汉邦问答 / 问答 / 问答详情

如和确定双曲线的焦点位置呀?请高手解答(好方法)

2023-07-28 10:52:16
gitcloud
若焦点在x轴上,则顶点也必在x轴上,说明双曲线与x轴有交点,说明双曲线方程中Y的值可以取0,而X的值则不能是0,因为和y轴没交点
类似的,焦点在y轴上,说明双曲线与y轴有焦点,说明X可以取0,而Y值则不行
MX2-NY2=1,MN>0
应该分类讨论:
1。若M>0,则N>0,那么X不能是0,因为如果X=0,则方程变为-NY2=1,N>0,无实数解。而Y则可以=0
说明这种情况焦点在x轴上
2。若M<0,则N<0,那么就变成了nY2-mX2=1,其中m,n分别代表M,N的绝对值。。。那么情况就和1反过来了。。。
这种情况Y不能取0而X可以。。。所以焦点在Y轴上

什么叫双曲线焦点

双曲线第三定义是平面内的动点到两定点A1(a,0)、A2(-a,0)的斜率乘积等于常数e^2-1的点的轨迹叫做椭圆或双曲线.其中两定点分别为椭圆或双曲线的顶点。当常数大于-1小于0时为椭圆;当常数大于0时为双曲线。与两个固定的点(叫做焦点)的距离差是常数的点的轨迹,这个固定的距离差是a的两倍。曲线第三定义的性质平面内动点到两定点A1(a,0)和A2(-a,0)的斜率乘积等于常数e-1的点的轨迹为椭圆或双曲线。其中两定点为椭圆或双曲线的顶点。当0<e<1时为椭圆,当e>1时为双曲线。圆锥曲线(二次曲线)的(不完整)统一定义是到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。当e>1时,为双曲线的一支,当e=1时,为抛物线,当0<e<1时,为椭圆,当e=0时,为一点。当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。
2023-07-27 02:40:121

双曲线的焦点怎么算?

经典奶茶就离开,焦恩俊你付款发,i既然你付款,i快捷开关看
2023-07-27 02:40:286

双曲线的焦点是什么意思?

若双曲线在x轴上:则为(-a,0)(a,0)。若双曲线在y轴上:则为(0,-a)(0,a)。平面内,到两个定点的距离之差的绝对值为常数2a(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。扩展资料:离心率第一定义:e=c/a且e∈(1,+∞)第二定义:双曲线上的一点P到定点F的距离│PF│与点P到定直线(相应准线)的距离d的比等于双曲线的离心率e。d点│PF│/d线(点P到定直线(相应准线)的距离)=e焦半径左焦半径:r=│ex+a│右焦半径:r=│ex-a│等轴双曲线一双曲线的实轴与虚轴长相等即:2a=2b且e=√2这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)
2023-07-27 02:41:411

怎么求双曲线的焦点?

双曲线的焦点坐标是:焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点。双曲线的焦点算法1、化成标准方程:x/a-y/b=1(a>0,b>0)。2、根据关系:c=a+b,求出c。3、表示焦点坐标(-c,0)(c,0)。4、同理:化成标准方程:y/a-x/b=1(a>0,b>0)。5、根据关系:c=a+b,求出c。6、表示焦点坐标(0,c)(0,-c)。
2023-07-27 02:42:071

双曲线的焦点坐标是什么?

若双曲线在x轴上:则为(-a,0)(a,0)。若双曲线在y轴上:则为(0,-a)(0,a)。平面内,到两个定点的距离之差的绝对值为常数2a(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。扩展资料:双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。双曲线共享许多椭圆的分析属性,如偏心度,焦点和方向图。许多其他数学物体的起源于双曲线,例如双曲抛物面,双曲面,双曲线几何(Lobachevsky的着名的非欧几里德几何),双曲线函数和陀螺仪矢量空间。参考资料来源:百度百科-双曲线
2023-07-27 02:42:211

什么是双曲线的焦点?

判断方法:1. 当双曲线的焦点在X轴上时,Y轴左边的为左支,Y轴右边的为右支;2. 当双曲线的焦点在Y轴上时,X轴上面的为上支,X轴下边的是下支。双曲线简介:双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
2023-07-27 02:42:431

如何确定双曲线的焦点是在X轴上还是在Y轴上?

哪一项系数前面是正的哪一项系数前面是正的,交点就在那个上
2023-07-27 02:43:427

双曲线焦点 和 切线 怎么算

焦点即是(c,0)所以,只要求出c即得该双曲线焦点坐标.切线:一种方法是对双曲线方程两边同时对"x"求导数,但此方法用高中知识求导并不简单!另一种方法是由已知条件设出该切线方程,联立双曲线方程和所设方程,因为该切线与该双曲线有且仅有一个交点,故判别式δ=0由此可解出相应的变量的值!
2023-07-27 02:46:212

双曲线的焦点在直线上吗!

在x轴上的双曲线为例:a表示双曲线右支的顶点位置b表示虚轴的一半c表示焦点位置1.双曲线(Hyperbola),是指一动点移动于一个平面上,与平面上两个定点的距离的差的绝对值始终为一定值时所成的轨迹叫做双曲线。2.第二定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
2023-07-27 02:46:281

双曲线的分支和焦点是什么?

共轭双曲线是两条具有特殊位置的双曲线,如果一双曲线的实轴及虚轴分别为另一双曲线的虚轴及实轴,则此二双曲线互为共轭双曲线。它们有相同的渐近线,并且4个焦点共圆,它们的离心率的平方之和等于它们的离心率的平方之积。两条共轭双曲线的四个焦点与它们的共同中心等距离,即互为共轭的双曲线的4个焦点在同一圆上,这个圆叫做双曲线的辅助圆。双曲线的分支和焦点:双曲线有两个分支,当焦点在x轴上时,为左支与右支;当焦点在y轴上时,为上支与下支。在定义中提到的两个定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。
2023-07-27 02:46:561

双曲线有两个焦点吗?

