等比数列的前n项和公式是什么
等比数列的前n项和公式是什么?相信有些同学对这个问题还存有疑惑。下面,就跟我一起来了解一下吧。 等比数列的前n项和公式 等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。 推导如下: 因为an=a1q^(n-1) 所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1) qSn=a1*q^1+a1q^2+...+a1*q^n(2) (1)-(2)注意(1)式的第一项不变。 把(1)式的第二项减去(2)式的第一项。 把(1)式的第三项减去(2)式的第二项。 以此类推,把(1)式的第n项减去(2)式的第n-1项。 (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。 于是得到 (1-q)Sn=a1(1-q^n) 即Sn=a1(1-q^n)/(1-q)。 等差数列的各种公式 等差数列的通项公式为:an=a1+(n-1)d(1) 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 以上n均属于正整数. 等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数. 任意两项am,an的关系为:an=am+(n-m)d 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 等差数列的应用 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。 若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。 若为等差数列,且有an=m,am=n.则a(m+n)=0。Jm-R2023-05-13 14:41:101
等比数列前n项和公式推导
等比数列,当n不等于1时的前n项和为:首项乘1减去公比的n次方的差除以1减去公比。在推导时,我们运用错位相减法。具体推导过程如下:形如An=BnCn,其中Bn为等差数列,Cn为等比数列。分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q乘Sn。然后错开一位,两个式子相减。这种数列求和方法叫做错位相减法。错位相减法是一种常用的数列求和方法。应用于等比数列与等差数列相乘的形式。黑桃花2023-05-13 14:41:091
等比数列前n项和公式推导是什么?
等比数列前n项和公式:公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。性质:1、若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;2、在等比数列中,依次每 k项之和仍成等比数列;3、若m、n、q∈N,且m+n=2q,则am×an=(aq)2;4、若G是a、b的等比中项,则G2=ab(G ≠ 0);5、在等比数列中,首项a1与公比q都不为零;6、在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1);7、当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。北有云溪2023-05-13 14:41:091
等比数列前N项和怎么证明
答:设Sn=a1+a2+...+an则qSn=a2+a3+...+an+1二式相减,则(1-q)Sn=a1-an+1=a1-a1*q的n次后面会了吧!不过注意公比为1的情况的讨论若公比q=1,则Sn=a1+a2+...+an=a1+a1+...+a1=na1等比数列前n项和Sn=a1+a2+...+an=a1(1-q^n)/(1-q)(公比q≠1)证:Sn=a1+a1q+a1q^2...+a1q^(n-1)...........(1)qSn=a1q+a1q^2+....a1q^(n-1)+a1q^n.......(2)(1)-(2):(1-q)Sn=a1-a1q^n∴Sn=a1(1-q^n)/(1-q)Jm-R2023-05-13 14:41:092
等比数列前n项和公式是什么?
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。推导如下:因为an = a1q^(n-1)所以baiSn = a1+a1*q^1+...+a1*q^(n-1) (1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此类推,把(1)式的第n项减去(2)式的第n-1项。(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。于是得到(1-q)Sn = a1(1-q^n)即Sn =a1(1-q^n)/(1-q)。扩展资料:(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。等比数列在生活中常常运用,如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。苏萦2023-05-13 14:41:091
等比数列前n项和的公式是什么
等比数列是非常重要的数学概念,下面我为大家总结整理了等比数列前n项和公式,希望对大家有所帮助。 等比数列前n项和公式及推导过程 等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。 推导如下: 因为an = a1q^(n-1) 所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1) qSn =a1*q^1+a1q^2+...+a1*q^n (2) (zhi1)-(2)注意(1)式的第一项不变。 把(dao1)式的第二项减去(2)式的第一项。 把(1)式的第三项减去(2)式的第二项。 以此类推,把(1)式的第n项减去(2)式的第n-1项。 (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。 于是得到 (1-q)Sn = a1(1-q^n) 即Sn =a1(1-q^n)/(1-q)。 等比数列的性质 ①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. ③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则 (a2n),(a3n)…是等比数列,公比为q1^2,q1^3… (can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。 (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 (6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列可桃可挑2023-05-13 14:41:091
等比数列前n项和公式分别是?
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。推导如下:因为an = a1q^(n-1)所以baiSn = a1+a1*q^1+...+a1*q^(n-1) (1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此类推,把(1)式的第n项减去(2)式的第n-1项。(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。于是得到(1-q)Sn = a1(1-q^n)即Sn =a1(1-q^n)/(1-q)。扩展资料:(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。等比数列在生活中常常运用,如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。Ntou1232023-05-13 14:41:091
等比数列前n项和公式
等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列性质①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每 k项之和仍成等比数列。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。大鱼炖火锅2023-05-13 14:41:092
等比数列公式前n项公式是什么?
