企业的各项管理活动中,例如计划、生产、运输、技术等问题,线性规划是指从各种限制条件的组合中,选择出最为合理的计算方法,建立线性规划模型从而求得最佳结果
LuckySXyd2023-06-12 06:31:491

决策变量是连续变量选择哪种方法求解

那这样2*3实验,因变量也就只有6组值吧,简单处理的话也就只是能比较均值搞方差分析或者两两T检验了。都是分类变量的话回归没多大意义了。
北营2023-06-12 06:31:481

数学模型决策变量和状态变量的区别

决策变量(decision variable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项, 因此又被称为模型的决策变量。简介控制变量在进行科学实验的概念,是指那些除了实验因素(自变量)以外的所有影响实验结果的变量,这些变量不是本实验所要研究的变量,所以又称无关变量、无关因子、非实验因素或非实验因子。只有将自变量以外一切能引起因变量变化的变量控制好,才能弄清实验中的因果关系。控制变量衍生到生活中的作用是控制一定影响因素从而得到真实的结果。
瑞瑞爱吃桃2023-06-12 06:31:401

决策变量的介绍

决策变量(decision variable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项, 因此又被称为模型的决策变量。
kikcik2023-06-12 06:31:381

数学模型决策变量和状态变量的区别

决策变量(decision variable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项, 因此又被称为模型的决策变量。
hi投2023-06-12 06:31:382

盈亏平衡模型的决策变量有哪三个?环境变量有哪三个?

量本利分析法,又称盈亏平衡分析或保本分析,是通过分析产品成本、销售量和销售利润这三个变量之间的关系,掌握盈亏变化的界点(即保本点),从而定出能产生最大利润的经营方案。它以变动成本为基础,以利润为核心,运用量本利分析的方法,研究和揭示成本、销售、利润三者之间的关系,综合考虑它们之间的影响,为企业生产经营决策提供科学的依据。
wpBeta2023-06-12 06:31:371

pyomo 决策变量 index错误

是因为数组公式错误导致的。决策变量即控制变量在进行科学实验的概念,是指那些除了实验因素(自变量)以外的所有影响实验结果的变量,这些变量不是本实验所要研究的变量,所以又称无关变量、无关因子、非实验因素或非实验因子。只有将自变量以外一切能引起因变量变化的变量控制好,才能弄清实验中的因果关系。控制变量衍生到生活中的作用是控制一定影响因素从而得到真实的结果。
瑞瑞爱吃桃2023-06-12 06:31:361

“一项决策的效果取决于两方面的因素:其一是决策者所选择的行动方案,也即决策变量;其二是决策者所面临

任何决策都需要加以执行和贯彻落实,然而,承担执行和贯彻落实任务的主体就是决策行动方案的最最核心因素,也就是最最关键的决策变量。这个因素直接决定决策的结果如何。 电视剧《亮剑》里,有一句话来形容国军的决策,即天才的决策却由一群傻瓜来执行。这就注定了这个决策必然达不到预期的目的,也就必然失败。
黑桃花2023-06-12 06:31:321

企业竞争模拟的决策程序是怎样的?决策变量有哪些?

人事。企业竞争目的决策程序是怎样的?决策变量有哪些呢?请教专业人士
小菜G的建站之路2023-06-12 06:31:315

表上作业法的决策变量有哪些

表上作业法的决策变量有正常生产、加班生产、转包三种方式各安排多少产量三种。编制综合计划的线性规划法时,用到了表上作业法,主要考虑决策变量和目标函数。决策变量就是正常生产、加班生产、转包每一大类的数量各是多少每一类的产量变化都会影响决策变量。
苏萦2023-06-12 06:31:271

最优化模型的决策变量

决策变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。
无尘剑 2023-06-12 06:31:141

目标规划的目标函数中为什么不含决策变量

可以。这个优化过程的本质相当于决策变量的变化对目标函数没影响,而会使约束趋于满足。在最优性条件的数学表达式上表现为目标函数对决策变量的导数项为0。注意如果是等式约束那么可行解唯一,也就是约束是active的。如果是不等式约束则有无穷多解。
陶小凡2023-06-12 06:31:142

决策变量是输入还是输出

决策变量既不是输入也不是输出。数学模型都包括输入、决策变量和输出。模型的输入是固定的已知值。决策变量是决策者可以控制的值,模型的输出是关心的值,通常是关心的目标值。
苏州马小云2023-06-12 06:31:131

决策变量为什么是列向量

..通常来说,决策变量 是一个长度为 n 的列向量,确定它的最优值是线性规划的目的。此外,决策变量 的取值范围会受到很多约束。
kikcik2023-06-12 06:31:133

决策变量在运筹学中是什么意思

meira2023-06-12 06:31:071

决策变量是越多越好吗?