两个定点叫做双曲线的焦点(focus).x0d● 双曲线的第二定义:x0d到定点的距离与到定直线的距离之比=e ,e∈(1,+∞)x0d·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1x0d其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2ax0d·双曲线的参数方程为:x0dx=X+a·secθx0dy=Y+b·tanθ(θ为参数)·几何性质:x0d1、取值区域:x≥a,x≤-ax0d2、对称性:关于坐标轴和原点对称.x0d3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a;x0dB(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b.x0d4、渐近线:y=±(b/a)x5、离心率:6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
2023-07-27 02:47:101

双曲线焦点弦定理

焦点弦概念定义  焦点弦是指椭圆或者双曲线或者抛物线上经过一个焦点的弦.焦点弦简述  数学中的弦是指同一条圆锥曲线或同一个圆上两点连接而成的线段。焦点弦特点  焦点弦是由两个在同一条直线上的焦半径构成的。焦半径是由一个焦点引出的射线与椭圆或双曲线相交形成的。而由于椭圆或双曲线上的点与焦点之间的距离(即焦半径长)可以用椭圆或双曲线离心率和该点到对应的准线之间的距离来表示(圆锥曲线第二定义),因此,焦半径长可以用该点的横坐标来表示,与纵坐标无关。这是一个很好的性质。焦点弦长就是这两个焦半径长之和。此外,由于焦点弦经过焦点,其方程式可以由其斜率唯一确定,很多问题可以转化为对其斜率范围或取值的讨论。(注意斜率不存在的情况!即垂直于x轴!)研究对象  圆锥曲线方程。椭圆焦点弦公式  2ab^2/(b^2+c^2sin^2a)双曲线焦点弦公式  2ab^2/lb^2-c^2sin^2al抛物线焦点弦公式  p/2+x抛物线焦点弦的其他结论  ①弦长公式②若直线ab的倾斜角为α,则|ab|=2p/sin平方α③y2=2px或y2=-2px时,x1x2=p2/4,y1y2=-p2x2=2py或x2=-2py时,y1y2=p2/4,x1x2=-p2【数不胜数】团队为您解答,望采纳o(∩_∩)o~
2023-07-27 02:47:362

双曲线的焦点三角形公式

Su25b3PF1F2=b^2cot(u03b8/2).
2023-07-27 02:48:093

双曲线上一点到两焦点的距离公式

双曲线的定义是到两个定点距离和等于常数的点的集合。其焦距=√16-9=√7,p到另一个交点距离=2√7-3
2023-07-27 02:48:381

双曲线的焦点是什么,焦点公式

焦点在X轴上时为 (-C,0) (C,O) C^2=A^2+B^2
2023-07-27 02:48:451

双曲线的准线是什么 怎么理解啊

假设双曲线的方程为x^2/a^2-y^2/b^2=1,一焦点坐标为(c,0),一准线方程为x=m(其中c和m是已知)解:由准线方程为x=2得,a^2/c=m,所以a^2=cm,而a^2-b^2=c^2,故b^2=cm-(cm)^2所以双曲线的方程为 x^2/cm-y^2/[cm-(cm)^2]=1
2023-07-27 02:49:401

双曲线的焦点是不是一定在实轴上吗?

不对,例如:双曲线XY=1它的实轴就在第一,三象限角的平分线上。
2023-07-27 02:50:011

双曲线焦点到渐近线距离等于多少?

设双曲线方程为4x^2-y^2=k,它过点(1,3),∴k=-5,∴方程变为y^2/5-x^2/(5/4)=1,c=√(5+5/4)=5/2,焦点(0,5/2)到渐近线y=2x的距离=(5/2)/√5=√5/2.
2023-07-27 02:50:181

怎么算双曲线的焦点坐标?

双曲线的焦点坐标是:焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点。双曲线的焦点算法1、化成标准方程:x/a-y/b=1(a>0,b>0)。2、根据关系:c=a+b,求出c。3、表示焦点坐标(-c,0)(c,0)。4、同理:化成标准方程:y/a-x/b=1(a>0,b>0)。5、根据关系:c=a+b,求出c。6、表示焦点坐标(0,c)(0,-c)。
2023-07-27 02:51:551

双曲线焦点公式是什么?

双曲线的焦距公式:焦距=2√(a-b)。双曲线的离心率公式:e=√(a-b)/a。其中a是椭圆的半长轴长度,b是椭圆的半短轴长度。在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
2023-07-27 02:53:331

双曲线的焦点坐标是什么?

双曲线的焦点坐标是:焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点。双曲线的焦点算法1、化成标准方程:x/a-y/b=1(a>0,b>0)。2、根据关系:c=a+b,求出c。3、表示焦点坐标(-c,0)(c,0)。4、同理:化成标准方程:y/a-x/b=1(a>0,b>0)。5、根据关系:c=a+b,求出c。6、表示焦点坐标(0,c)(0,-c)。
2023-07-27 02:54:451

双曲线上一点到两焦点的距离是多少?

