张丘建算经 百鸡问题
设鸡翁个数为x,鸡母个数为y,鸡雏个数为3z,x,y,z均为正整数;由条件可得方程:5x+3y+z=100……① x+y+3z=100……②①×3-②,14x+8y=200;则有x=4/7*(25-y)由此易得整数解:x=12y=4;x=8y=11;x=4y=18再代入方程求z,舍去非整数解,得:x=12y=4z=84;或x=8y=11z=81北境漫步2023-05-21 08:45:071
在中国古算术《张丘建算经》里,有一道著名的“百鸡问题”:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三
设母鸡X只,公鸡Y只,小鸡100-X-Y只, 所以5Y+3X+(100-X-Y)/3=100 且X,Y为整数,所以可以得出正确答案, 有三种情况 1.公鸡4只,母鸡18只,小鸡78只 2.公鸡8只,母鸡11只,小鸡81只 3.公鸡12只,母鸡4只,小鸡84只九万里风9 2023-05-21 08:45:072
张丘建算经百鸡问题
main(){int i,j,k;<br/> for(i=0;i<=33;i++)<br/> for(j=0;j<=20;j++)<br/> for(k=0;k<=100;k++)<br/> if((i+j+k==100)&&(3*i+5*j+1.0/3*k==100))<br/> printf("i=%d j=%d k=%d",i,j,k);<br/> printf(" ");<br/> } 有事可以找我 QQ:530843735善士六合2023-05-21 08:45:061
用JAVA编程算出《张丘建算经》中的一道百鸡问题
写任何程序之前先分析问题。这道题根据题意可列出以下方程:a + b + c = 1005a + 3b + c/3 = 100两方程联立消去c可得到:14a + 8b = 200也就是说这道题求的是满足 14a + 8b = 200 这个方程的整数解,即 (200 - 14 * a) % 8 == 0demo(仅供参考):public static void main(String[] args) { // a,b,c分别是公鸡、母鸡、小鸡的数量 int a, b, c; String format = "公鸡%d只,母鸡%d只,小鸡%d只%n"; for (int i = 0, max = 200 / 14 + 1; i < max; i++) { if ((200 - 14 * i) % 8 == 0) { a = i; b = (200 - 14 * a) / 8; c = 100 - a - b; System.out.format(format, a, b, c); } }}输出结果:公鸡0只,母鸡25只,小鸡75只公鸡4只,母鸡18只,小鸡78只公鸡8只,母鸡11只,小鸡81只公鸡12只,母鸡4只,小鸡84只北有云溪2023-05-21 08:45:061
公元6世纪,中国的《张丘建算经》有一道著名的百鸡问题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一
有三组解:A.鸡翁4、鸡母18、鸡雏78, B.鸡翁8、鸡母11、鸡雏81, C.鸡翁12、鸡母4、鸡雏84。解法如下:设鸡翁、鸡母、鸡雏分别为x、y、z 只,由题意得:①x+y+z =100②5x+3y+(1/3)z =100令②×3-①得:7x+4y=100;所以y=(100-7x)/4=25-(2x-x/4)=25-2x+x/4令x/4=t, (t为整数)所以x=4t把x=4t代入7x+4y=100得到:y=25-7t同理得z=75+3t所以:x=4ty=25-7tz=75+3t因为x,y,z为正整数所以4t大于025-7t大于075+3t大于0解得t大于0小于等于25/7 又因为t为整数所以t=1,2,3当t=1时x =4;y =18;z =78当t=2时 x =8;y =11;z =81当t=3时x =12;y =4;z =84北境漫步2023-05-21 08:45:061