海岛算经

刘徽在《海岛算经》一书中精心选项编了几个测量问题?

9个(1)今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从後表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?答曰:岛高四里五十五步;去表一百二里一百五十步。人目著地观测到岛峰,从后表退行127步,人目著地观测到岛峰,问岛高多少 岛与前表相距多远?(2)今有望松生山上,不知高下。立两表齐,高二丈,前後相去五十步,令後表与前表参相直。从前表却行七步四尺,薄地遥望松末,与表端参合。又望松本,入表二尺八寸。复从後表却行八步五尺,薄地遥望松末,亦与表端参合。问松高及山去表各几何?答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。(3)今有南望方邑,不知大小。立两表东、西去六丈,齐人目,以索连之。令东表与邑 东南隅及东北隅参相直。当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半。又却北行去表一十三步二尺,遥望邑西北隅,适与西表相参合。问邑方及邑去表各几何?答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。 (4)今有望深谷,偃矩岸上,令勾高六尺。从勺端望谷底,入下股九尺一寸。又设重矩于上,其矩间相去三丈。更从勺端望谷底,入上股八尺五寸。问谷深几何?答曰:四十一丈九尺。(5)今有登山望楼,楼在平地。偃矩山上,令勾高六尺。从勾端斜望楼足,入下股一丈二尺。又设重矩於上,令其间相去三丈。更从勾端斜望楼足,入上股一丈一尺四寸。又立小表於入股之会,复从勾端斜望楼岑端,入小表八寸。问楼高几何?答曰:八丈。 (6)今有东南望波口,立两表南、北相去九丈,以索薄地连之。当北表之西却行去表六丈,薄地遥望波口南岸,入索北端四丈二寸。以望北岸,入前所望表里一丈二尺。又却行,後去表一十三丈五尺。薄地遥望波口南岸,与南表参合。问波口广几何?答曰:一里二百步。(7)今有望清渊下有白石。偃矩岸上,令勾高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又设重矩於上,其间相去四尺。更从勾端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。问水深几何?答曰:一丈二尺。 (8)今有登山望津,津在山南。偃矩山上,令勾高一丈二尺。从勾端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。更登高岩,北却行二十二步,上登五十一步,偃矩山上。更从勾端斜望津南岸,入上股二丈二尺。问津广几何?答曰:二里一百二步。(9)今有登山临邑,邑在山南。偃矩山上,令勾高三尺五寸。令勾端与邑东南隅及东北隅参相直。从勾端遥望东北隅,入下股一丈二尺。又施横勾於入股之会,从立勾端望西北隅,入横勾五尺。望东南隅,入下股一丈八尺。又设重矩於上,令矩间相去四丈。更从立勾端望东南隅,入上股一丈七尺五寸。问邑广长各几何?答曰:南北长一里百步;东西广一里三十三步、少半步。
真颛2023-05-20 22:10:031

三国魏人刘徽,自传《海岛算经》,专论测高望远。其中有一题是数学史上有名的测量

今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?答曰:岛高四里五十五步;去表一百二里一百五十步。术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表数。三角函数
meira2023-05-20 22:10:032

刘徽在《海岛算经》一书中精心选项编了()个测量问题?

九 《海岛算经》由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。 算经十书之一。三国魏景元四年(公元263年)刘徽撰,本为《九章算术注》之第十卷,题为《重差》。后来此卷单行。因第一题是测量海岛的高和远而得名。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。 全书共9题。
Chen2023-05-20 22:10:031

海岛算经的简介

《海岛算经》由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。唐初开始单行,体例亦是以应用问题集的形式。研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。有人说是实用三角法的启蒙,不过其内容并未涉及三角学中的正余弦概念。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。此卷书被收集于明成祖时编修的永乐大典中,现保存在英国剑桥大学图书馆。刘徽也曾对九章算数重编并加以注释。全书共9题,全是利用测量来计算高深广远的问题,首题测算海岛的高、远,故得名。
豆豆staR2023-05-20 22:10:031