双曲线一点到两点焦点距离差的绝对值等于2a(2a
2023-07-27 02:55:401

双曲线焦点三角形的四个结论

双曲线焦点三角形的四个结论如下:双曲线焦点三角形的内切圆与F1F2相切于实轴顶点;且当P点在双曲线左支时,切点为左顶点,且当P点在双曲线右支时,切点为右顶点。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。1、双曲线焦点三角形的面积公式推导:设∠Fu2081PFu2082=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PFu2081-PFu2082|=2a在焦点三角形中,由余弦定理得Fu2081Fu2082的平方=PFu2081平方+PFu2082平方-2PFu2081PFu2082cosα=|PFu2081-PFu2082|平方+2PFu2081PFu2082-2PFu2081PFu2082cosα(2c)^2=(2a)^2+2PFu2081PFu2082-2PFu2081PFu2082cosαPFu2081PFu2082=[(2c)^2-(2a)^2]/2(1-cosα)=2b^2/(1-cosα)焦点三角形的面积公式=1/2PFu2081PFu2082sinα=b^2sinα/(1-cosα)=b^2cot(α/2)=b^2/tan(θ/2)2、双曲线焦点三角形的内切圆与F1F2相切于实轴顶点;且当P点在双曲线左支时,切点为左顶点,且当P点在双曲线右支时,切点为右顶点。
2023-07-27 02:55:531

双曲线的焦点到渐近线的距离为什么是b???

知道了渐近线方程,焦点坐标也知道。直接点到直线的距离公式就可以了呀!~~
2023-07-27 02:57:176

为何双曲线的焦点是它的两个渐近线的交点?

双曲线的两个渐近线的交点 并不是 双曲线的焦点。
2023-07-27 02:58:091

速求双曲线焦点三角形周长公式.

【题1】已知f1,f2是双曲线4(x2)-y2=1的两个焦点,p是双曲线上一点,且∠f1pf2=90°,则△f1pf2的面积是(  ).a.1b.2(5)c.2d.a 解析:解法一:设|pf1|=d1,|pf2|=d2,[来源:学_科_网]由双曲线的定义可知|d1-d2|=4.又∠f1pf2=90°,于是有d1(2)+d2(2)=|f1f2|2=20,因此,=2(1)d1d2=4(1)(d1(2)+d2(2)-|d1-d2|2)=1.解法二:由4(x2)-y2=1,知|f1f2|=2.设p点的纵坐标为yp,由于∠f1pf2=90°,则p在以|f1f2|为直径的圆上,即在x2+y2=5上.[来源:学科网]由x2-4y2=4,(x2+y2=5,)消去x得|yp|=5(5).故△f1pf2的面积s=2(1)|f1f2|·|yp|=1.【题2】已知有相同两焦点f1、f2的椭圆m(x2)+y2=1(m>1)和双曲线n(x2)-y2=1(n>0),p是它们的一个交点,则△f1pf2的形状是(  )a.锐角三角形b.直角三角形c.钝角三角形d.随m、n变化而变化【解析】 ∵|pf1|+|pf2|=2,|pf1|-|pf2|=±2,又m-1=n+1,∴|pf1|2+|pf2|2=2(m+n)=4(m-1)=|f1f2|2.【答案】 b【题3】已知双曲线a2(x2)-b2(y2)=1(a>0,b>0),其焦点为f1、f2,过f1作直线交双曲线同一支于a、b两点,且|ab|=m,则△abf2的周长是(  )a.4a        b.4a-mc.4a+2md.4a-2m[答案] c【题4】已知双曲线9(x2)-16(y2)=1的左、右焦点分别为f1、f2,若双曲线上一点p使∠f1pf2=90°,则△f1pf2的面积是(  )a.12   b.16   c.24   d.32[答案] b[解析] 由定义||pf1|-|pf2||=6,∴|pf1|2+|pf2|2-2|pf1|·|pf2|=36,∵|pf1|2+|pf2|2=|f1f2|2=100,∴|pf1||pf2|=32,∴s△pf1f2=2(1)|pf1|·|pf2|=16.【题5】已知双曲线c:9(x2)-16(y2)=1的左、右焦点分别为f1、f2,p为c的右支上一点,且|pf2|=|f1f2|,则△pf1f2的面积等于(  )a.24   b.36   c.48   d.96[答案] c[解析] 依题意得|pf2|=|f1f2|=10,由双曲线的定义得|pf1|-|pf2|=6,∴|pf1|=16,因此△pf1f2的面积等于2(1)×16×2(16)=48,选c.【题6】已知f1,f2为双曲线c:x2-y2=1的左、右焦点,p点在c上,∠f1pf2=60°,则p到x轴的距离为(  )a.2(3)b.2(6)c.d.解析 设|pf1|=m,|pf2|=n,不妨设m>n,p(x,y),|pf1|-|pf2|=m-n=2.在△f1pf2中,由余弦定理得(2)2=m2+n2-2mncos60°,∴8=(m-n)2+mn.∴mn=4.由△f1pf2的面积相等,得2(1)×2×|y|=2(1)mnsin60°,即|y|=2(1)×4×2(3).∴|y|=2(6).即p到x轴的距离为2(6).答案 b【题7】椭圆49(y2)+24(x2)=1与双曲线y2-24(x2)=1有公共点p,则p与双曲线两焦点连线构成三角形的面积为(  )a.48b.24c.24d.12解析:由已知得椭圆与双曲线具有共同的焦点f1(0,5)和f2(0,-5),又由椭圆与双曲线的定义可得||pf1|-|pf2||=2,(|pf1|+|pf2|=14,)所以|pf2|=6,(|pf1|=8,)或|pf2|=8.(|pf1|=6,)又|f1f2|=10,∴△pf1f2为直角三角形,∠f1pf2=90°.因此△pf1f2的面积s=2(1)|pf1||pf2|=2(1)×6×8=24.答案:b【题8】已知点p是双曲线a2(x2)-b2(y2)=1(a>0,b>0)右支上一点,f1、f2分别是双曲线的左、右焦点,i为△pf1f2的内心,若s△ipf1=s△ipf2+2(1)s△if1f2成立,则双曲线的离心率为(  )a.4   b.2(5)   c.2   d.3(5)【解析】 由s△ipf1=s△ipf2+2(1)s△if1f2得,|pf1|=|pf2|+2(1)×2c,p是右支上的点,所以|pf1|=|pf2|+2a,即有2(1)×2c=2a,e=2,选c.【答案】 c
2023-07-27 02:58:201

如何用双曲线判断焦点在哪?

