- 黑桃花
-
关于致期望收首率,方差,协方差,相关系数的计算工式,可以查阅一下相关资料
协方差计算公式是什么?
协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。2023-07-25 06:25:381
标准差,协方差,相关系数的公式是什么
标准差 D (X ) = E [X - E(X)]2 根号D (X )为 X 的均方差或标准差 常用公式D(X)=E(X2)-E2(X) 协方差 COV(X,Y)=E([X-E(X)][Y-E(Y)]) 相关系数 协方差/[根号D(X)*根号D(Y)]2023-07-25 06:25:551
标准差协方差相关系数的公式是什么 标准差协方差相关系数的公式是怎样的
1、标准差计算公式是标准差σ=方差开平方。标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。 2、协方差cov计算公式是:cov(x,y)=EXY-EX*EY。 3、相关系数介于区间[-1,1]内。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。2023-07-25 06:26:031
怎么理解期望和协方差相关的公式?
方差和期望的关系公式:DX=EX^2-(EX)^2。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。将第一个公式中括号内的完全平方打开得到:DX=E(X^2-2XEX+(EX)^2)=E(X^2)-E(2XEX)+(EX)^2=E(X^2)-2(EX)^2+(EX)^2=E(X^2)-(EX)^2,离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。方差计算注意事项协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。(结合下面的2理解,每个样本有很多特征,每个特征就是一个维度)。根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。望采纳2023-07-25 06:26:232
协方差的性质怎么证明?
先帮他求解的时候,根据他这个性质还有就是具体的运算过程,我们可以找到一个最简单的优化证明方法是非常简单的。2023-07-25 06:26:323
协方差计算题
实际上协方差的公式是这样表达的:cov(A,B)=stdA*stdB*cor(A,B)其中stdA为资产组合A的标准差,stdB为资产组合B的标准差,cor(A,B)为资产组合A和B之间的相关系数。(你提供的协方差=相关系数*Var1*Var2公式并不正确,若要这样表达应为协方差=相关系数*(Var1*Var2)^(1/2))故此根据上述的式子和数据可得cov(A,B)=stdA*stdB*cor(A,B)=2.24%*2.24%*1=0.0005注意对于协议差的计算应该要忽略两个组合之间的所占的投资比例,原因是协议差的计算并不涉及相关比例的问题,而对于两个投资组合的方差则要考虑到投资所占比例问题,原因是在这个计算中投资比例会影响方差的结果,这是两个投资组合的方差公式:VAR(A,B)=x^2*varA+(1-x)^2*varB+2x(1-x)*cov(A,B)注:X为投资组合A所占的投资比例,故此投资组合了相应的投资比例为1-X2023-07-25 06:27:011
协方差计算期望和方差的公式是什么?
六个常见分布的期望和方差:1、均匀分布,期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布,期望是np,方差是npq。3、泊松分布,期望是p,方差是p。4、指数分布,期望是1/p,方差是1/(p的平方)。5、正态分布,期望是u,方差是&的平方。6、x服从参数为p的0-1分布,则e(x)=p,d(x)=p(1-p)。方差计算注意事项协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的,结合下面的2理解,每个样本有很多特征,每个特征就是一个维度。根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。2023-07-25 06:27:141
Excel 求助关于协方差的计算
Excel里面有两个协方差函数:COVARIANCE.P和COVARIANCE.S其中:COVARIANCE.P的公式如下,用来计算全集:COVARIANCE.S的公式如下,用来计算样本:用法如下:2023-07-25 06:27:361
关于协方差,请问一下这一步是根据哪条性质,或者哪个公式算出来的。
一共应该有四项2023-07-25 06:28:021
协方差公式的推导?
