复数的概念

我2014年高中毕业,现在我兄弟的高中数学中有个复数的概念,我好像没有学过?

所以你想问什么
大鱼炖火锅2023-06-22 10:17:582

高中数学复数的概念及运算,这类型体怎么做?求详细解答

选D
u投在线2023-06-21 09:02:061

请问复数的概念是什么时候学的,我怎么没学过

好象是高三学的吧,i的平方等于1
豆豆staR2023-06-20 07:11:055

虚数和复数的概念是什么?

虚数、复数实际上是一种数学形式,一种构造出来的数学工具,用于解决一些数理问题。
小白2023-06-18 08:07:444

复数的概念ppt

把形如a+bi的数称为复数,其中a和b均是实数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数。当z的虚部不等于零时,而实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在十六世纪首次引入,进过不断扩展深入,此概念逐渐为数学家所接受。
Chen2023-06-17 10:15:181

名词的单复数的概念是什么?

名词的单复数单数是可数的比如一个苹果,或者是一个铅笔盒,等等。是一个什么?所以前面要加a。复数是一个以上的名词,比如三支铅笔,表示不可数,我这是一个以上的,要加s
拌三丝2023-06-17 10:15:182

复数的概念 复数概念

1、把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。 2、复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
阿啵呲嘚2023-06-17 10:15:171

复数的概念

复数的解释①某些语言中由词的形态变化等表示的属于两个或两个以上的数量。例如 英语 里book(书,单数)指一本书,books(书,复数)指两本或两本以上的书。 ②形如a+bi的数叫做复数。其中a,b是实数,i=,是虚数单位。a叫做复数的实部,bi叫做复数的虚部。如1-3i,5i都是复数。 词语分解 复的解释 复 (①复④复⑤复) ù 回去 ,返: 反复 。往复。 回答, 回报 :复命。复信。复仇。 还原,使如前:复旧。复婚。复职。光复。 复辟 。 再,重来:复习。复诊。复审。复现。复议。 许多 的, 不是 单一 的:重(峦 ) 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天
可桃可挑2023-06-17 10:15:171

导数的概念 是什么? 复数的概念 是什么?

导数由速度问题和切线问题抽象出来的数学概念.又称变化率.如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时,但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置x与时间t的关系为x=f(t),那么汽车在由时刻t0变到t1这段时间内的平均速度是[f(t1)-f(t2)/t1-t2],当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 ,自然就把极限[f(t1)-f(t2)/t1-t2] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度.一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率).若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数.函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率. 导数是微积分中的重要概念.导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.可导的函数一定连续.不连续的函数一定不可导.
NerveM 2023-06-17 10:15:171

复数的概念

复数就是实数加减虚数,因为虚数的存在才有复数的存在复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a称为复数的实部,b称为复数的虚部
余辉2023-06-17 10:15:161

复数的概念

复数的概念:我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。由于自然数对减法运算不封闭(即:较小的自然数减去较大的自然数,其结果不是自然数),为了对减法运算封闭,我们将自然数扩充至整数。由于整数对除法运算不封闭(即:一个整数不能被另一个整数整除,其结果不是整数),为了对除法运算封闭,我们将整数扩充至有理数。复数由于有理数对于开方运算不封闭(即:有理数开正整数次方,其结果可以不是有理数),为了对开方运算封闭,我们将有理数扩充至一部分代数数。“代数数”定义为整系数(或有理系数)一元多项式方程的根,它包括一部分实数和一部分虚数。另一方面,有理数对于极限运算不封闭,为了对极限运算封闭,我们又将有理数扩充到实数。从而,极限、微积分、无穷级数运算均可以良好操作。也就是说,将定义在实数域上的函数进行极限、定积分、多重积分、无穷级数、无穷积等运算,只要不发散,其化简结果都在实数范围之内。以上内容参考:百度百科——复数
kikcik2023-06-17 10:14:561

复数的概念

复数,是数的概念扩展。我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不“虚”。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。
肖振2023-06-17 10:14:561

复数的概念和复数的几何意义练习题 要详解 我加50分!