等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。含义在等比数列中,首项a1与公比q都不为零。注意:上述公式中a^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息和本金加在一起算作本金。再计算下一期的利息,也就是人们通常说的利滚利。苏萦2023-05-13 14:41:091
等比数列的前n项和是什么?
等比数列前n项和是:当q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。除此之外,Sn为前n项和。性质(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。hi投2023-05-13 14:41:091
等比数列的前n项和公式
1、等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.注意2、等比数列的通项公式 由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.注意3、等比中项 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.注意4、等比数列的判定方法(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.(2)、an2=an-1·an+1(n≥2,an-1,an,an+1≠0){an}是等比数列.(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.5、等比数列的性质 设{an}为等比数列,首项为a1,公比为q.(1)、当q>1,a1>0或01,a1<0或00时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.(2)、an=am·qn-m(m、n∈N*).(3)、当m+n=p+q(m、n、q、p∈N*)时,有am·an=ap·aq.(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.(6)、在{an}中,每隔k(k∈N*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.(9)、若m、n、p(m、n、p∈N*)成等差数列时,am、an、ap成等比数列.6、等比数列的前n项和公式 设等比数列a1,a2,a3,…,an,…,它的前n项和是Sn=a1+a2+…+an,根据等比数列的通项公式可将Sn写成Sn=a1+a1q+a1q2+…+a1qn-1.…①①两边乘以q得qSn=a1q+a1q2+a1q3+…+a1qn…②两式相减得(1-q)Sn=a1-a1qn,由此得q≠1时等比数列{an}的前n项和的公式.因为an=a1qn-1,所以上面公式还可以写成.当q=1时,Sn=na1.注意7、等比数列前n项和的一般形式 一般地,如果a1,q是确定的,那么8、等比数列的前n项和的性质(1)、若某数列前n项和公式为Sn=an-1(a≠0,±1),则{an}成等比数列.(2)、若数列{an}是公比为q的等比数列,则(ⅰ)、Sn+m=Sn+qn·Sm.(ⅱ)、在等比数列中,若项数为2n(n∈N*),则(ⅲ)、Sn,S2n-Sn,S3n-S2n成等比数列.苏州马小云2023-05-13 14:41:093
等比数列的前n项和怎么求公式?
教材上告诉了你,所用的方法就是:乘公比错位相减法!这些基础知识,只要你能紧跟老师的教学步骤操作,在课堂上就可以解决的。北境漫步2023-05-13 14:41:092
等比数列前n项和公式
q=1时,Sn=na1q不等于1时,Sn=a1*(1-q^n)/(1-q)等比数列通项公式q=1an=a1q不为1时an=a1*q^(n-1)小菜G的建站之路2023-05-13 14:41:093
等比数列前n项和
(1).a(n+1)=(1-%20)an+30%bn(2).bn=1000-an则a(n+1)=(1-20%)an+30%(1000-an)=1/2*an+300(3).根据第二题已证明的式子,a(n+1)-600=1/2(an-600)得到{an-600}是以1/2为公比的等比数列,an-600=(a1-600)*(1/2)^(n-1)an=(a-600)*(1/2)^(n-1)+600mlhxueli 2023-05-13 14:41:096
等比数列的前n项和公式
1、等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.注意2、等比数列的通项公式 由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.注意3、等比中项 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.注意4、等比数列的判定方法(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.(2)、an2=an-1·an+1(n≥2,an-1,an,an+1≠0){an}是等比数列.(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.5、等比数列的性质 设{an}为等比数列,首项为a1,公比为q.(1)、当q>1,a1>0或0<q<1,a1<0时,{an}是递增数列;当q>1,a1<0或0<q<1,a1>0时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.(2)、an=am·qn-m(m、n∈N*).(3)、当m+n=p+q(m、n、q、p∈N*)时,有am·an=ap·aq.(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.(6)、在{an}中,每隔k(k∈N*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.(9)、若m、n、p(m、n、p∈N*)成等差数列时,am、an、ap成等比数列.6、等比数列的前n项和公式 设等比数列a1,a2,a3,…,an,…,它的前n项和是Sn=a1+a2+…+an,根据等比数列的通项公式可将Sn写成Sn=a1+a1q+a1q2+…+a1qn-1.…①①两边乘以q得qSn=a1q+a1q2+a1q3+…+a1qn…②两式相减得(1-q)Sn=a1-a1qn,由此得q≠1时等比数列{an}的前n项和的公式.因为an=a1qn-1,所以上面公式还可以写成.当q=1时,Sn=na1.注意7、等比数列前n项和的一般形式 一般地,如果a1,q是确定的,那么8、等比数列的前n项和的性质(1)、若某数列前n项和公式为Sn=an-1(a≠0,±1),则{an}成等比数列.(2)、若数列{an}是公比为q的等比数列,则(ⅰ)、Sn+m=Sn+qn·Sm.(ⅱ)、在等比数列中,若项数为2n(n∈N*),则(ⅲ)、Sn,S2n-Sn,S3n-S2n成等比数列.mlhxueli 2023-05-13 14:41:092
分子为等差,分母为等比的前n项和怎么算
错位相消法把sn=……列出来,从首项开始,到末项这是等比型数列,所以你在等式两边同乘q,qsn=qa1+qa2+qa3+…qan然后把两式相减,形成等比数列然后公式求和,剩余一两项不是等比数列,你别管它,最后一起加上去西柚不是西游2023-05-13 14:41:081
等比数列前n项和公式怎样推导?