协方差公式Sxy=cov(X,Y)=E[(x-E(X))(y-E(Y))]均方根误差是预测值与真实值偏差的平方与观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替。标准误差对一组测量中的特大或特小误差反映非常敏感,所以,标准误差能够很好地反映出测量的精密度。这正是标准误差在工程测量中广泛被采用的原因。因此,标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。2023-07-25 06:28:231
方差与协方差的关系公式
方差和协方差都是描述随机变量之间关系的统计量,它们之间的关系公式如下:。协方差公式:$cov(X,Y)=E[(X-mu_X)(Y-mu_Y)]$,方差公式:$Var(X)=E[(X-mu_X)^2]$,其中,$cov(X,Y)$表示X和Y的协方差,$E$表示期望,$Var(X)$表示X的方差,$mu_X$和$mu_Y$分别表示X和Y的均值。可以看出,方差是协方差的一种特殊情况,即当X和Y是同一个随机变量时,它们的协方差就是方差。此外,协方差还可以通过两个随机变量的相关系数来计算,即$cov(X,Y)= ho_{XY}sigma_Xsigma_Y$,其中$ ho_{XY}$表示X和Y的相关系数,$sigma_X$和$sigma_Y$分别表示X和Y的标准差。2023-07-25 06:28:321
方差和协方差转换公式
方差和协方差转换公式是Cov(x,y)=E(XY)-E(X)*E(Y)。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。方差在统计描述和概率分布中各有不同的定义,并有不同的公式。2023-07-25 06:28:411
相关系数和协方差关系
相关系数和协方差关系如下:1、相关系数与协方差一定是在投资组合中出现的,只有组合才有相关系数和协方差。单个资产是没有相关系数和协方差之说的。2、相关系数和协方差的变动方向是一致的,相关系数的负的,协方差一定是负的。3、相关系数是变量之间相关程度的指标根据协方差的公式可知,协方差与相关系数的正负号相同,但是协方差是相关系数和两证券的标准差的乘积,所以协方差表示两种证劵之间共同变动的程度。资料扩展:相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。2023-07-25 06:29:011
协方差公式
你是自考的吧,我也在找E(XY)怎么算的啊~!!!2023-07-25 06:29:302
收益率的协方差计算
A的预期收益率 0.15*20%+0.20*5%+0.30*40%+0.45*35%=31.25% B的预期收益率 0.05*20%+0.10*5%+0.05*40%+0.15*35%=8.75% 协方差 20%*(0.15-31.25%)(0.05-8.75%)+5%*(0.20-31.25%)(0.10-8.75%)+40%(0.30-31.25%)(0.05-8.75%)+35%*(0.45-31.25%)(0.15-8.75)= 不容易 呀这么多数字,强烈要求加分2023-07-25 06:29:381
协方差公式看不懂..如何求解?
你好!D(A+B)=D(A)+D(B)+2*COV(A,B).p=COV(A,B)/[√D(A)*√D(B)]得COV(A,B)=0.4/30。由此求出D(A+B)D(A-B)同理2023-07-25 06:29:461
协方差怎么计算?
协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。2023-07-25 06:30:201
协方差怎么算?
协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。2023-07-25 06:30:281
协方差计算公式
1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。 2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。2023-07-25 06:30:351
协方差计算公式公式讲解
1、公式:cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。2023-07-25 06:30:421
协方差计算公式 公式讲解
1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。 2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。2023-07-25 06:30:501
协方差计算公式 公式讲解
1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。 2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。2023-07-25 06:31:001
协方差公式怎么求的啊?
D(X-Y)=D(X)+D(Y)-2Cov(X,Y) ,其中Cov(X,Y) 为X,Y的协方差。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。2023-07-25 06:31:211
大哥,您好,我想知道协方差,相关系数的一些相关知识,看不懂协方差的那个计算公式哦
两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。 [编辑本段]协方差的性质 (1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念: 定义 ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。 定义 若ρXY=0,则称X与Y不相关。 即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。 定理 设ρXY是随机变量X和Y的相关系数,则有 (1)∣ρXY∣≤1; (2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0) 定义 设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。 若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。 若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。 若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。 显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。 [编辑本段]协方差在农业上的应用 农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。 比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。