变量

Kettle8.2下设置自定义SQL中多时间变量参数

kettle下使用SQL语句时经常会限定时间进行取数,每次改动就比较麻烦,可通过引用变量参数的方式自动引用,方便使用. 一.新建转换,获取各种想要的变量参数: 1.<获取系统信息>:通过控件获取到所需要的时间参数 2.<增加常量>:通过控件可以设置想要获得天数的差值 二.测试 1.新建转换,然后在表输入阶段使用参数,切记需要勾上"替换SQL语句里的变量",且变量名需要设置为上面步骤4中显示的变量名
水元素sl2023-06-10 08:16:451

Kettle如何使用自定义变量

首先你需要设置变量,假设有一个字段ID,你将它设置变量命名为field,之后你可以在例如“表输入控件”中使用这个变量谢谢采纳
Ntou1232023-06-10 08:16:441

kettle里怎么引用变量

要使用从上一步传来的参数,只要在使用SQL进行引用就可以。ps:对应的拓扑结构:ETL:是“Extract、 Transform 、Load”的缩写,也就是代表ETL过程的三个最主要步骤:“抽取、转换、装载”,但我们平时往往简称其为数据抽取。Kettle:是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。Kettle 中文名称叫水壶,该项目的主程序员MATT 希望把各种数据放到一个壶里,然后以一种指定的格式流出。
北境漫步2023-06-10 08:16:441

Kettle中的转换里面的设置变量的作用是什么

方便你在之后或者子项目中获取到你设置的变量。比如你在这里设置了一个变量名叫FIELD,你在之后的转换“表输入”控件里SQL可以这么写设置变量大多用在在循环或者某个字段容易变化的时候,方便之后取到这个值谢谢采纳
韦斯特兰2023-06-10 08:16:431

如何给一个 Kettle 转换设置变量和命令行参数

1. 变量的类型Kettle 的早期版本中的变量只有系统环境变量目前版本中(3.1) 变量包括系统环境变量, "Kettle变量" 和内部变量三种系统环境变量的影响范围很广,凡是在一个 JVM下运行的线程都受其影响.Kettle 变量限制了变量的作用范围, 变量范围包括三种分别是 grand-parent job, parent job, root job 内部变量: 是 kettle 内置的一些变量, 主要是kettle 运行时依赖的环境, 如转换文件名称, 转换路径,ip地址, kettle 版本号等等.2. 变量的设置"系统环境变量" 有三种设置方式1) 通过命令行 -D 参数2) 属性文件 kettle.property 中设置, 该属性文件位于 ${user.home}.kettle 下3) 通过设置环境变量步骤 (Set Variable) 设置."Kettle 变量" 只能通过设置环境变量 (Set Variable) 步骤设置,同时设置变量的作用范围."内部变量" 是预置的无须设置.3. 变量的使用无论哪种类型的变量在使用上都是一样的, 有两种方式1) 通过 %%var%% 或 ${var} 来引用, 这个引用可以用在 SQL 语句中, 也可以用在允许变量输入的输入框里.2) 通过获取变量 (Get Variable) 步骤来使用命令行参数:1. 设置: 命令行参数通过获取系统信息(Get System Info) 步骤设置, 在使用时可以像列名一样来使用,不必像变量一样要通过 ${var} 这样的格式引用. 用户最多可以设置10个命令行参数2. 传递: 命令行下使用 pan /file:xxx.ktr arg1 arg2 来传递参数.图形界面下,每次运行时有要求输入参数的提示窗口.
苏萦2023-06-10 08:16:421

随机变量概率 随机变量ξ P(ξ 为什么=F(a+0)

a+0指a的右极限.P是概率,F指随机变量ξ的分布函数. 这个内容主要是要在大学学的,在这里解释一下定义: 随机变量ξ的分布函数定义为F(x)=P(ξ
FinCloud2023-06-10 08:16:351