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。推导如下:因为an = a1q^(n-1)所以baiSn = a1+a1*q^1+...+a1*q^(n-1) (1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此类推,把(1)式的第n项减去(2)式的第n-1项。(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。于是得到(1-q)Sn = a1(1-q^n)即Sn =a1(1-q^n)/(1-q)。扩展资料:(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。等比数列在生活中常常运用,如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。苏州马小云2023-05-13 14:41:081
等比数列前n项和
等比数列前n项和Sn=a1(1-q)/(1-q^n)( 其中 Sn 表示等比数列前n项和,a1表示等比数列的第一项, q表示 等比数列的公比,n表示项数)。tt白2023-05-13 14:41:082
等比数列的前n项和公式?
等差数列前N项和公式:①Sn=n*a1+n(n-1)d/2②Sn=n(a1+an)/2Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,d代表数列的公差。性质:⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).⑵在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1).⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).2. 等比数列前N项和公式:Sn代表项数之和,n代表项数,a1代表数列的第一项,an代表数列的最后一项,q代表数列的公比。性质:①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;②在等比数列中,依次每 k项之和仍成等比数列;③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;④ 若G是a、b的等比中项,则G2=ab(G ≠ 0);⑤在等比数列中,首项a1与公比q都不为零.⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。善士六合2023-05-13 14:41:081
等比数列前n项积公式
a1·a2·……·an=a1·a1·q·……·a1·q^(n-1)=a1^n·q^[1+2+……+(n-1)]=a1^n·q^[n(n-1)/2]余辉2023-05-13 14:41:082
等比数列前n项和计算
解:设等比数列{an}的公比为q(q≠0),对q的值分类讨论可得:1)若q=1,则an=a1,Sn= na1≠3n+r,所以舍去;2)若q≠0,而且q≠1,则an=a1qn-1,Sn = a1(1–qn)/(1–q)=-[a1/(1–q)]qn+a1/(1–q)=3n+r=>q=3而且-a1/(1–q)=1,a1/(1–q)=r,所以r=-1;综上所述,r=-1。Ntou1232023-05-13 14:41:082
等比数列前n项倒数和公式
设数列{a×q^(n-1)}是首项为a,公比为q的等比数列。即a,aq,aq²,aq³,...aq^(n-1).(n=1,2,3,4...)其前n项和为sn当q=1时,sn=na.(n=1,2,3,....)当q≠1时,sn=a[(q^n)-1]/(q-1)(n=1,2,3,...)NerveM 2023-05-13 14:41:081
等比数列前n项和公式推导过程(实用)
等比数列是数学中一个重要的知识点,那么你知道等比数列的求和公式及其推导过程吗?下面是由我为大家整理的“等比数列前n项和公式推导过程(实用)”,仅供参考,欢迎大家阅读本文。 等比数列前n项和公式 公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。 等比数列前n项和公式推导过程 等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。 推导如下: 因为an=a1q^(n-1) 所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1) qSn=a1*q^1+a1q^2+...+a1*q^n(2) (1)-(2)注意(1)式的第一项不变。 把(1)式的第二项减去(2)式的第一项。 把(1)式的第三项减去(2)式的第二项。 以此类推,把(1)式的第n项减去(2)式的第n-1项。 (2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。 于是得到 (1-q)Sn=a1(1-q^n) 即Sn=a1(1-q^n)/(1-q)。 拓展阅读:等比数列的性质 ①在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2; ②若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列; ③在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk; ④q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q; ⑤等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。kikcik2023-05-13 14:41:081
怎么求等比数列的前n项和
(5)等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1(q=1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 等比数列在生活中也是常常运用的。 如:银行有一种支付利息的方式---复利。 即把前一期的利息赫本金价在一起算作本金, 在计算下一期的利息,也就是人们通常说的利滚利。 按照复利计算本利和的公式:本利和=本金*(1+利率)^存期Chen2023-05-13 14:41:082
等比数列的前N项和:求和
(a-1)+(a^2-2)+....+(a^n-n) =(a+a^2....+a^n)-(1+2+....n)=[a(1-a^n)/(1-a)]-[(1+n)n/2](2-3*5^(-1))+(4-3*5^(-2))+...(2n-3*5^(-n)) =2+4+...+2n-[(3*5^(-1)+(3*5^(-2)+...(3*5^(-n)]=(1+n)n-[3/5((1-(1/5)^n)/1-1/5]s1=1+2x+3x^2+...nx^(n-1)s1*x=1x+2x^2+3x^3+nx^ns1-s1x=(1+2x+3x^2+...nx^(n-1))-(1x+2x^2+3x^3+nx^n)=1+x+x^2+x^3+...x^(n-1)-nx^n再也不做站长了2023-05-13 14:41:082
无穷等比数列{an}的公比为q,前n项和为Sn,若limSn=1,则首项a1的取值范围是
(0,1]水元素sl2023-05-13 14:41:082
等比数列的前n项积怎么求?