a = -1 1 2 -2 3 1 4 0 3for i=1:size(a,2) for j=1:size(a,2) c(i,j)=sum((a(:,i)-mean(a(:,i))).*(a(:,j)-mean(a(:,j))))/(size(a,1)-1); end endc = 10.3333 -4.1667 3.0000 -4.1667 2.3333 -1.5000 3.0000 -1.5000 1.0000 c为求得的协方差矩阵,在matlab以矩阵a的每一列为变量,对应的每一行为样本。这样在矩阵a中就有3个列变量分别为a(:,1), a(:,2), a(:,3)。 在协方差矩阵c中,每一个元素c(i,j)为对第i列与第j列的协方差,例如c(1,2) = -4.1667为第一列与第二列的协方差。 拿c(1,2)的求解过程来说 c(1,2)=sum((a(:,1)-mean(a(:,1))).*(a(:,2)-mean(a(:,2))))/(size(a,1)-1); 1. a(:,1)-mean(a(:,1)),第一列的元素减去该列的均值得到 -1.3333 -2.3333 3.66672, a(:,2)-mean(a(:,2)),第二列的元素减去该列的均值得到 -0.3333 1.6667 -1.33333, 再将第一步与第二部的结果相乘 -1.3333 -0.3333 0.4444 -2.3333 .* 1.6667 = -3.8889 3.6667 -1.3333 -4.88894, 再将结果求和/size(a,1)-1 得 -4.1667,该值即为c(1,2)的值。再细看一下是不是与协方差公式:Cov(X,Y) = E{ [ (X-E(X) ] [ (Y-E(Y) ] } 过程基本一致呢,只是在第4步的时候matlab做了稍微的调整,自由度为n-1,减少了一行的样本值个数。已知协方差求其特征值:先写出协方差矩阵s,再调用eig(s)这个库函数,调用方法:[ev,ed]=eig(s).ed为特征值矩阵,ev特征向量矩阵,排列顺序:从低阶到高阶。》s=[2291.333 1340 1934 2523.333 1245.333 2482; 1340 956.6667 1596 1401.333 883.3333 1480;1934 1596 4281.667 1436.667 1663 1945.667;2523.333 1401.333 1436.667 2984.667 1236 2800.667; 1245.333 883.333 1663 1236 843 1343;2482 1480 1945.667 2800.667 1343 2729.667]》[ev,ed]=eig(s) 先写出协方差矩阵s,再调用eig(s)这个库函数,调用方法:[ev,ed]=eig(s).ed为特征值矩阵,ev特征向量矩阵,排列顺序:从低阶到高阶。》s=[2291.333 1340 1934 2523.333 1245.333 2482; 1340 956.6667 1596 1401.333 883.3333 1480;1934 1596 4281.667 1436.667 1663 1945.667;2523.333 1401.333 1436.667 2984.667 1236 2800.667; 1245.333 883.333 1663 1236 843 1343;2482 1480 1945.667 2800.667 1343 2729.667]》[ev,ed]=eig(s)2023-07-25 06:31:321
标准差,协方差,相关系数的公式是什么
标准差 D (X ) = E [X - E(X)]2 根号D (X )为 X 的均方差或标准差 常用公式D(X)=E(X2)-E2(X) 协方差 COV(X,Y)=E([X-E(X)][Y-E(Y)]) 相关系数 协方差/[根号D(X)*根号D(Y)]2023-07-25 06:31:561
协方差公式 cov(x-2y,2x+3y)=2Dx-cov(x,y)-6Dy 我课本上没出现这个公式··茫然··
协方差的性质(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y).由性质(3)展开cov(x-2y,2x+3y)=cov(x-2y,2x)+cov(x-2y,3y)=cov(x,2x)-cov(2y,2x)+cov...2023-07-25 06:32:031
方差和期望的关系公式是什么?
方差和期望的关系公式:DX=EX^2-(EX)^2。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。将第一个公式中括号内的完全平方打开得到:DX=E(X^2-2XEX+(EX)^2)=E(X^2)-E(2XEX)+(EX)^2=E(X^2)-2(EX)^2+(EX)^2=E(X^2)-(EX)^2,离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。方差计算注意事项协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。(结合下面的2理解,每个样本有很多特征,每个特征就是一个维度)。根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。2023-07-25 06:32:251
如何利用协方差公式计算相关性指标?
你好,请采纳!cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979表明这组数据X,Y之间相关性很好!2023-07-25 06:34:351
协方差cov计算公式是什么?
协方差cov计算公式是:cov(x,y)=EXY-EX*EYEX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论。扩展资料如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。2023-07-25 06:34:421
协方差公式 什么是协方差
1、cov(x,y)=EXY-EX*EY。 2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。 3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。2023-07-25 06:35:031
协方差公式怎么推导?
cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X) = (1.1+1.9+3)/3=2E(Y) = (5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02 此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 表明这组数据X,Y之间相关性很好。扩展资料协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:从直观上来看,协方差表示的是两个变量总体误差的期望。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。参考资料:百度百科协方差2023-07-25 06:35:111
方差和协方差有什么关系吗?