随机变量X服从二项分布,这些字符各是什么意思,求解释。

二项分布,就是说一个实验重复多次,每次独立,且这个实验有两种结果可能发生。X~B(n,p)翻译成文字就是:一项实验被独立重复进行n次,每一次成功的概率是p比如射击,那么这个就是表示,射击了n次,每次射中靶的概率为p望采纳
小菜G的建站之路2023-06-10 08:16:331

分布函数随机变量 它取任何一个具体值概率都是零 求解释

You need more recent calcium supplement elements
NerveM 2023-06-10 08:16:323

关于一个计量经济学的基本问题,为何在探究变量关系的线性时候,强调的参数线性而不是变量线性

因为变量 你最终只是用到它的一个数值而已 这个值以什么形式出现都不太重要。参数线性是因为 你这是在用一个叫 多元线性模型 的模型啊 这就是它假设的基础
ardim2023-06-10 08:16:313

概率函数(离散型随机变量)

概率函数,即用函数的形式来表达概率。 pi = P(x = i)(i = 1,2,3,4,5,6) 在此函数中,自变量(x)是随机变量的取值,因变量(pi)是取值的概率。 它代表了每个取值的概率,比如 P(x = 1) = 1/6,这代表用概率函数的形式来表示,当随机变量取值为1的概率为1/6,一次只能代表一个随机变量的取值。 即上面是取值,下面是取值所对应的概率。 For example: 一颗6面的骰子,有1,2,3,4,5,6这6个取值,每个取值取到的概率都为1/6. 那以下的列表是不是这个骰子取值的“概率分布”? 其实不是,对于一颗骰子来说,它列出的不是全部的值,把6漏掉了! 以上公式中F(x)即代表概率分布函数,又叫累积概率函数。 连续型随机变量也有它的“概率函数”和“概率分布函数”,但是连续型随机变量的“概率函数”换了一个名字,叫做“概率密度函数”! 其解释如下: 如果不好理解的话,看看下面的公式: (上述公式中应该是f(x)) 概率密度函数用数学公式表示就是一个定积分的函数,定积分在数学中是用来求面积的,在这里,概率即是面积! For example: 左边是F(x)连续型随机变量的分布函数,右边是f(x)连续型随机变量的概率密度函数,它们之间的关系就是:概率密度函数是分布函数的导函数!
wpBeta2023-06-10 08:16:301

概率分布与随机变量x是否一一对应,为什么?请解释,谢谢!

如果是分散分布当然每个值都是一一对应的即变量的每个可能取值对应其相应的概率而连续分布的话就只能一个区间对应一个概率单独点的话,其概率为零
bikbok2023-06-10 08:16:251

工具变量法的介绍

某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数得到一个一致估计量,这个变量就称为工具变量,这种估计方法就叫工具变量法。
北营2023-06-10 08:16:251

随机过程中的随机变量上有一横代表什么?

随机过程即在随机变量的基础上引入时间的概念,也可以简单理解为随机变量关于时间的函数。比如骰子的例子,假定在N个时间点上(N为离散时间点,N可以趋近无穷)抛骰子,每一个时间点上都有一个随机的点数,则骰子点数关于时间N的函数即可理解为一个随机过程。重复相同的实验,每一个时间点上每次获得的点数都是不同的,都可以看作一个随机变量。注:此处是用离散随机过程解释的,连续随机过程与此类似。
北境漫步2023-06-10 08:16:241

在计量经济学模型种被解释变量和解释变量的作用有什么不同

“社会统计学与数理统计学的统一”理论的重大意义 2011-10-23 23:05 王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量,而变量和随机变量是两个既有区别又有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现。 我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基础和促进了它们的蓬勃发展。可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相互的转化的意义称为巨大、也就不视为过。 下面我们回到:“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。它结束了近400年来几十种甚至上百种以上五花八门种类的统计学的混战局面,使它们回到正确的轨道上来。 由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通常研究复杂问题转化为若干简单问题的研究道理是一样的。既然社会统计学描述的是变量,而变量描述的·范围是极其宽广的,绝非某些数理统计学者所云:社会统计学只作简单的加、减、乘、除。从理论上讲,社会统计学应该复盖除数理统计学之外的绝大多数数学学科的运作。所以王见定教授提出的:“社会统计学与数理统计学统一”理论,从根本上纠正了统计学界长期存在的低估社会统计学的错误学说,并从理论上和应用上论证了社会统计学的广阔前景。
韦斯特兰2023-06-10 08:16:241