a_1=aa_n=a*r^(n-1)the sum of the product is : a*ar*ar^2*...*ar^(n-1)=a^n*r^(1+2+..+n-1)=a^n*r^(n(n-1)/2)Ntou1232023-05-13 14:41:082
等比数列前n项和公式三个
等比数列前n项和三个公式是Sn=3n+r,Sn=a1(1-q^n)/(1-q),Sn=a1+a1*q^1+...+a1*q^(n-1)。等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。黑桃花2023-05-13 14:41:071
等比数列前n项和的性质
等比数列前n项和的性质之一:我们知道等差数列有这样的性质:如果{An}为等差数列,则Sk,S2k-Sk,S3k-S2k也成等差数列。所以,等比数列前n项和的性质二:如果{An}为等比数列,则Sk,S2k-Sk,S3k-S2k也成等比数列,新等比数列的首项为Sk,公比为q^k。等比数列前n项和的性质三:若等比数列{An}共有2n项,则等比数列前n项和的性质四:如果{An}为公比为q的等比数列,有:苏萦2023-05-13 14:41:071
等比数列的前n项和公式如何计算?
等比数列前n项积公式如下:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。生活中的应用等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。随着房价越来越高,很多人没办法像这样一次性将房款付清,总是要向银行借钱,既可以申请公积金也可以申请银行贷款,但是如果还款到一定时间后想了解自己还得还多少本金时,也可以利用数列来自己计算。众所周知,按揭贷款(公积金贷款)中一般实行按月等额还本付息。下面就来寻求这一问题的解决办法。若贷款数额 a0 元,贷款月利率为 p,还款方式每月等额还本付息 a 元,设第 n 月还款后的本金为 an,那么有:a1=a0(1+p)-a;a2=a1(1+p)-a;a3=a2(1+p)-a;......an+1=an(1+p)-a,.... 将其变形,得(an+1-a/p)/(an-a/p)=1+p。由此可见,{an-a/p} 是一个以 a1-a/p 为首项,1+p 为公比的等比数列。其实类似的还有零存整取、整存整取等银行储蓄借贷,甚至还可以延伸到生物界的细胞细胞分裂。mlhxueli 2023-05-13 14:41:071
等比数列前n项和公式是什么?
等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。基本信息等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。肖振2023-05-13 14:41:071
等比数列的前n项和公式是什么?
如果等比数列的首项为a1,而公比为q,那么由公式就可以得到其前n项和就是a1*(1-q^n)/(1-q)Jm-R2023-05-13 14:41:071
等比数列前n项和公式q是什么
等比数列前n项是前面的数字,q是公比。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比。公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。注:q=1时,an为常数列。kikcik2023-05-13 14:41:071
等比数列前n项和有哪些性质?
只要不是摆动数列,都具有单调性,它的极限值为 首项/(1-q)康康map2023-05-13 14:41:072
等比数列前n项和公式是什么!