方差和期望的关系公式:DX=EX^2-(EX)^2。若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。将第一个公式中括号内的完全平方打开得到:DX=E(X^2-2XEX+(EX)^2)=E(X^2)-E(2XEX)+(EX)^2=E(X^2)-2(EX)^2+(EX)^2=E(X^2)-(EX)^2,离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。方差计算注意事项协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。(结合下面的2理解,每个样本有很多特征,每个特征就是一个维度)。根据公式,计算协方差需要计算均值,那是按行计算均值还是按列,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。2023-07-25 06:35:411
自协方差是什么意思?
自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt] = μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。扩展资料在有限的二阶矩的情况下,两个共同分布的实值随机变量X和Y之间的协方差被定义为它们偏离各自期望值的期望乘积。但协方差的计算有多种形式,和定义的一般格式有所区别。需要注意,如果用协方差计算相关系数。协方差中的X,Y已经假设样本数据为全体数据的集合。此时,协方差公式中的标准差计算时,需要除以N而不是N-1。参考资料:百度百科-协方差计算2023-07-25 06:35:561
协方差公式 什么是协方差
1、cov(x,y)=EXY-EX*EY。 2、协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。 3、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 4、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。2023-07-25 06:36:201
cov(x,y)公式是什么?
在统计学中,cov(x, y)表示随机变量 x 和 y 之间的协方差(covariance)。协方差用来衡量两个随机变量的线性关系程度,即它们的变化趋势是否同向或反向。协方差可以通过以下公式计算:cov(x, y) = E[(x - μx)(y - μy)]其中,E表示期望值(即均值),μx表示变量 x 的均值,μy表示变量 y 的均值。简而言之,计算协方差的步骤是:1. 对于每一个样本,分别将 x 和 y 的值减去各自的均值2. 将每个样本的 x 和 y 的差乘在一起3. 对所有的差乘值取平均值,即计算期望值协方差的值可以为正、负或零,表示两个变量之间的线性关系的方向和强度。具体解释如下:- 正值表示两个变量具有正向线性关系,即当一个变量增加时,另一个变量也倾向于增加。- 负值表示两个变量具有负向线性关系,即当一个变量增加时,另一个变量倾向于减少。- 零表示两个变量之间没有线性关系。需要注意的是,协方差无法直接比较两个变量之间的关系强度,因为它的大小受到变量尺度的影响。为了比较变量之间的关系强度,常常使用相关系数来标准化协方差。2023-07-25 06:36:281
协方差公式:COV(X,Y)= E(XY)-EXEY 中间的过程是怎样的? E 怎么乘进去的
COV(X,Y)=E{[X-E(X)][Y-E(Y)]}=E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)=E(XY)-EXEY不懂追问,望你采纳2023-07-25 06:36:382
标准差,协方差,相关系数的公式是什么
标准差D(X)=E[X-E(X)]2根号D(X)为X的均方差或标准差常用公式D(X)=E(X2)-E2(X)协方差COV(X,Y)=E([X-E(X)][Y-E(Y)])相关系数协方差/[根号D(X)*根号D(Y)]2023-07-25 06:37:055
协方差计算
自协方差在统计学中,特定时间序列或者连续信号Xt的自协方差是信号与其经过时间平移的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt] = μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。扩展资料在有限的二阶矩的情况下,两个共同分布的实值随机变量X和Y之间的协方差被定义为它们偏离各自期望值的期望乘积。但协方差的计算有多种形式,和定义的一般格式有所区别。需要注意,如果用协方差计算相关系数。协方差中的X,Y已经假设样本数据为全体数据的集合。此时,协方差公式中的标准差计算时,需要除以N而不是N-1。参考资料:百度百科-协方差计算2023-07-25 06:37:261