高斯马尔可夫定理为什么要求解释变量与随机误差项不相关

高斯马尔科夫定理 高斯-马尔科夫定理:在给定经典线性回归模型的假定下,最小二乘估计量,在无偏线性估计一类中,有最小方差,就是说,它们是BLUE(best linear unbiased estimator) 在统计学中,高斯-
ardim2023-06-10 08:16:241

连续随机变量方差的定义

题库内容:随机变量的解释 概率论的基本 概念 。描述随机现象某一 侧面 的数量。如同一台机器生产一种规格的螺钉,其直径大小就是一个随机变量。随机变量分为离散型和连续型两类。 词语分解 随机的解释 依照情势 必须 具有 一定 的随机应变的 能力 ,才能完成 任务 ∶ 自由 组合随机抽样详细解释依照情势;顺应 时机 。《陈书·徐世谱传》:“ 世谱 性机巧,谙解旧法,所造器械,竝随机损益,妙思出人。” 宋 陈亮 《 变量的解释 可假定为一组特定值中之任一值的量 代表数学公式中一个可变量的符号 函数 的值 取决于 变量的值 数值可变的量详细解释 数值可以变化的量。如一天内的气温就是变量。
阿啵呲嘚2023-06-10 08:16:221

什么叫做非随机变量 举个具体的例子

有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,称为离散型随机变量 若随机变量X的分布函数F(x),存在非负函数f(x),使f(x)积分为F(x)(下限为负无穷)
拌三丝2023-06-10 08:16:212

概率论很基础的问题:随机变量,离散型随机变量,连续性随机变量,分别有什么特点,区别在哪里,还有没有

随机变量百度百科解释为随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的实值函数(一切可能的样本点)。在高等数学书里面分为离散型和连续性两种。有些书会提到混合型随机变量。我目前认识到的就这三种。离散型直接列取值取值概率比两点布P(X=1)=0.6P(X=0)=0.4连续型取特定值概率0取值区间面意义所用布函数概率密度函数描述布函数F(x)表示随机变量X≤x概率F(x)=P(X≤x)概率密度函数F(x)导数记f(x)满足P(a≤X≤b)=∫(ab)f(x)dx但是在一些题目当中或者老师的讲课或者某些书中会提到混合型随机变量,而且这个是在多维随机变量中才会有,以二维为例,取个例子可能更清楚
再也不做站长了2023-06-10 08:16:211

gauss-markov定理为什么要求解释变量与随机误差项不相关

不知道你说的是不是想检验两变量的相关性?可做两变量的相关性检验,看是否相关。 其实缺失的变量都到了随机误差项中去了,导致最后得到非一致估计量。还有,因为有的缺失的变量可能会和解释变量相关,但是被归到随机误差项中去
瑞瑞爱吃桃2023-06-10 08:16:201

回归分析中被解释变量Y的方差为什么是σΛ2,求证明。

在经典模型中,被解释变量是随机变量,解释变量是非随机的,两者之间是线性关系,y=a+bx+u,其中干扰项设定为正态分布,被解释变量与随机干扰项是线性关系,利用正态分布的线性变换也是正态分布可以得出,被解释变量也是正态变量,y~N(,a+bx,σΛ2),得到了其方差为σΛ2
真颛2023-06-10 08:16:191