大鱼炖火锅2023-05-13 14:41:075
等比数列前N项和的公式是什么
S=(a1*(1-q^n))/(1-q)Jm-R2023-05-13 14:41:072
已知等比数列{ an},如何求前n项和。
=[1+a^(-1)a^(-2)+……+a^(1-n)][1+4+7……+(3n-2)]前者为等比数列,公比为a^(-1)后者为等差数列,公差为3=[1-a^(-n)]/(1-a)[1(3n-2)]*n/2=[1-a^(-n)]/(1-a)(3n-1)n/2(裂项法求和)这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1)1/n(n1)=1/n-1/(n1)(2)1/(2n-1)(2n1)=1/2[1/(2n-1)-1/(2n1)](3)1/n(n1)(n2)=1/2[1/n(n1)-1/(n1)(n2)](4)1/(√a√b)=[1/(a-b)](√a-√b)(5)n·n!=(n1)!-n![例]求数列an=1/n(n1)的前n项和.解:设an=1/n(n1)=1/n-1/(n1)(裂项)则sn=1-1/21/2-1/31/4…1/n-1/(n1)(裂项求和)=1-1/(n1)=n/(n1)小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意:余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。小白2023-05-13 14:41:071
等差数列与等比数列的复合数列怎样求前n项和
列两个式子,两个式子开始一样,式子起头都是Sn,其中一个乘以等比数列的公比后,与另一个式子错位相减,后得到一个新的等式,该等式的前n项是等比数列,最后一项不是等比数列的项,该等式的前n项用等比数列加起来,然后整理一下就得到Sn的表达式。此后故乡只2023-05-13 14:41:072
等比数列首项a,公比q其前n项和Sn为递增数列的从分必要条件是?
解:Sn为递增数列则:Sn-S(n-1)>0又因为:Sn-S(n-1)=an所以:an>0数列{an}是以a为首项,公比为q的等比数列①则:an=a*[q^(n-1)](q≠1)因此:a*[q^(n-1)]>0要使:a*[q^(n-1)]>0恒成立则:a>0,q>0且q≠1②q=1时,an=a,Sn=na要使Sn为递增数列,则:a>0综合①②:a>0且q>0ardim2023-05-13 14:41:071
等比数列前n项积怎么求
等比数列前n项积为 a1×q的Sn次方 Sn是1+2+3+4+...+n的和 Sn=n(n+1)/2康康map2023-05-13 14:41:071
等比数列前n项和公式
等比数列前n项和公式:当q≠1时 ,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。除此之外,Sn为前n项和。 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。 等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 等比数列有如下性质:(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; (2)在等比数列中,依次每 k项之和仍成等比数列。 (3)“G是a、b的等比中项”“G^2=ab(G≠0)”.(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{c^an},c是常数,{an*bn},{an/bn}是等比数列,公比为c^q1,q1q2,q1/q2。阿啵呲嘚2023-05-13 14:41:061
等比数列前n项和公式?
等比数列前n项和公式为: 1、Sn=n*a1(q=1) 2、Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于 1)注意:以上n均属于正整数。扩展资料等比数列性质1、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。2、等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。3、由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。参考资料来源:百度百科-等比数列Ntou1232023-05-13 14:41:061
等比数列的前n项和公式是什么?
等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。推导如下:因为an=a1q^(n-1)所以Sn=a1+a1*q^1+...+a1*q^(n-1) (1)qSn=a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此类推,把(1)式的第n项减去(2)式的第n-1项。(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。于是得到(1-q)Sn=a1(1-q^n)即Sn=a1(1-q^n)/(1-q)。扩展资料:等比数列前n项和性质①若m、n、p、q∈N,且m+n=p+q,则aman=apaq。②在等比数列中,依次每k项之和仍成等比数列。③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2。④若G是a、b的等比中项,则G²=ab(G≠0)。⑤在等比数列中,首项a1与公比q都不为零。⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^(k+1)。⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。参考资料来源:百度百科-等比数列求和公式拌三丝2023-05-13 14:41:061
等比数列的前n项和公式
等比数列前n项和公式:公式中a1为数列首项,q为等比数列的公比,Sn为前n项和。从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。性质(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。北营2023-05-13 14:41:061
等比数列的前n项和是什么?
等比数列前n项和是:当q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q);当q=1时,Sn=na1(其中,a1为首项,an为第n项,d为公差,q为等比)。除此之外,Sn为前n项和。等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 等比数列有如下性质:(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每 k项之和仍成等比数列。(3)“G是a、b的等比中项”“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{c^an},c是常数,{an*bn},{an/bn}是等比数列,公比为c^q1,q1q2,q1/q2。NerveM 2023-05-13 14:41:062
等比数列公式前n项公式是什么?