1.D2.C
拌三丝2023-06-16 19:46:221

复数的概念与代数运算

复数概念的引入最初是为了求解 这样的没有实根的方程,因此复数集可以看作实数集的一个自然的扩充.为此,首先引进一个“新数”i,使它满足 ,即 适合方程 .这个新数 称为虚数单位.将 添加到实数集中去,定义:形如 ( 、 均是实数)的表达式称为一个复数.其中的 和 分别叫做复数 的实部和虚部,分别记作 一、复数 的分类当 虚部 时,复数 是实数; 当虚部 时,复数 是虚数; 当虚部 ,且实部 时,复数 是纯虚数. 如果记 ——实数集 ——复数集 ——虚数集 ——纯虚数集 就有关系 二、复数相等的充要条件 对于两个复数 , ,二者相等的充要条件是 且 ,即复数相等的充要条件是复数问题化归为实数问题的理论依据,“化虚为实”是解决复数问题的通性通法. 三、复数的运算法则 对于两个复数 、 . 加法: ; 减法: ; 乘法: ; 除法: . 四、复数的运算定律 复数的加法满足交换律、结合律,也就是说,对于任何复数 、 、 均有复数的乘法满足交换律、结合律,以及乘法对于加法的分配律.也就是说,对于复数 、 、 ,均有五、共轭复数的性质 当两个复数的实部相等,虚部互为相反数时,就称其互为共轭复数.特别地,若复数的虚部不为零时,也称作互为共轭虚数.对于复数 ,它的共轭复数用 来表示. 共轭复数有如下基本性质: (1) ; (2) ; (3) ; (4) ; (5) ; (6) ; (7) 是实数的充要条件是 ; 是纯虚数的充要条件是 且 . 六、复数的几何形式 复数 与复平面上的点 是一一对应的,点 和向量 也构成一—对应关系,点 和向量 均是复数 的几何形式.向量 的模 称为复数 的模 ,即 这种对应关系的构建,揭示了复数问题与向量问题之间的相互转化,说明了向量方法是解决复数问题的一条有效途径. 关于复数的模,有如下的基本性质: (1) ; (2) ; (3) .
可桃可挑2023-06-16 08:14:281

复数的概念教学设计

复数的概念教学设计如下:教学目标:(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复面、实轴、虚轴、共轭复数、共轭虚数的概念。(2)正确对复数进行分类,掌握数集之间的从属关系。(3)理解复数的几何意义,初步掌握复数集c和复面内所有的点所成的集合之间的一一对应关系。(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力。教学建议:(一)教材分析1、知识结构本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念。2、重点、难点分析(1)正确复数的实部与虚部对于复数,实部是,虚部是注意在说复数时,一定有,否则,不能说实部是,虚部是复数的实部和虚部都是实数。对于复数的定义,特别要抓住这一标准形式以及是实数这一概念,这对于解有关复数的问题将有很大的帮助。(2)正确地对复数进行分类,弄清数集之间的关系。分类要求不重复、不遗漏,同一级分类标准要统一。(3)不能乱用复数相等的条件解题用复数相等的条件。(4)在讲复数集与复面内所有点所成的集合一一对应时。(5)关于共轭复数的概念。(6)复数能否比较大小。(二)教法建议1、要注意知识的连续性,复数 是二维数,其几何意义是一个点 ,因而注意与面解析几何的联系。2、注意数形结合的数形思想,由于复数集与复面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想。3、注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能比较它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答。
凡尘2023-06-16 08:14:241

共轭复数的概念?

实部相同,虚部互为相反数,如复数z=1+2i,其共轭复数为1-2i
大鱼炖火锅2023-06-14 19:17:552

共轭复数的概念?

共扼复数是指实部相同、虚部相反(正负号相反)的两个复数如果两个复数满足以上条件,我们就说这两个复数共扼
苏州马小云2023-06-14 19:17:312

复数的概念?

复数是形如 a + b i的数.式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数. 在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位.当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数.由上可知,复数集包含了实数集,因而是实数集的扩张. 复数有多种表示形式,常用形式 z = a + b i叫做代数式.此外有下列形式. ①几何形式.复数 z = a + b i 用直角坐标平面上点 Z ( a ,b )表示.这种形式使复数的问题可以借助图形来研究.也可反过来用复数的理论解决一些几何问题. ②向量形式.复数 z = a + b i用一个以原点 O 为起点,点 Z ( a ,b )为终点的向量 O Z 表示.这种形式使复数的加、减法运算得到恰当的几何解释. ③三角形式.复数 z= a + b i化为三角形式 z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角.这种形式便于作复数的乘、除、乘方、开方运算. ④指数形式.将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式 z =| z | e i q ,复数的乘、除、乘方、开方可以按照幂的运算法则进行. 复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序.
LuckySXyd2023-06-14 19:16:431