海岛算经里的一道题

首先统一单位,杆高等于3丈=30尺=5步。我重新画了图,从图中可以看出:AB/CD=BG/DG,也就是,AB/5=(BD+123)/123AB/EF=BH/FH,也就是,AB/5=(BD+1000+127)/127所以,(BD+123)/123=(BD+1127)/127可以解出,BD=30750步所以,AB=(30750+123)*5/123=1255步
水元素sl2023-05-20 22:10:021

海岛算经第一题的答案要详细的

没看懂。。。
mlhxueli 2023-05-20 22:10:022

刘徽的《海岛算经》中有一题

设 海岛高ab为x尺,距离bd=y尺ab/bh=cd/dh 即: x/(y+123*3)=30/(123*3)ab/bk=ef/fk 即: x/(y+1000*6+127*3)=30/(127*3)化简有:123x=10y+123*30127x=10y+60000+127*30解得:x=15030y=123*1500=184500
人类地板流精华2023-05-20 22:10:021

海岛算经第一题解法大神们帮帮忙

BD=30750步 AB=753丈 连接AC并延长,交射线BD于G, 连接AE并延长,交射线BD于H, 设AB长为a BD长为x 因为三角形ABG相似于三角形GCD 用相似求 即CD:AB=DG:BG 3:a=123:(x+123) 因为比的时候他们分子坟墓单位相同,所以不用转化 a=(3x+369)/123=(x+123)/41 又因为三角形EFH相似于三角形ABH 用相似求 即EF:AB=FH:BH 3:a=127:(x+1000+127) 把a=(x+123)/41代入 求出x=30750步 a=753尺
gitcloud2023-05-20 22:10:021

《海岛算经》里都研究的是哪些内容?

《海岛算经》原为《九章算术注》第九卷勾股章内容的延续和发展,名为《九章重差图》,附于《九章算术注》之后作为第十章。唐代将其从中分离出来,单独成书,按第一题“今有望海岛”,取名为《海岛算经》,是《算经十书》之一。《海岛算经》研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标,是我国最早的一部测量数学著作,也为地图学提供了数学基础。《海岛算经》运用二次、三次、四次测望法,是测量学历史上领先的创造。中外学者对《海岛算经》的成就,给予很高的评价。美国数学家弗兰克·斯委特兹说:《海岛算经》使中国测量学达到登峰造极的地步,使中国在数学测量学的成就,超越西方约1000年。
西柚不是西游2023-05-20 22:10:011

海岛算经的作者是谁?

《海岛算经》的作者是刘徽。《海岛算经》由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。唐初开始单行,体例亦是以应用问题集的形式。研究的对象全是有关高与距离的测量,所使用的工具也都是利用垂直关系所连接起来的测竿与横棒。有人说是实用三角法的启蒙,不过其内容并未涉及三角学中的正余弦概念。所有问题都是利用两次或多次测望所得的数据,来推算可望而不可及的目标的高、深、广、远。此卷书被收集于明成祖时编修的永乐大典中,现保存在英国剑桥大学图书馆。刘徽也曾对九章算术重编并加以注释。全书共9题,全是利用测量来计算高深广远的问题,首题测算海岛的高、远,故得名。作者简介:刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
kikcik2023-05-20 22:10:011

《海岛算经》的内容和意义是什么?

《海岛算经》是一部影响久远的测算专著。它所详细揭示的重差测量理论和方法,成为古代测量的基本依据,为实现直接测量,即步量或丈量向间接测量的飞跃架起了桥梁。直至近代,重差测量理论和方法在某些场合仍有借鉴意义。
大鱼炖火锅2023-05-20 22:10:011

《海岛算经》为何人所作?