不是越多越好,但是太少了也不行。决策变量又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。
北境漫步2023-06-12 06:31:061

决策变量为(x,y)是什么意思

决策变量(decision variable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项, 因此又被称为模型的决策变量。
左迁2023-06-12 06:31:061

选择一组决策变量指的是选择合适的什么

目标函数。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,选择一组决策变量指的是选择合适的目标函数,用来描述系统的特性。
Ntou1232023-06-12 06:31:061

决策变量在运筹学中是什么意思

决策变量(decision variable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项, 因此又被称为模型的决策变量。
ardim2023-06-12 06:31:052

库存控制管理的定期订货法中关键的决策变量是什么

库存控制管理的定期订货法中关键的决策变量是最低库存水平,安全库存水平,订货批量和订货时机。根据查询相关公开信息显示,这四个变量是库存控制管理中定期订货法的关键决策变量,因为它们会影响库存管理的有效性,效率和经济性。最低库存水平控制着订货的频率,安全库存水平控制着订货的数量,订货批量控制着每次订货的数量,订货时机控制着订货的时机,因此四个变量都是定期订货法的关键决策变量。
LuckySXyd2023-06-12 06:30:341

博弈论参数和决策变量的区别是什么呢

研究不同 博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。 决策论是研究为了达到预期目的,从多个可供选择的方案中如何选取最好或满意方案的学科。运筹学的一个分支和决策分析的理论基础。2.应用不同 “博弈论”与传统咨询工具相结合,可以帮助企业开启解决战略定位、股权分配、股权融资、价值塑造、商业模式等疑难杂症的新视角。 人们在实际工作中,经常会遇到需要做出判断和决定的问题,也就是决策问题。所谓的决策是为了达到某个目的,从多种不同的方案t|l选择某个确定的行动方案。3.假设不同 决策者由于所处的环境和当时当地的条件所决定
u投在线2023-06-12 06:30:342

数量型寡占模型决策变量是什么

数量型寡占模型的决策变量是寡头企业的产量或价格,以及市场份额分配。这些决策变量影响着市场上的产品数量和价格,进而影响着企业的利润和市场份额。
苏萦2023-06-12 06:30:331

存储问题模型的两个决策变量是什么?

存储问题模型的两个决策变量是存储的数量和存储的时间。根据查询相关公开信息显示,在存储问题模型中,需要决定存储多少产品以及存储多长时间,这两个决策变量会影响存储成本和库存水平。
meira2023-06-12 06:30:331

什么是决策变量

决策变量(decisionvariable)又称控制变量,设计变量,操作变量等。在描述过程系统的所有变量中,决策变量可以由设计人员按照最能符合系统的目标选择适当的数值,用来描述系统的特性。决策变量的个数称为自由度,自由度不能超过变量的总数和状态方程数目之差,并且决策变量的选择往往受到一定约束条件(热力学,动力学或过程、设备条件)的限制。内生变量是管理者作决策时的可选项,因此又被称为模型的决策变量。
wpBeta2023-06-12 06:30:312

两个决策变量相互影响怎么办

如果两个决策变量相互影响,可以考虑使用联合优化的方法来解决问题。具体来说,可以将两个决策变量作为一个整体来考虑,建立一个联合优化模型,通过对整体进行优化来达到最优解。另外,也可以通过引入约束条件来限制两个决策变量之间的关系,从而达到更好的优化效果。
u投在线2023-06-12 06:29:512

决策变量和基变量啥关系

所有的非基向量构成非基矩阵与每一个基向量对应的决策变量称为基变量。基变量是从线
拌三丝2023-06-11 08:37:311