等比数列前n项和公式为Sn =a1(1-q^n)/(1-q)。推导如下:因为an = a1q^(n-1)所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此类推,把(1)式的第n项减去(2)式的第n-1项。(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。于是得到(1-q)Sn = a1(1-q^n)即Sn =a1(1-q^n)/(1-q)。扩展资料等比数列性质1、若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;2、在等比数列中,当q≠-1,或q=-1且k为奇数时,依次每 k项之和仍成等比数列。“G是a、b的等比中项”“G^2=ab(G≠0)”。3、在等比数列中,首项a1与公比q都不为零.参考资料来源:百度百科—等比数列公式大鱼炖火锅2023-05-13 14:41:062
等比数列公式前n项公式
等比数列的前n项和公式是Sn=a1(1-q^n)/(1-q)。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。注:q=1时,an为常数列。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。陶小凡2023-05-13 14:41:062
等比数列前n项和公式有两个,第二个是什么?
sn=(a1-an×q)/(1-q) ①an=a1×q^(n-1) ②知道a1 an 就可用②求出q (公比)带入①就可求出sn第二题一样,先求an 再带入①瑞瑞爱吃桃2023-05-13 14:41:068
等差和等比
数列中前项与后项的差相同,为等差。例如:1,3,5,7,9,....... 等差为:2数列中后项与前项之比相同,为等比。例如:2,4,8,16,...... 等比为:2凡尘2023-05-12 21:02:141
等差等比数列公式大全
等差等比数列公式有哪些?想了解等比等差是什么的朋友可以来看看,下面我为你准备了“等差等比数列公式大全”内容,仅供参考,祝大家在本站阅读愉快! 等差等比数列公式大全 等差数列通项公式、求和公式: 等比数列抄通项公式、求和公式: 拓展阅读:等比数列和等差数列有什么区别 等比数列是前一项除以后一项等于一个固定常数q; 通项公式an=a1·q(n-1); 等差数列是前一项与后一项的差是常数; 等差数列的通项公式an=a1+(n-1)d=dn+a1-d; 等比数列是指前一个数和后一个数的比相同,; 如:1,3,9,27,…… 等差数列是指前一个数和后一个数的差相同, 如:1,4,7,10,13,,16,…… 等比数列是前一项除以后一项等于一个固定常数q; 通项公式an=a1·q(n-1), 等差数列是前一项与后一项的差是固定常数; 等差数列的通项公式an=a1+(n-1)d=dn+a1-d; 一个差相等,一个比相等。九万里风9 2023-05-12 21:02:141
等差数例与等比数例的公式
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。若为等差数列,且有an=m,am=n.则a(m+n)=0。等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)存期左迁2023-05-12 21:02:141
数学里的等比和等差是什么意思
数列的后一项与前一项的比值不变:如数列2、4、8、16、32......后一项与前一项的比值都是2数列的后一项与前一项的差不变:如数列2、5、8、11、14......后一项与前一项的差都是3bikbok2023-05-12 21:02:141
等差乘等比求和公式
等差乘等比求和公式:bn=b1q^(n-1)。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。小白2023-05-12 21:02:141
等比等差数列的公式是什么?
等比等差数列的公式如下图:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。韦斯特兰2023-05-12 21:02:131
等比等差数列的所有公式是什么?
等差数列:an=dan+(a1-d),当d=0时,an=a1;当d≠0时,d>0递增数列,d<0递减数列,Sn=na1+n(n-1)/2*d=d/2+(a1-d/2)n。等比数列:当q=1时an=a1,Sn=S1,当q≠1时,Sn=(a1-qan)/(1-q)=[a1(1-q^n)]/(1-q)。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。小白2023-05-12 21:02:121
等差等比数列的所有基础知识
等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 通项公式 等差数列的通项公式为:an=a1+(n-1)d (1) 前n项和公式 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数。 推论 1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 2. 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。 4.其他推论 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 等差中项 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式。 [编辑本段]二、等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。 若为等差数列,且有an=m,am=n.则a(m+n)=0。 其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了: 今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何? 书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了Sn=(a1+an)/2×n的求和公式 [编辑本段]三、等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列. ⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … . ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差). ⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 ) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数. ⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3. [编辑本段]四、等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数). ⑵在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = . ⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 . ⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = . ⑸在等差数列中,S = a,S = b (n>m),则S = (a-b). ⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上. ⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.等比数列 简介与公式 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠ 1) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 (5)无穷递缩等比数列各项和公式: 无穷递缩等比数列各项和公式:对于等比数列 的前n 项和,当n 无限增大时的极限,叫做这个无穷递缩数列的各项和。 [编辑本段]性质 ①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. ③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则 (a2n),(a3n)…是等比数列,公比为q1^2,q1^3… (can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。 (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 (6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。凡尘2023-05-12 21:02:121
等比数列和等差数列有什么区别
等差数列是前一项与后一项的差相等,等比数列是前一项与后一项的比相等。1、等差数列是前一项与后一项的差是常数。如:1,4,7,10,13,16,…… 等差数列的通项公式:an=a1+(n-1)d=dn+a1-d2、等比数列是前一项除以后一项等于一个固定常数q。如:,3,9,27,……等比数列的通项公式:an=a1·q(n-1)水元素sl2023-05-12 21:02:111
等差等比数列的公式
a1=3 a10=39 d=4 S10=210CarieVinne 2023-05-12 21:02:104
等差与等比的区别
等差数列 后一项与前一项的差为定值。苏萦2023-05-12 21:02:105
等比数列和等差数列有什么区别?