《海岛算经》是三国时期刘徽所作。这部书中讲述的都是利用标杆进行两次、三次至最复杂的四次测量来解决各种测量数学的问题。这些测量数学,正是我国古代非常先进的地图学的数学基础。
u投在线2023-05-20 22:10:011

海岛算经的作者简介

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了“割圆术”,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”,这可视为中国古代极限观念的佳作。
Jm-R2023-05-20 22:10:011

九章算术注和海岛算经作者

刘徽(250-?),魏晋时期著名数学家,山东淄乡(今临淄或淄川一带)人。魏景元年(公元263年)注《九章算术》九卷。他在注释中有很多创见,尤其用割圆术来计算圆周率的方法,含有极限概念,这是他的一个伟大创造,他正确计算出圆内接正3072边形的面积,从而得出π=3.1416的数学成就。《海岛算经》原名《重差》,附于刘徽所注《九章算术》之后。唐初这一卷单行,由于他的第一题是测量海岛的高和远的问题,因而得名,改称《海岛算经》。书中所收集的都有是两次或多次测望所得。在算理算法方面主要运用重差。这部书显示了我国古代测量数学的进步和发展。刘徽不仅是中国数学史上一个非常伟大的数学家,而且在世界数学史上也占有重要地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
hi投2023-05-20 22:10:011

海岛算经

(1)今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从后表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?答曰:岛高四里五十五步;去表一百二里一百五十步。 [翻译:假设测量海岛,立两根表高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123 步, 人目著地观测到岛峰,从后表退行127步,人目著地观测到岛峰,问岛高多少 岛与前表相距多远? 术曰:以表高乘表间为实;相多为法,除之。所得加表高,即得岛高。求前表去岛远近者:以前表却行乘表间为实;相多为法。除之,得岛去表数。 (2)今有望松生山上,不知高下。立两表齐,高二丈,前后相去五十步,令后表与前表参相直。从前表却行七步四尺,薄地遥望松末,与表端参合。又望松本,入表二尺八寸。复从后表却行八步五尺,薄地遥望松末,亦与表端参合。问松高及山去表各几何?答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。 术曰:以入表乘表间为实。相多为法,除之。加入表,即得松高。求表去山远近者:置表间,以前表却行乘之为实。相多为法,除之,得山去表。 (3)今有南望方邑,不知大小。立两表东、西去六丈,齐人目,以索连之。令东表与邑 东南隅及东北隅参相直。当东表之北却行五步,遥望邑西北隅,入索东端二丈二尺六寸半。又却北行去表一十三步二尺,遥望邑西北隅,适与西表相参合。问邑方及邑去表各几何?答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。 术曰:以入索乘后去表,以两表相去除之,所得为景长;以前去表减之,不尽以为法。置后去表,以前去表减之,余以乘入索为实。实如法而一,得邑方。求去表远近者:置后去表,以景长减之,余以乘前去表为实。实如法而一,得邑去表。 (4)今有望深谷,偃矩岸上,令勾高六尺。从勺端望谷底,入下股九尺一寸。又设重矩于上,其矩间相去三丈。更从勺端望谷底,入上股八尺五寸。问谷深几何?答曰:四十一丈九尺。 术曰:置矩间,以上股乘之,为实。上、下股相减,余为法,除之。所得以勾高减之,即得谷深。 (5)今有登山望楼,楼在平地。偃矩山上,令勾高六尺。从勾端斜望楼足,入下股一丈二尺。又设重矩於上,令其间相去三丈。更从勾端斜望楼足,入上股一丈一尺四寸。又立小表於入股之会,复从勾端斜望楼岑端,入小表八寸。问楼高几何?答曰:八丈。 术曰:上、下股相减,余为法;置矩间,以下股乘之,如勾高而一。所得,以入小表乘之,为实。实如法而,即是楼高。 (6)今有东南望波口,立两表南、北相去九丈,以索薄地连之。当北表之西却行去表六丈,薄地遥望波口南岸,入索北端四丈二寸。以望北岸,入前所望表里一丈二尺。又却行,后去表一十三丈五尺。薄地遥望波口南岸,与南表参合。问波口广几何?答曰:一里二百步。 术曰:以后去表乘入索,如表相去而一。所得,以前去表减之,余以为法;复以前去表减后去表,余以乘入所望表里为实,实如法而一,得波口广。 (7)今有望清渊下有白石。偃矩岸上,令勾高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又设重矩於上,其间相去四尺。更从勾端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。问水深几何?答曰:一丈二尺。 术曰:置望水上、下股相减,余以乘望石上股为上率。又以望石上、下股相减,余以乘望水上股为下率。两率相减,余以乘矩间为实;以二差相乘为法。实如法而一,得水深。 (8)今有登山望津,津在山南。偃矩山上,令勾高一丈二尺。从勾端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。更登高岩,北却行二十二步,上登五十一步,偃矩山上。更从勾端斜望津南岸,入上股二丈二尺。问津广几何?答曰:二里一百二步。 术曰:以勾高乘下股,如上股而一。所得以勾高减之,余为法;置北行,以勾高乘之,如上股而一。所得以减上登,余以乘入股里为实。实如法而一,即得津广。 (9)今有登山临邑,邑在山南。偃矩山上,令勾高三尺五寸。令勾端与邑东南隅及东北隅参相直。从勾端遥望东北隅,入下股一丈二尺。又施横勾於入股之会,从立勾端望西北隅,入横勾五尺。望东南隅,入下股一丈八尺。又设重矩於上,令矩间相去四丈。更从立勾端望东南隅,入上股一丈七尺五寸。问邑广长各几何?答曰:南北长一里百步;东西广一里三十三步、少半步。 术曰:以勾高乘东南隅入下股,如上股而一,所得减勾高,余为法;以东北隅下股减东南隅下股,余以乘矩间为实。实如法而一,得邑南北长也。求邑广:以入横勾乘矩间为实。实如法而一,即得邑东西广。
北营2023-05-20 22:10:011