判断方法:1. 当双曲线的焦点在X轴上时,Y轴左边的为左支,Y轴右边的为右支;2. 当双曲线的焦点在Y轴上时,X轴上面的为上支,X轴下边的是下支。双曲线简介:双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
2023-07-27 02:59:321

双曲线的知识点是什么?

一般的,双曲线,字面意思是“超过”或“超出”,是定义为平面交截直角圆锥面的两半的一类圆锥曲线。在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
2023-07-27 03:02:272

双曲线的焦点三角形离心率公式。

【题1】 已知F1,F2是双曲线4(x2)-y2=1的两个焦点,P是双曲线上一点,且∠F1PF2=90°,则△F1PF2的面积是(  ).A.1 B.2(5) C.2 D.A 解析:解法一:设|PF1|=d1,|PF2|=d2,[来源:学_科_网]由双曲线的定义可知|d1-d2|=4.又∠F1PF2=90°,于是有d1(2)+d2(2)=|F1F2|2=20,因此,=2(1)d1d2=4(1)(d1(2)+d2(2)-|d1-d2|2)=1.解法二:由4(x2)-y2=1,知|F1F2|=2.设P点的纵坐标为yP,由于∠F1PF2=90°,则P在以|F1F2|为直径的圆上,即在x2+y2=5上.[来源:学科网]由x2-4y2=4,(x2+y2=5,)消去x得|yP|=5(5).故△F1PF2的面积S=2(1)|F1F2|·|yP|=1.【题2】 已知有相同两焦点F1、F2的椭圆m(x2)+y2=1(m>1)和双曲线n(x2)-y2=1(n>0),P是它们的一个交点,则△F1PF2的形状是(  )A.锐角三角形 B.直角三角形C.钝角三角形 D.随m、n变化而变化【解析】 ∵|PF1|+|PF2|=2,|PF1|-|PF2|=±2,又m-1=n+1,∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|2.【答案】 B【题3】 已知双曲线a2(x2)-b2(y2)=1(a>0,b>0),其焦点为F1、F2,过F1作直线交双曲线同一支于A、B两点,且|AB|=m,则△ABF2的周长是(  )A.4a         B.4a-mC.4a+2m D.4a-2m[答案] C【题4】 已知双曲线9(x2)-16(y2)=1的左、右焦点分别为F1、F2,若双曲线上一点P使∠F1PF2=90°,则△F1PF2的面积是(  )A.12   B.16   C.24   D.32[答案] B[解析] 由定义||PF1|-|PF2||=6,∴|PF1|2+|PF2|2-2|PF1|·|PF2|=36,∵|PF1|2+|PF2|2=|F1F2|2=100,∴|PF1||PF2|=32,∴S△PF1F2=2(1)|PF1|·|PF2|=16.【题5】 已知双曲线C:9(x2)-16(y2)=1的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于(  )A.24    B.36    C.48    D.96[答案] C[解析] 依题意得|PF2|=|F1F2|=10,由双曲线的定义得|PF1|-|PF2|=6,∴|PF1|=16,因此△PF1F2的面积等于2(1)×16×2(16)=48,选C.【题6】 已知F1,F2为双曲线C:x2-y2=1的左、右焦点,P点在C上,∠F1PF2=60°,则P到x轴的距离为(  )A.2(3) B.2(6)C. D.解析 设|PF1|=m,|PF2|=n,不妨设m>n,P(x,y),|PF1|-|PF2|=m-n=2.在△F1PF2中,由余弦定理得(2)2=m2+n2-2mncos60°,∴8=(m-n)2+mn.∴mn=4.由△F1PF2的面积相等,得2(1)×2×|y|=2(1)mnsin60°,即|y|=2(1)×4×2(3).∴|y|=2(6).即P到x轴的距离为2(6).答案 B【题7】 椭圆49(y2)+24(x2)=1与双曲线y2-24(x2)=1有公共点P,则P与双曲线两焦点连线构成三角形的面积为 (  )A.48 B.24C.24 D.12解析:由已知得椭圆与双曲线具有共同的焦点F1(0,5)和F2(0,-5),又由椭圆与双曲线的定义可得||PF1|-|PF2||=2,(|PF1|+|PF2|=14,)所以|PF2|=6,(|PF1|=8,)或|PF2|=8.(|PF1|=6,)又|F1F2|=10,∴△PF1F2为直角三角形,∠F1PF2=90°.因此△PF1F2的面积S=2(1)|PF1||PF2|=2(1)×6×8=24.答案:B【题8】 已知点P是双曲线a2(x2)-b2(y2)=1(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+2(1)S△IF1F2成立,则双曲线的离心率为(  )A.4   B.2(5)   C.2   D.3(5)【解析】 由S△IPF1=S△IPF2+2(1)S△IF1F2得,|PF1|=|PF2|+2(1)×2c,P是右支上的点,所以|PF1|=|PF2|+2a,即有2(1)×2c=2a,e=2,选C.【答案】 C
2023-07-27 03:02:533

椭圆和双曲线的焦点分别在哪里?