一个差相等,一个比相等ardim2023-05-12 21:02:096
等比等差数列的所有公式有哪些?
等比数列公式有数列通式an=a1*q^(n-1),前n项和公式Sn=na1+n(n-1)d/2,其中a1为数列首项,d为等差公差。等差的所有公式有数列通式an=a1+(n-1)*d,前n项和公式Sn=a1*(1-q^n)/(1-q),其中a1为数列首项,q为数列公比。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。以上内容参考:百度百科-等比数列善士六合2023-05-12 21:02:091
等差和等比所有公式!
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。若为等差数列,且有an=m,am=n.则a(m+n)=0。等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)存期meira2023-05-12 21:02:081
请问“等比”和“等差”分别是什么意思
等比,意思就是一系列的数字,前一个与后一个的比值是相等的一列数等差,意思就地一系列的数字,前一个核后一个的差值是相等的一列数北营2023-05-12 21:02:082
等差和等比所有公式!
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示. 等差数列的通项公式为: an=a1+(n-1)d (1) 前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等. 和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级. 若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q). 若为等差数列,且有an=m,am=n.则a(m+n)=0. 等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q表示. (1)等比数列的通项公式是:An=A1*q^(n-1) (2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an, 等比中项:aq·ap=2ar ar则为ap,aq等比中项. 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的. 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方. 等比数列在生活中也是常常运用的. 如:银行有一种支付利息的方式---复利. 即把前一期的利息赫本金价在一起算作本金, 在计算下一期的利息,也就是人们通常说的利滚利. 按照复利计算本利和的公式:本利和=本金*(1+利率)存期此后故乡只2023-05-12 21:02:081
等比数列极限怎么求?
求极限方式:求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1。一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。扩展资料:等比数列的性质:(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。参考资料来源:百度百科—等比数列可桃可挑2023-05-12 10:29:291
等比数列是什么
等比数列是指如果一个 数列从第2项起,每一项与它的前一项的 比值等于同一个常数的一种数列。这个常数叫做等比数列的 公比FinCloud2023-05-12 10:29:292
等比数列全部公式?
等比数列全部公式:(1)等比数列的通项公式是:An=A1×q^(n-1)。若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为an=am·q^(n-m)。(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。(5)等比求和:Sn=a1+a2+a3+.......+an。①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)。②当q=1时, Sn=n×a1(q=1)。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。再也不做站长了2023-05-12 10:29:292
等比数列通项公式
等比数列的通项公式:An=A1*q^(n-1)。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0,其中{an}中的每一项均不为0。注意:公式中a^n表示A的n次方,等比数列在生活中也是常常运用的,如:银行有一种支付利息的方式-复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,就是通常说的利滚利,按照复利计算本利和的公式:本利和=本金×(1+利率)^存期。西柚不是西游2023-05-12 10:29:291
什么叫“等比数列”
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(1)等比数列的通项公式是:An=A1*q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2)求和公式:Sn=nA1(q=1)Sn=A1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n(即A-Aq^n)(前提:q不等于1)任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。性质:①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.(5)等比数列前n项之和Sn=A1(1-q^n)/(1-q)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期可桃可挑2023-05-12 10:29:292
等比数列的公式
公式描述:式一为等比数列通项公式,式二为等比数列求和公式。其中a1为首项,q为等比数列公比,Sn为等比数列前n项和。阿啵呲嘚2023-05-12 10:29:292
等比数列公式是什么
等差数列和公式Sn=n(a1+an)/2=na1+n(n-1)/2d等比数列求和公式q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q为等比)此后故乡只2023-05-12 10:29:292
等差数列等比数列公式是什么?
