无向图

数据结构问题 什么是有向图和无向图?

有向图在图中的边是有方向的,表现出来就是有个箭头指示方向,节点只能单向通信或传递消息,相当于单行道,无向图边没方向是双向的,边连接的两个节点有通路可以双向通信,类似于双行道。无向图,边没有方向的图称为无向图。邻接矩阵则是对称的,且只有0和1,因为没有方向的区别后,要么有边,要么没边。有向图,一个有向图D是指一个有序三元组(V(D),A(D),ψD),其中ψD为关联函数,它使A(D)中的每一个元素(称为有向边或弧)对应于V(D)中的一个有序元素(称为顶点或点)对。扩展资料:的G2和(c)图中的G3均是无向图,它们的顶点集和边集分别为:V(G2)={v1,v2,v3,v4}E(G2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)}V(G3)={v1,v2,v3,v4,v5,v6,v7}E(G3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)}参考资料来源:百度百科-无向图
左迁2023-05-23 12:58:011

有向图和无向图的有关知识

1.有向图 若图G中的每条边都是有方向的,则称G为有向图(Digraph)。(1)有向边的表示 在有向图中,一条有向边是由两个顶点组成的有序对,有序对通常用尖括号表示。有向边也称为弧(Arc),边的始点称为弧尾(Tail),终点称为弧头(Head)。 【例】表示一条有向边,vi是边的始点(起点),vj是边的终点。因此,和是两条不同的有向边。(2)有向图的表示 【例】下面(a)图中G1是一个有向图。图中边的方向是用从始点指向终点的箭头表示的,该图的顶点集和边集分别为: V(G1)={v1,v2,v3} E(G1)={,,}2.无向图 若图G中的每条边都是没有方向的,则称G为无向图(Undigraph)。(1)无向边的表示 无向图中的边均是顶点的无序对,无序对通常用圆括号表示。 【例】无序对(vi,vj)和(vj,vi)表示同一条边。(2)无向图的表示 【例】下面(b)图中的G2和(c)图中的G3均是无向图,它们的顶点集和边集分别为: V(G2)={v1,v2,v3,v4} E(G2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)} V(G3)={v1,v2,v3,v4,v5,v6,v7} E(G3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)} 注意: 在以下讨论中,不考虑顶点到其自身的边。即若(v1,v2)或是E(G)中的一条边,则要求v1≠v2。此外,不允许一条边在图中重复出现,即只讨论简单的图。3.图G的顶点数n和边数e的关系(1)若G是无向图,则0≤e≤n(n-1)/2 恰有n(n-1)/2条边的无向图称无向完全图(Undireet-ed Complete Graph)(2)若G是有向图,则0≤e≤n(n-1)。 恰有n(n-1)条边的有向图称为有向完全图(Directed Complete Graph)。
北营2023-05-23 12:58:012

有向图和无向图的邻接矩阵有什么区别

二者的区别:  邻接矩阵(AdjacencyMatrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:  ①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。  ②在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。  ③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
拌三丝2023-05-23 12:58:011

导航地图,是有向图,还是无向图?

有向图。导航地图默认是向北的,导航行驶过程中方向则会指示所行驶的方向。所以导航地图是有向图。
左迁2023-05-23 12:58:001

有向图和无向图的有关知识

1.有向图 若图G中的每条边都是有方向的,则称G为有向图(Digraph)。(1)有向边的表示 在有向图中,一条有向边是由两个顶点组成的有序对,有序对通常用尖括号表示。有向边也称为弧(Arc),边的始点称为弧尾(Tail),终点称为弧头(Head)。 【例】表示一条有向边,vi是边的始点(起点),vj是边的终点。因此,和是两条不同的有向边。(2)有向图的表示 【例】下面(a)图中G1是一个有向图。图中边的方向是用从始点指向终点的箭头表示的,该图的顶点集和边集分别为: V(G1)={v1,v2,v3} E(G1)={,,}2.无向图 若图G中的每条边都是没有方向的,则称G为无向图(Undigraph)。(1)无向边的表示 无向图中的边均是顶点的无序对,无序对通常用圆括号表示。 【例】无序对(vi,vj)和(vj,vi)表示同一条边。(2)无向图的表示 【例】下面(b)图中的G2和(c)图中的G3均是无向图,它们的顶点集和边集分别为: V(G2)={v1,v2,v3,v4} E(G2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)} V(G3)={v1,v2,v3,v4,v5,v6,v7} E(G3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)} 注意: 在以下讨论中,不考虑顶点到其自身的边。即若(v1,v2)或是E(G)中的一条边,则要求v1≠v2。此外,不允许一条边在图中重复出现,即只讨论简单的图。3.图G的顶点数n和边数e的关系(1)若G是无向图,则0≤e≤n(n-1)/2 恰有n(n-1)/2条边的无向图称无向完全图(Undireet-ed Complete Graph)(2)若G是有向图,则0≤e≤n(n-1)。 恰有n(n-1)条边的有向图称为有向完全图(Directed Complete Graph)。
gitcloud2023-05-23 12:58:002

已知一个图的邻接矩阵或邻接表,如何判断此图是有向图还是无向图

如果有对称元素 aij 和 aji 分别是1和0,那么一定是有向图(有一条有向边连接两点) 但如果所有的对应元素都相同,就无法判断是有向图还是无向图
u投在线2023-05-23 12:58:001

数据结构问题 什么是有向图和无向图?