平面内与两定点F、F"的距离的和等于常数2a(2a>|FF"|)的动点P的轨迹叫做椭圆。  即:│PF│+│PF"│=2a  其中两定点F、F"叫做椭圆的焦点,两焦点的距离│FF"│叫做椭圆的焦距。平面内到两个定点F1,F2的距离之差的绝对值等于定值2a(0<2a<|F1F2|)的点的轨迹叫做双曲线即:│PF│-│PF"│=2a  其中两定点F、F"叫做双曲线的焦点,两焦点的距离│FF"│叫做双曲线的焦距。
2023-07-27 03:04:201

双曲线的实轴和虚轴是什么.....

实轴长是到定点的距离差为定长的常数,它的1/2就是所谓的表达式中的a虚轴长没有什么实际意义,往往和实轴一起用来讨论渐进线,它的1/2就是所谓的表达式中的b手机存手打!
2023-07-27 03:06:044

双曲线的焦点弦长公式

双曲线的焦点弦长公式介绍如下:双曲线焦点弦长公式:L=2a±2ex。弦长为连接圆上任意两点的线段的长度。弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。一般的,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。双曲线出现在许多方面:作为在笛卡尔平面中表示函数的曲线;作为日后的阴影的路径;作为开放轨道(与闭合的椭圆轨道不同)的形状,例如在行星的重力辅助摆动期间航天器的轨道,或更一般地,超过最近行星的逃逸速度的任何航天器。作为一个单一的彗星(一个旅行太快无法回到太阳系)的路径;作为亚原子粒子的散射轨迹(以排斥而不是吸引力作用,但原理是相同的);在无线电导航中,当距离到两点之间的距离而不是距离本身可以确定时等等。双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。
2023-07-27 03:07:151

双曲线的全部性质

双曲线是解析几何中的一种曲线,其数学方程通常表示为:(frac{x^2}{a^2} - frac{y^2}{b^2} = 1)其中,(a) 和 (b) 是正实数。双曲线具有以下性质:1. 定义域和值域:双曲线的定义域是实数集,而值域是 (y > b) 和 (y < -b) 的区间。2. 对称轴:双曲线的对称轴是 y 轴,方程中的 x 没有系数,即 (x = 0)。3. 焦点和准线:双曲线有两个焦点,分别位于对称轴上方和下方,记作 (0, c) 和 (0, -c),其中 (c = sqrt{a^2 + b^2})。双曲线还有两条准线,分别与 x 轴相交于 (-a, 0) 和 (a, 0)。4. 渐近线:双曲线有两条渐近线,分别与曲线趋于无穷远时的方向相同,斜率分别为 (y = pmfrac{b}{a}x)。5. 中心:双曲线的中心为原点 (0, 0),即焦点和准线的交点。6. 鞍点:双曲线上的鞍点位于中心,即 (0, 0)。7. 横轴和纵轴:双曲线有两条互相垂直的轴,分别为横轴和纵轴。横轴是通过中心且与曲线不相交的直线,方程为 (y = 0)。纵轴是通过中心且与曲线相交的直线,方程为 (x = 0)。8. 离心率:双曲线的离心率定义为 (e = frac{c}{a}),其中 (c) 是焦点到中心的距离,(a) 是准线到中心的距离。对于双曲线,离心率大于 1。这些性质描述了双曲线的几何特征,可以帮助我们理解和分析双曲线的形状和性质。双曲线在数学、物理学、工程学等领域都有广泛的应用。
2023-07-27 03:07:535

双曲线焦点三角形的面积公式 麻烦写下推导过程.

设∠Fu2081PFu2082=α 双曲线方程为x^2/a^2-y^2/b^2=1 因为P在双曲线上,由定义|PFu2081-PFu2082|=2a 在焦点三角形中,由余弦定理得 Fu2081Fu2082的平方=PFu2081平方+PFu2082平方-2PFu2081PFu2082cosα =|PFu2081-PFu2082|平方+2PFu2081PFu2082-2PFu2081PFu2082cosα (2c)^2=(2a)^2+2PFu2081PFu2082-2PFu2081PFu2082cosα PFu2081PFu2082=[(2c)^2-(2a)^2]/2(1-cosα) =2b^2/(1-cosα) 三角形的面积公式=1/2PFu2081PFu2082sinα =b^2sinα/(1-cosα) =b^2cot(α/2)
2023-07-27 03:10:512

双曲线的第三定义

一般的,双曲线,字面意思是“超过”或“超出”,是定义为平面交截直角圆锥面的两半的一类圆锥曲线。在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
2023-07-27 03:11:143

怎样判断双曲线的焦点位置

①如果双曲线的方程是xy=a(a>0),那么它的焦点在直线y=x上;②xy=b(b<0),焦点在y=一x上;③x^2/a^2一y^2/b^2=1,焦点在x轴上;④一x^2/b^2十y^2/a^2=1,焦点在y轴上。
2023-07-27 03:11:281

双曲线的两个焦点是什么?

两个定点叫做双曲线的焦点(focus).x0d● 双曲线的第二定义:x0d到定点的距离与到定直线的距离之比=e ,e∈(1,+∞)x0d·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1x0d其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2ax0d·双曲线的参数方程为:x0dx=X+a·secθx0dy=Y+b·tanθ(θ为参数)·几何性质:x0d1、取值区域:x≥a,x≤-ax0d2、对称性:关于坐标轴和原点对称.x0d3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a;x0dB(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b.x0d4、渐近线:y=±(b/a)x5、离心率:6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
2023-07-27 03:12:301

如何区分双曲线左右焦点?