dw与相关系数的公式
dw与相关系数的公式如下。根据标准差公式:D(X)=E(X2)-E2(X);协方差公式:COV(X,Y)=E([X-E(X)][Y-E(Y)]);相关系数公式:协方差/[根号D(X)*根号D(Y)]。2023-07-25 06:37:501
方差、协方差与相关系数的关系方程式
随机变量:ξ0,数学期望:Eξ1,方差:若E(ξ-Eξ)^2存在,则称Dξ=E(ξ-Eξ)^2为随机变量ξ的方差;称√Dξ为ξ的标准差。2,协方差:给定二维随机变量ξ(ξ1,ξ2),若:E[(ξ1-Eξ1)(ξ2-Eξ2)]存在,则称其为随机变量(ξ1,ξ2)的协方差,记为:cov(ξ1,ξ2)=E[(ξ1-Eξ1)(ξ2-Eξ2)]3,记:r(ξ1,ξ2)=cov(ξ1,ξ2)/[Dξ1Dξ2]^0.5=E[(ξ1-Eξ1)(ξ2-Eξ2)]/[Dξ1Dξ2]^0.5(Dξ1,Dξ2均大于零)称:上式为ξ1,ξ2的‘相关系数"或‘标准协方差"。4,以上可知方差、协方差、相关系数之间的相互关系。2023-07-25 06:38:001
★协方差★协方差计算公式推导过程.谢谢
协方差:协方差表示的是两个变量的总体的误差.如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值.如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值. 协方差公式:X,Y为两个随机变量;COV(X,Y)=E[(X-E(X))(Y-E(Y))]2023-07-25 06:38:071
标准差,协方差,相关系数的公式是什么
标准差 D(X)=E[X-E(X)]2 根号D(X)为X的均方差或标准差 常用公式D(X)=E(X2)-E2(X) 协方差 COV(X,Y)=E([X-E(X)][Y-E(Y)]) 相关系数 协方差/[根号D(X)*根号D(Y)]2023-07-25 06:38:171
2017广东高一数学协方差公式
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。下面是我给大家带来的2017广东高一数学协方差公式,希望对你有帮助。 高一数学协方差公式 两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。 定义 E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。 协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 协方差与期望值有如下关系: COV(X,Y)=E(XY)-E(X)E(Y)。 协方差的性质: (1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。 协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念: 定义 u03c1XY=COV(X,Y)/u221aD(X)u221aD(Y),称为随机变量X和Y的相关系数。 定义 若u03c1XY=0,则称X与Y不相关。 即u03c1XY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。 定理 设u03c1XY是随机变量X和Y的相关系数,则有 (1)∣u03c1XY∣u22641; (2)∣u03c1XY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,au22600) 定义 设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。 若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。 若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。 若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。 显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。2023-07-25 06:38:261
高级教师和一级教师最大的差异是什么?你知道吗?
有的教师不知道上好课是次要的。2023-07-25 06:32:5413
电位滴定在中国药典中的应用