有向图就是任意两个邻接点之间只有一条弧,而不是两条弧,只允许从一个邻接点到另一个邻接点,而不能反过来。无向图相反,就是任意两个邻接点之间有两条弧,方向是相反的,它们构成一条“边”,说明两个邻接点之间是互通的。其他的图称为混合图,图中邻接点之间即有边,又有弧的,不统一。
无尘剑 2023-05-23 12:57:593

无向图和有向图的详细讲解

有向图是单向的,有箭头,例如路径可以从A节点到B节点,但不可以从B节点到A节点;无向图是双向的,没有箭头,路径可以从A到B,也可以从B到A
真颛2023-05-23 12:57:593

有向图和无向图的邻接矩阵有什么区别

0、1和无穷三者不可能同时出现。无向和有向无权图中用1表示能够直接到达,0表示不能一步到达。带权图中正数代表路径权值,无穷表示一步无法到达。
人类地板流精华2023-05-23 12:57:593

有向图和无向图

你对有向与无向的理解不正确,1.有向图 若图G中的每条边都是有方向的,则称G为有向图(Digraph)。(1)有向边的表示 在有向图中,一条有向边是由两个顶点组成的有序对,有序对通常用尖括号表示。有向边也称为弧(Arc),边的始点称为弧尾(Tail),终点称为弧头(Head)。 【例】<vi,vj>表示一条有向边,vi是边的始点(起点),vj是边的终点。因此,<vi,vj>和<vj,vi>是两条不同的有向边。(2)有向图的表示 【例】下面(a)图中G1是一个有向图。图中边的方向是用从始点指向终点的箭头表示的,该图的顶点集和边集分别为: V(G1)={v1,v2,v3} E(G1)={<v1,v2>,<v2,v1>,<v2,v3>}2.无向图 若图G中的每条边都是没有方向的,则称G为无向图(Undigraph)。(1)无向边的表示 无向图中的边均是顶点的无序对,无序对通常用圆括号表示。 【例】无序对(vi,vj)和(vj,vi)表示同一条边。(2)无向图的表示 【例】下面(b)图中的G2和(c)图中的G3均是无向图,它们的顶点集和边集分别为: V(G2)={v1,v2,v3,v4} E(G2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)} V(G3)={v1,v2,v3,v4,v5,v6,v7} E(G3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)}所以,几个顶点之间有无边或者是弧取决于两个顶点之间的方向性。
韦斯特兰2023-05-23 12:57:591

有向图和无向图是什么

你对有向与无向的理解不正确,1.有向图若图g中的每条边都是有方向的,则称g为有向图(digraph)。(1)有向边的表示在有向图中,一条有向边是由两个顶点组成的有序对,有序对通常用尖括号表示。有向边也称为弧(arc),边的始点称为弧尾(tail),终点称为弧头(head)。【例】表示一条有向边,vi是边的始点(起点),vj是边的终点。因此,和是两条不同的有向边。(2)有向图的表示【例】下面(a)图中g1是一个有向图。图中边的方向是用从始点指向终点的箭头表示的,该图的顶点集和边集分别为:v(g1)={v1,v2,v3}e(g1)={,,}2.无向图若图g中的每条边都是没有方向的,则称g为无向图(undigraph)。(1)无向边的表示无向图中的边均是顶点的无序对,无序对通常用圆括号表示。【例】无序对(vi,vj)和(vj,vi)表示同一条边。(2)无向图的表示【例】下面(b)图中的g2和(c)图中的g3均是无向图,它们的顶点集和边集分别为:v(g2)={v1,v2,v3,v4}e(g2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)}v(g3)={v1,v2,v3,v4,v5,v6,v7}e(g3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)}所以,几个顶点之间有无边或者是弧取决于两个顶点之间的方向性。
meira2023-05-23 12:57:592

数据结构里,最小生成树,是不是只能是带权无向图?带权有向图呢?不带权能做吗?

无向有向都能做。不带权更简单,所有边的权值都设为1即可。
豆豆staR2023-05-23 12:57:481

有什么无权无向图的最短路径算法比较好,求一个用java实现的

有什么无权无向图的最短路径算法比较好带权图也分有向和无向两种,基本的算法可以看看书咯。 带权的无向图的最短路径又叫最小生成树,Prim算法和Kruskal算法; 带权的有向图的最短路径算法有迪杰斯特拉算法和佛洛依德算法;String[] s={"January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"};System.out.print("请输入数字(1-12):");BufferedReader br=new BufferedReader(new InputStreamReader(System.in));String str=br.readLine();int m=Integer.parseInt(str);if (m<=0||m>=13){
陶小凡2023-05-23 12:57:471
 首页 上一页  1 2