在x轴上的双曲线为例:a表示双曲线右支的顶点位置b表示虚轴的一半c表示焦点位置1.双曲线(Hyperbola),是指一动点移动于一个平面上,与平面上两个定点的距离的差的绝对值始终为一定值时所成的轨迹叫做双曲线。2.第二定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
2023-07-27 03:12:381

不知道焦点的双曲线怎么设

可以直接设方程为x^2/m-y^2/n=1。若根据条件计算得m、n都是正的,则焦点在x轴;若计算得m、n都是负的,则焦点在y轴。不知道焦点的双曲线可以设方程为x^2/m-y^2/n=1。双曲线的焦点算法:化成标准方程:x2/a2-y2/b2=1(a>0,b>0),根据关系:c2=a2+b2,求出c。表示焦点坐标(-c,0)(c,0)。同理:化成标准方程:y2/a2-x2/b2=1(a>0,b>0)根据关系:c2=a2+b2,求出c。表示焦点坐标(0,c)(0,-c)。
2023-07-27 03:12:531

双曲线焦点三角形面积公式是啥

设∠Fu2081PFu2082=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PFu2081-PFu2082|=2a在焦点三角形中,由余弦定理得Fu2081Fu2082的平方=PFu2081平方+PFu2082平方-2PFu2081PFu2082cosα =|PFu2081-PFu2082|平方+2PFu2081PFu2082-2PFu2081PFu2082cosα(2c)^2=(2a)^2+2PFu2081PFu2082-2PFu2081PFu2082cosαPFu2081PFu2082=[(2c)^2-(2a)^2]/2(1-cosα) =2b^2/(1-cosα)三角形的面积公式=1/2PFu2081PFu2082sinα =b^2sinα/(1-cosα) =b^2cot(α/2)
2023-07-27 03:13:162

什么是品质因数?

品质因数(Q因数) quality factor 电学和磁学的量。表征一个储能器件(如电感线圈、电容等)、谐振电路所储能量同每周损耗能量之比的一种质量指标。元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。电抗元件的Q值等于它的电抗同等效串联电阻的比值。对于无辐射系统,如Z=R+jX,则Q =|X|/R。SI单位:1(一)。 Q=无功功率/有功功率 谐振回路的品质因数为谐振回路的特性阻抗与回路电阻之比。
2023-07-27 02:51:411

品质因数公式?

问题一:LC串联谐振的品质因数Q的计算公式是什么? 1.串联谐振电路中w=w0=1/√LC Q=1/wCR。 2.Q值等于谐振电路中储存能量的最大值与每个周期内消耗能量之比的2??倍。其中,订为谐振电路的品质因数。 问题二:品质因数的计算 对于无辐射系统,如Z=R+jX,则Q =|X|/R。SI单位:1(一)。Q=无功功率/有功功率串联谐振回路的品质因数为串联谐振回路的特性阻抗与回路电阻之比。在串联电路中,电路的品质因数Q有两种测量方法,一是根据公式 Q=UL/U0=Uc/U0测定,Uc与UL分别为谐振时电容器C与电感线圈L上的电压;另一种方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据Q=f0/(f2-f1)求出Q值。式中f0为谐振频率,f2与f1是失谐时,亦即输出电压的幅度下降到最大值的1/√2(=0.707)倍时的上、下频率点。Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,与信号源无关。1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个 元件的复数阻抗之和。Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因数Q=1/ωCR,这里I是电路的总电流。电感上的电压有效值UL=ωLI=ωL*U/R=QU 品质因数Q=ωL/R因为:UC=UL 所以Q=1/ωCR=ωL/R电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有:ω0L=1/ω0C所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2因为电路谐振时电路的总电流I0=U/R,所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1/2作此式的函数曲线。设(ω/ω0-ω0/ω)2=Y曲线如图2所示。这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时, I/I0均小于1。Q值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因数Q所决定的,Q值越高选择性越好。 问题三:实用并联谐振电路求品质因数的公式是什么? 30分 查了下书,LC并联谐振电路的品质因数是: Q=R/WL=W*C*R W是角频率,C和L分别是电容和电感,R是电感的等效并联电阻。 问题四:串联谐振的品质因数如何计算? Q=wL/R=1/wRC 快考试了这个还没搞定的话要加油了哦 问题五:LCR串联谐振电路中的品质因数R的计算公式,每个字母各表示神马。 串联谐振品质因数=根号(L/C)/R LCR分别是三个元件的参数大小。 问题六:品质因数的定义是什么? 5分 品质因数(Q因数) quality factor 电学和磁学的量。表示一个储能器件(如电感线圈、电容等)、谐振电路中所储能量同每周期损耗能量之比的一种质量指标;串联谐振回路中电抗元件的Q值等于它的电抗与其等效串联电阻的比值;元件的Q值愈大,用该元件组成的电路或网络的选择性愈佳。 计算 对于无辐射系统,如Z=R+jX,则Q =|X|/R。SI单位:1(一)。 Q=无功功率/有功功率 串联谐振回路的品质因数为串联谐振回路的特性阻抗与回路电阻之比。 在串联电路中,电路的品质因数Q有两种测量方法,一是根据公式 Q=UL/U0=Uc/U0测定,Uc与UL分别为谐振时电容器C与电感线圈L上的电压;另一种方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据Q=f0/(f2-f1)求出Q值。式中f0为谐振频率,f2与f1是失谐时,亦即输出电压的幅度下降到最大值的1/√2(=0.707)倍时的上、下频率点。Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,与信号源无关。 1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个 元件的复数阻抗之和。 Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴ 上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因数Q=1/ωCR,这里I是电路的总电流。 电感上的电压有效值UL=ωLI=ωL*U/R弧QU 品质因数Q=ωL/R 因为:UC=UL 所以Q=1/ωCR=ωL/R 电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q 电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q 从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。 电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有:ω0L=1/ω0C 所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2 因为电路谐振时电路的总电流I0=U/R, 所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1&......>> 问题七:谐振回路的有载品质因数Q怎么计算? RLC串联谐振:谐振时的感抗(或容抗)除以串联电阻等于品质因数Q; RLC并联谐振础并联电阻除以谐振时的感抗(或容抗)等于品质因数Q; 问题八:什么是品质因数? 我记得在《电路分析》中提到过品质因数,在工程上,通常用电路的特性阻抗与电阻值相比来表征谐振电路的性质,此比值称为串联谐振电路的品质因数。 这里所谓的串联谐振就是指作为激励电压源以某一频率加到由电阻,电容,电感串联的电路(任何实际电路都可以等效为这种戴维南电路模型)两端时,总的感抗为零,此时的激励源相当于直接加在电阻上,用此时的感抗或容抗与电路中的电阻相比,其比值就是品质因数了。 顺便要提的是,我记得不光是电路中有品质因数的概念,在物理上关于阻尼振动的研究也提出了品质因数的概念,物体做阻尼运动时由于振幅不断减少,振动的能量也不断减少,当能量减少为起始能量的1/e时所经历的时间称为时间常量t,用这个时间常量t除以T,T是每次振动的周期,就得到了在这段时间内,该物体一共做了多少次振动,在工程上将这一次数乘以2π定义为该阻尼振动的品质因数。 我想可能这两者的定义在某种程度上有一定关系,自己也思考过很久,不过到目前也没有发现两者之间的联系,我把这个关于阻尼振动的“品质因数”也提出来,希望你能更好的理解关于品质因数的含义。 问题九:LC串联谐振的品质因数Q的计算公式是什么? 1.串联谐振电路中w=w0=1/√LC Q=1/wCR。 2.Q值等于谐振电路中储存能量的最大值与每个周期内消耗能量之比的2??倍。其中,订为谐振电路的品质因数。 问题十:实用并联谐振电路求品质因数的公式是什么? 30分 查了下书,LC并联谐振电路的品质因数是: Q=R/WL=W*C*R W是角频率,C和L分别是电容和电感,R是电感的等效并联电阻。
2023-07-27 02:51:491