电位滴定在中国药典中的应用介绍如下:电位滴定在中国药典中的滴定分析方法:①根据滴定分析的方式不同,滴定分析法可分为:(1)直接滴定法。(2)间接滴定法。(3)返滴定法,又称剩余量滴定法或回滴定法。(4)置换滴定法。②根据滴定反应类型的不同滴定分析法又可分为:(1)酸碱滴定法,又称中和法。(2)配位滴定法,旧称络和滴定法。(3)氧化还原滴定法。(4)沉淀滴定法。滴定分析法作为标准分析方法之一,被广泛应用在医药行业:进行简单,快速,具有重现性和准确性的有效成分,药品及其原料的分析(含量测定)。滴定尤其适合于生产过程中的质量控制和常规分析。以下为一些主要的应用:1. 具有药物活性物质的纯度分析滴定主要用于测定药物活性成分的含量,如:阿斯匹林中的乙酰水杨酸或复合维他命片剂中的维生素C,以及用于药物合成的药物添加剂的含量测定和纯度控制。酸碱中和反应等酸碱滴定是医药行业用得最多的滴定。一个典型的例子就是盐酸麻黄碱的纯度控制。该成分通常出现在咳嗽糖浆中,用以治疗支气管哮喘。其含量的测定是在含有无水醋酸和醋酸汞的有机溶剂中,用高氯酸作滴定剂进行滴定:2R-NH3+-Cl-+Hg(OAc)2 =2R-NH2+HgCl2+2HOAcR-NH2+HClO4 =R-NH3+-ClO4-2. 用氧化还原滴定进行成分分析氧化还原滴定通常被用来检测原料、填充物和防腐剂的纯度。例如,4-苯甲酸甲酯(一种对羟基苯甲酸酯)中溴值的测定。这种化合物作为防腐剂被应用于眼药制剂和外用眼药膏中。硫代硫酸钠被用作滴定剂。整个分析由下述几个步骤组成:2.1 酯与氢氧化钠的皂化作用(水解)2.2 羟基氧化到酮基的过程2.3 苯环的(亲电)溴化2.4 过量的溴与碘离子反应,生成滴定过程中所需的游离碘2.5 碘经硫代硫酸盐滴定, 还原成碘离子:I2+2S2O32-=2I-+S4O62-3. 沉淀滴定某些药品由于其结构的关系,在滴定过程中会有沉淀析出。例如,氯化亚苄翁。通常用四苯基硼酸钠或是十二烷基磺酸钠作为滴定剂,用梅特勒-托利多DS500表面活性剂电极或是DP550光度电极就可以进行滴定。@夫唯不争4. 恒pH滴定恒pH滴定主要用于鉴定药品、检测酶制品纯度以及研究化学反应动力学。恒pH表示pH值恒定,即在某一特定时段内保持pH值恒定。这项技术尤其被用于测定诸如酶的活性等反应动力学参数。生成或消耗H+的酶反应可以通过pH电极来跟踪。这些生成或被消耗的H+可以通过分别添加一定量的碱或酸来中和,由此来控制使pH值恒定。滴定剂的添加速率与被测样品(如酶)的反应速率成正比。脂肪酶的活性测定就是一个很典型的例子。恒pH滴定在制药工业中的另一个应用领域则是用来测定解酸药[2]的缓冲能力。解酸药作为治疗用剂被用来中和由胃炎引起的胃酸过多或是由肠功能紊乱引起的肠酸过多。这类抗酸剂有氢氧化镁,氧化镁,碳酸镁,硅酸镁,氢氧化铝,磷酸铝和硅酸铝镁等。解酸药必须要能够在大约一个小时的平均停留时间内保持胃部或肠部内的pH值恒定。这就意味着测定反应速率、酸中和能力、缓冲能力等特性是非常重要的。5. 卡尔费休水份测定药品中的水份含量是药品检验指标之一,因为它关系到药品的活性/药效以及存储有效期。当药品中的水份含量过高或过低时,药品中的有效成分会降解或是达不到其最高活性点。从而降低药剂的有效性。另外,水份含量亦会从很大程度上影响药品的存储有效期。专用于水份测定的卡尔费休方法是经过长期实践后确立的常规方法[4、5、6]。水份含量可以通过药品与碘在乙醇溶液中反应直接测得。几个百分比的水份含量可以通过添加含有碘的溶液由容量法进行测定(容量法卡尔费休水份测定,[4])。用容量法卡尔费休水份测定的一个典型例子就是测定阿司匹林中的水份含量。经砚磨的阿司匹林粉末转移至滴定容器后可以直接进行滴定,测得水份,样品溶解后,阿司匹林中的活性成分水杨酸会使溶液的pH值降低而影响卡尔费休水份测定结果。在这种情况下,需要加入咪唑来中和水杨酸,使pH值保持在最佳值pH6-pH7之间。对于水份含量低于0.5-1.0%的情况,测定所需的碘量可以由滴定容器中电解产生。(库仑法水份测定[5、6])。用库仑法卡尔费休水份测定的一个典型例子就是测定冻干样品中水份含量.由于经过冻干处理的物质的水份含量极低(ppm数量级),样品需要在经过预滴定至无水状态的阳极液中溶解后再直接滴定。@夫唯不争在卡尔费休滴定中只有游离水才能够被测得,故而对样品进行适当的预处理就显得尤为重要。在卡尔费休水份测定之前,使得样品中的水份处于游离水状态是相当必要了。可以通过如下方法实现这个目的:在滴定池中长时间充分地搅拌样品;减小样品颗粒的大小;样品均质化;对样品进行加热;用溶剂对样品进行外部萃取等等。同时,对于不溶或难溶物质、与卡尔费休试剂发生副反应的物质或是释放水份特别缓慢的物质,在测定时建议使用干燥炉。干燥炉的热能使得样品的水份释放出来,然后通过干燥的惰性气体吹入滴定容器。如果使用干燥炉,则样品需为对热稳定的物质。2023-07-25 06:33:091
解酸剂是什么(化学上的)?