等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。大鱼炖火锅2023-05-12 10:29:292
等比数列定义式
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。(1)定义式:(2)通项公式(等比数列通项公式通过定义式叠乘而来):(3)求和公式:求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等,其通项公式为 ,任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.(4)从等比数列的定义、通项公式、前n项和公式可以推出:(5)等比中项:若 ,那么 为 等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。等比中项公式: 或者 。(6)无穷递缩等比数列各项和公式:无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。(7)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列1.若A=a1+a2+……+anB=an+1+……+a2nC=a2n+1+……a3n则,A、B、C构成新的等比数列,公比Q=qn2.若A=a1+a4+a7+……+a3n-2B=a2+a5+a8+……+a3n-1C=a3+a6+a9+……+a3n则,A、B、C构成新的等比数列,公比Q=q(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an×bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。(5)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。(6)等比数列前n项之和在等比数列中,首项A1与公比q都不为零。注意:上述公式中An表示A的n次方。(7)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列(1)待定系数法:已知an+1=2an+3,a1=1,求an?构造等比数列an+1+x=2(an+x)an+1=2an+x,∵an+1=2an+3 ∴x=3∴(an+1+3)/ an+3=2∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1×qn-1=4×2n-1,an=2n+1-3(2)定义法:已知Sn=a·2n+b,求an的通项公式?∵Sn=a·2n+b∴Sn-1=a·2n-1+b∴an=Sn-Sn-1=a·2n-1余辉2023-05-12 10:29:292
在等比数列an中 a1a3=36 a2+a4=60 Sn大于400 n 取值范围
。。tt白2023-05-12 10:29:294
什么是等比数列?
等比数列就是后一项比前一项的比值都一样的数列,这个比值叫做公比q比如1 2 4 8 16......公比就是2又比如1/3 1/9 1/27 1/81....公比就是1/3设通项是an(就是第n项),则a(n+1)=q*an那么求和记为Sn=a1+a2+...+an (1)两边同乘以q,qSn=q(a1+a2+...+an) =a2+a3+...+an+q*an(2)【乘以q后每个a的角标就要+1】(1)-(2)式得到(1-q)Sn=q*an-a1=q*a1*q^(n-1)-a1=a1(1-q^n) 【这里an=a1*q^(n-1)】所以Sn=a1(1-q^n)/(1-q)可桃可挑2023-05-12 10:29:291
等比数列
a(n)=2^n,a(m)+a(n)=2^m+2^n,a(p)+a(q)=2^p+2^q,若a(m)+a(n)=a(p)+a(q),则 2^m+2^n=2^p+2^q,设m>n, p>q, n>=q.则 2^(m-q)+2^(n-q)=2^(p-q)+1,若n>q,则上式等号左边为偶数,等号右边为奇数。没有正整数m,n,p,q满足等式。题目结论成立。若n=q,则2^(m-n)+1=2^(p-n)+1,2^(m-n)=2^(p-n),2^m=2^pm=p.这样,m=p, n=q.说明,任意2项相加的和互不相等。因此,题目结论成立。大鱼炖火锅2023-05-12 10:29:291
等比数列中如何数项数???最好能有公式什么的
解:项数=末项-首项+1 比如说4到n-3有多少项 ? 那么就是n-3-4+1=n-6项很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。有不明白的可以追问!如果您认可我的回答。请点击下面的【选为满意回答】按钮,谢谢!wpBeta2023-05-12 10:29:292
怎么求等比数列的极限?
求极限方式:求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1。一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。扩展资料:等比数列的性质:(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。(2)在等比数列中,依次每k项之和仍成等比数列。(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。参考资料来源:百度百科—等比数列瑞瑞爱吃桃2023-05-12 10:29:291
等差数列,等比数列的基本知识
等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 通项公式 等差数列的通项公式为:an=a1+(n-1)d (1) 前n项和公式 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数。 推论 1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 2. 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。 4.其他推论 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 等差中项 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式。 [编辑本段]二、等差数列的应用: 日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别 时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。 若为等差数列,且有an=m,am=n.则a(m+n)=0。 其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了: 今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何? 书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了Sn=(a1+an)/2×n的求和公式 [编辑本段]三、等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列. ⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … . ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差). ⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 ) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数. ⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3. [编辑本段]四、等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an + bn的形式(其中a、b为常数). ⑵在等差数列中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = . ⑶若数列为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 . ⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = . ⑸在等差数列中,S = a,S = b (n>m),则S = (a-b). ⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上. ⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小. 等比数列 简介与公式 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2)求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠ 1) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 (5)无穷递缩等比数列各项和公式: 无穷递缩等比数列各项和公式:对于等比数列 的前n 项和,当n 无限增大时的极限,叫做这个无穷递缩数列的各项和。 [编辑本段]性质 ①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. ③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则 (a2n),(a3n)…是等比数列,公比为q1^2,q1^3… (can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。 (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1) 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。 (6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。FinCloud2023-05-12 10:29:291
等比数列和等差数列公式
等差等比数列以及相关公式 悬赏分:20 | 解决时间:2009-9-6 22:05 | 提问者:化学初学者sky陶小凡2023-05-12 10:29:288