2011十七大报告内容

大会的主题是:高举中国特色社会主义伟大旗帜,以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,继续解放思想,坚持改革开放,推动科学发展,促进社会和谐,为夺取全面建设小康社会新胜利而奋斗。 一、过去五年的工作 二、改革开放的伟大历史进程 三、深入贯彻落实科学发展观 四、实现全面建设小康社会奋斗目标的新要求 ——增强发展协调性,努力实现经济又好又快发展。 ——扩大社会主义民主,更好保障人民权益和社会公平正义。 ——加强文化建设,明显提高全民族文明素质。 ——加快发展社会事业,全面改善人民生活。 ——建设生态文明,基本形成节约能源资源和保护生态环境的产业结构、增长方式、消费模式。 五、促进国民经济又好又快发展 (一)提高自主创新能力,建设创新型国家。 (二)加快转变经济发展方式,推动产业结构优化升级。 (三)统筹城乡发展,推进社会主义新农村建设。 (四)加强能源资源节约和生态环境保护,增强可持续发展能力。 (五)推动区域协调发展,优化国土开发格局。 (六)完善基本经济制度,健全现代市场体系。 (七)深化财税、金融等体制改革,完善宏观调控体系。 (八)拓展对外开放广度和深度,提高开放型经济水平。 六、坚定不移发展社会主义民主政治 (一)扩大人民民主,保证人民当家作主。 (二)发展基层民主,保障人民享有更多更切实的民主权利。 (三)全面落实依法治国基本方略,加快建设社会主义法治国家。 (四)壮大爱国统一战线,团结一切可以团结的力量。 (五)加快行政管理体制改革,建设服务型政府。 (六)完善制约和监督机制,保证人民赋予的权力始终用来为人民谋利益。 七、推动社会主义文化大发展大繁荣 (一)建设社会主义核心价值体系,增强社会主义意识形态的吸引力和凝聚力。 (二)建设和谐文化,培育文明风尚。 (三)弘扬中华文化,建设中华民族共有精神家园。 (四)推进文化创新,增强文化发展活力。 八、加快推进以改善民生为重点的社会建设 (一)优先发展教育,建设人力资源强国。 (二)实施扩大就业的发展战略,促进以创业带动就业。 (三)深化收入分配制度改革,增加城乡居民收入。 (四)加快建立覆盖城乡居民的社会保障体系,保障人民基本生活。 (五)建立基本医疗卫生制度,提高全民健康水平。健康是人全面发展的基础,关系千家万户幸福。 (六)完善社会管理,维护社会安定团结。 九、开创国防和军队现代化建设新局面 十、推进“一国两制”实践和祖国和平统一大业 十一、始终不渝走和平发展道路 十二、以改革创新精神全面推进党的建设新的伟大工程
2023-07-27 02:51:531