解酸剂是一种中和酸的物质。包括多种类型,常见的有碳酸铝、氢氧化铝、碱式碳酸铋、 碳酸镁、硅酸铝镁、氢氧化铝镁、碳酸钙,甘氨酸、酒石酸钠钾等。解酸剂可以治疗胃酸过多。2023-07-25 06:33:441
现代教育与传统教育最大的区别在哪里
2023-07-25 06:33:524
几个化妆品成分相关的日语,求翻译!
Diglycerin,聚丙烯酸钠,偏硅酸铝,镁,这三件,由于忙谢请帮! ! !2023-07-25 06:32:445
复合硅酸铝镁板和复合硅酸盐板是一同样的东西吗
是同一种东西,复合硅酸铝(镁)盐板是学称。硅酸盐是统称2023-07-25 06:32:331
小红书火爆爽肤水横评;一扫面部干燥危机,让你的脸如鸡蛋般嫩滑
小红书火爆爽肤水横评;一扫面部干燥危机,让你的脸如鸡蛋般嫩滑! MINNON 2号滋润 化妆水 参考售价:150ml,1980日元(税入) 专为干燥敏感肌肤打造的MINON,确实是秋冬换季一把好手,既温和保湿力也妥妥的。很适合想要高保湿效果的仙女使用,具有高保湿成分,通过肌肤到达皮肤深层 ,充分得到滋养,同时收缩毛孔。 有清爽型、滋润型两个系列。 含有9种氨基酸,低分子化玻尿酸,以及氨基酸系神经酰胺类似成分,能深入渗透角质层,有效保持水分,提高肌肤本来的防御功能,使肌肤不受外界刺激。 干燥的秋冬季节,自然是滋润型。滋润型属于精华质地,上脸更保湿,过量会感觉黏黏的,适合大干皮。适合在洁面后、美容液乳液前使用。滋润肌肤,肌肤干到起皮什么的也是很不错的选择。敏感肌肤、孕妇均可以使用。 依泉舒缓修复爽肤水 这款更适合在皮肤屏障受损,皮肤不稳定期间的修护产品。成分和依泉的绷带喷雾一样。主打成分是高含量的金属离子,葡糖酸锌、葡糖酸铜等帮助抗菌,硅酸铝镁会在皮肤表面形成一层干爽的膜感,起到保护皮肤的作用。积雪草能帮助在特殊时期抗炎。肤感方面可能偶尔会有搓泥问题,建议先在晚间使用。 花钰集爽肤水 这款花钰集爽肤水富含天然大米发酵成分 以及透明质酸钠等补水亮肤小分子,能深层滋养肌肤,调节肌肤暗沉粗糙的肤质,能有效深层补水保湿,牢牢锁住肌肤水分,防止流失,让肌肤保持水润光滑。坚持使用还能逐渐改善暗沉粗糙的肌肤,让你轻松拥有水嫩牛奶肌。 这款爽肤水也是我在网上冲浪的时候无意间发现的一款,后来才知道这款爽肤水是很多博主都在推荐的一款,效果非常出色,并且里面还添加的都是天然植物精华成分,所以使用之后也是很温和的,不会对我们的肌肤形成负担, 它没有很重的香味,有一股淡淡的大米味, 上脸舒润不黏腻,特别容易被吸收,坚持使用之后,坚持每天使用能逐渐减缓肌肤爱出油的问题,面部暗沉粗糙的肤质也能逐渐被改善。让我的肌肤如今变得越来越水嫩白皙有光泽。 馥蕾诗玫瑰润泽保湿花水 一款不含酒精、具有舒缓功效的爽肤水,经证实能长效保湿达24小时。具有舒缓配方的玫瑰花露自古就被视为镇静肌肤、补充水分之佳品,在玫瑰润泽焕采精华乳、玫瑰润泽舒缓凝霜及彩妆前使用效果最佳。玫瑰润泽保湿花水能够作用于清洁肌肤表面残留的杂质,使肌肤再现 健康 光泽。亦可全天候使用,补水焕肤,镇静舒缓。 主要功效: 高效补水 即时改善肌肤暗哑 轻柔舒润,令肌肤如丝绒般柔软,凝脂般幼滑 。2023-07-25 06:32:221