海岛算经的作者是三国时期哪位著名的数学家

《海岛算经》原本是三国时期数学家刘徽著作《九章算术注》第十章《重差》内容,后来单独发行,主要是测量数学,里面有很多应用题,因第一道题是关于海岛高度计算,而得名《海岛算经》。刘徽
墨然殇2023-05-20 22:10:012

海岛算经读后感

没看过不知道
小白2023-05-20 22:10:012

刘徽的海岛算经中望海岛问题的海岛的高是多少

刘徽的海岛算经中望海岛问题的海岛的高是四里五十五步。根据相关资料显示,海岛算经中望海岛问题的岛高是四里五十五步。去表一百二里一百五十步。《海岛算经》是中国学者编撰的最早一部测量数学著作,亦为地图学提供了数学基础。由刘徽于三国魏景元四年(公元263年)所撰,本为《九章算术注》之第十卷,题为《重差》。
大鱼炖火锅2023-05-20 22:10:011

帮忙做一道题——《海岛算经》第一题

用现代文,题意大致为:     立两个10m高的标杆(“表”通“标”),之间距离为1000步。从第一个标杆后退123步,从地上仰望岛峰,人眼、标杆顶部和山顶三点共线;从后面的一个标杆后退127步,从地上仰望岛峰,人眼、标杆顶部和山顶为三点也共线。设海岛高为H,第一个标杆与海岛的距离为L,根据三角形相似的等比原理有以下二个等式:(123步):(10m)=(123步+L):H(127步):(10m)=(1127步+L):H联立以上二式,可解得:L=30750步H=2510m海岛高为2510m,第一个标杆距离海岛30750步。
凡尘2023-05-20 22:10:011

刘徽的海岛算经中望海岛问题的海岛的高是多少

刘徽的海岛算经中望海岛问题的海岛的高是3丈。根据查询相关公开信息,刘徽的海岛算经是一本古代数学书,有一道望海岛问题,问题是一座海岛的高度是多少,答案是3丈,3丈等于9尺,也是2点7米,这个问题的解决方案是刘徽提出的,提出了一种新的计算方法,可以用来计算海岛的高度,为后来的数学发展做出了重要贡献。
wpBeta2023-05-20 22:10:011