品质因数的定义是什么

品质因数是品质因子或Q因子是物理及工程中的无量纲参数,是表示振子阻尼性质的物理量,也可表示振子的共振频率相对于带宽的大小, 高Q因子表示振子能量损失的速率较慢,振动可持续较长的时间,例如一个单摆在空气中运动,其Q因子较高,而在油中运动的单摆Q因子较低。高Q因子的振子一般其阻尼也较小。Q因子较高的振子在共振时,在共振频率附近的振幅较大,但会产生的共振的频率范围比较小,此频率范围可以称为带宽。例如一台无线电接收器内的调谐电路Q因子较高,要调整接收器对准一特定频率会比较困难,但其选择性较好,在过滤频谱上邻近电台的信号上也有较佳的效果。Q因子较高的振子能够产生共振的频率范围较小,也比较稳定。扩展资料:在负回授系统中,闭回路系统的响应常常用二阶系统来表示。设定开回路系统的相位裕度可以决定闭回路系统的Q因子,当相位裕度减少时,对应的二阶闭回路系统振荡会变大,也就是Q因子提高。根据物理学,Q因子等于乘以系统储存的总能量,除以单一周期损失的能量,也可以表示为系统储存的总能量和单位弪度损失能量的的比值。Q因子是无量纲的参数,是比较系统振幅衰减的时间常数和振荡周期后的结果。当Q因子数值较大时,Q因子可近似为系统从开始振荡起,一直到其能量剩下原来的(约1/535或0.2%),中间历经的振荡次数。若将电阻、电感和电容并联形成一电路,并联电阻值越小,其阻尼的效果越大,因此Q因子越小。若是电感和电容并联的电路,而主要损失是电感内,和电感串联的电阻R,其Q因子和串联RLC电路相同,此时降低寄生电阻R可以提升Q因子,也使带宽缩小到需要的范围内。参考资料来源:百度百科——品质因子
2023-07-27 02:51:561

材料一:胡锦涛同志在党的十七大报告中指出:“社会建设与人民幸福安康息息相关。必须在经济发展的基础上

(1)社会主义和谐社会是指民主法治、公平正义、诚信友爱、充满活力、安定有序、人与自然和谐相处的社会。(2)建设和谐湛江要①坚持以经济建设为中心,大力发展社会生产力,正确处理改革、发展与稳定的关系。②加快推进以改善民生为重点的社会建设,积极解决好教育、就业、收入分配、社会保障、医疗卫生等直接关系人民群众根本利益和现实利益的问题,推动建设和谐社会。③坚持物质文明、政治文明、精神文明和生态文明一起抓,促进经济和社会的全面进步和发展。④坚持依法治国,提高人民的法制观念,加大执法力度,打击各种违法犯罪行为,维护社会公平正义。⑤落实科学发展观,坚持走可持续发展战略,促进人与自然的和谐发展。(3)只要言之有理,切合题意即可得分。如:知荣辱 讲文明 树新风 促和谐重礼义、知荣辱、守诚信、尚文明社会要和谐 首先要发展构建和谐社会 共创美好明天唱响跨越发展主旋律 谱写和谐创建新篇章树立社会主义荣辱观、构建社会主义和谐社会
2023-07-27 02:52:001

党的十七大报告指出,深入贯彻落实科学发展观,要求我们(  )。

【答案】:A,B,C,D党的十七大报告指出,深入贯彻落实科学发展观,要求我们:始终坚持“一个中心、两个基本点”的基本路线;积极构建社会主义和谐社会;继续深化改革开放;切实加强和改进党的建设。因此ABCD全选。
2023-07-27 02:51:211

品质因数的计算

对于无辐射系统,如Z=R+jX,则Q =|X|/R。SI单位:1(一)。Q=无功功率/有功功率串联谐振回路的品质因数为串联谐振回路的特性阻抗与回路电阻之比。在串联电路中,电路的品质因数Q有两种测量方法,一是根据公式 Q=UL/U0=Uc/U0测定,Uc与UL分别为谐振时电容器C与电感线圈L上的电压;另一种方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据Q=f0/(f2-f1)求出Q值。式中f0为谐振频率,f2与f1是失谐时,亦即输出电压的幅度下降到最大值的1/√2(=0.707)倍时的上、下频率点。Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,与信号源无关。1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个 元件的复数阻抗之和。Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因数Q=1/ωCR,这里I是电路的总电流。电感上的电压有效值UL=ωLI=ωL*U/R=QU 品质因数Q=ωL/R因为:UC=UL 所以Q=1/ωCR=ωL/R电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有:ω0L=1/ω0C所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2因为电路谐振时电路的总电流I0=U/R,所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1/2作此式的函数曲线。设(ω/ω0-ω0/ω)2=Y曲线如图2所示。这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时, I/I0均小于1。Q值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因数Q所决定的,Q值越高选择性越好。
2023-07-27 02:51:091

十七大报告指出,党在现阶段的任务是什么?

根据十七大的全面部署,中国共产党在今后五年的任务主要有:一、促进国民经济又快又好发展。二、坚定不移的发展社会主义民主政治。三、推动社会主义文化大发展、大繁荣。四、加快推进以改善民生为重点的社会建设。五、要开创国防和军队现代化建设的新局面。六、要推进“一国两制”实践以及祖国和平统一大业。七、要始终不渝的走和平发展道路。为了完成以上任务,中国共产党将坚定信心,埋头苦干。为全面建成惠及十几亿人口的更高水平的小康社会打下更加牢固的基础。
2023-07-27 02:51:064

中共十七大报告提出的核心内容是什么?

一个主题,五大创新 十七大报告的核心内容“一个主题”,就是中国特色社会主义。,“五大创新”,是指十七大报告总结了十六大以来,中国特色社会主义现代化新的发展阶段的新鲜实践经验与认识经验,做出了五个关系全局的重大理论创新。十七大报告的这五大理论创新,为新时期的指导思想确立了五个统摄全局、特别重要的基本观念、核心理念:中国特色社会主义观——科学发展观——经济、政治、文化、社会协调发展观——和平发展观——党和军队建设创新观。
2023-07-27 02:50:592

电路中的品质因数是什么意思?

在交流LC电路中才讲品质因数,就是电路谐振时,电感或电容两端的电压(LC串联)或电流(LC并联)与电源电压或电流的比值。
2023-07-27 02:50:563