概率论中的连续型的随机变量都不懂!连续型的和高中学过的离散型的有什么联系呢,求详细解释。。。。。。

这个建议去看书。有一定的概率的基础应该还是好理解的。
Chen2023-06-10 08:16:184

随机扰动项的方差是随机变量吗

随机扰动项的方差不是随机变量。随机误差项(randomerrorterm)亦称“随机扰动项”,简称“随机误差”、“随机项”、“误差项”、“扰动项”。不包含在模型中的解释变量和其他一些随机因素对被解释变量的总影响项。随机误差项包括:1)模型中省略的对被解释变量不重要的影响因素(解释变量)。2)解释变量和被解释变量的观测误差。3)经济系统中无法控制、不易度量的随机因素。模型数学形式的误差,如用线性模型近似非线性经济关系,不属于随机误差。将随机误差项引入模型,是经济计量学与数理经济学的根本区别。
LuckySXyd2023-06-10 08:16:171

设随机变量x~n(μ,σ)什么意思

随机变量的解释 概率论的基本 概念 。描述随机现象某一 侧面 的数量。如同一台机器生产一种规格的螺钉,其直径大小就是一个随机变量。随机变量分为离散型和连续型两类。 词语分解 随机的解释 依照情势 必须 具有 一定 的随机应变的 能力 ,才能完成 任务 ∶ 自由 组合随机抽样详细解释依照情势;顺应 时机 。《陈书·徐世谱传》:“ 世谱 性机巧,谙解旧法,所造器械,竝随机损益,妙思出人。” 宋 陈亮 《 变量的解释 可假定为一组特定值中之任一值的量 代表数学公式中一个可变量的符号 函数 的值 取决于 变量的值 数值可变的量详细解释 数值可以变化的量。如一天内的气温就是变量。
LuckySXyd2023-06-10 08:16:171

试解释随机变量的变异系数的意义

变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 标准差与平均数的比值称为变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。
北境漫步2023-06-10 08:16:171

什么是随机变量序列

随机变量(random variable)表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。 一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω 。 随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 , 则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。 要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的规律,即要掌握它的概率分布。概率分布可以由分布函数刻画。若知道一个随机变量的分布函数,则它取任何值和它落入某个数值区间内的概率都可以求出。 有些随机现象需要同时用多个随机变量来描述。例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量。类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 。描述随机向量的取值规律 ,用联合分布函数。随机向量中每个随机变量的分布函数,称为边缘分布函数。若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。独立性是概率论所独有的一个重要概念。
Jm-R2023-06-10 08:16:164

在回归分析中,自变量是随机的还是给定的

在回归分析中,两个变量先确定一个为解释变量,另一个就是预报变量,不是给定的。
mlhxueli 2023-06-10 08:16:161

解释变量与随机误差项相关,是产生多重共线性的主要原因对吗

解释变量与随机误差项相关,是产生多重共线性的主要原因。这个说法不对。多重共线性主要有3个方面:(1)经济变量相关的共同趋势(2)滞后变量的引入(3)样本资料的限制一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。扩展资料多重共线性使参数估计值的方差增大,如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
mlhxueli 2023-06-10 08:16:151

回归中的解释变量x是不是随机变量

欢迎追问现行归比于两变量xy假设用解释变量x程式表示y确定x才能应y预测值x随机变量
hi投2023-06-10 08:16:122

计量经济学:什么是工具变量法,被选为工具变量的变量必须具备什么条件

某一个变量与模型中内生解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为工具变量,这种估计方法就叫工具变量法(IV Method)。作为工具变量,必须满足下述四个条件:  (1)与所替的内生解释变量高度相关;  (2)与随机误差项不相关;  (3)与模型中其他解释变量不相关;  (4)同一模型中需要引入多个工具变量时,这些工具变量之间不相关。 举个例子:比如,令GDP增长率为被解释变量,需要研究GDP增长率与出口开放程度的关系,可以引入工具变量“各省区到海岸线的距离”来替代“出口开放程度”。认为:1.各省区到海岸线的距离与各省区的出口密切相关;2.各省区到海岸线的距离与随机误差项无关。 希望对你有帮助
北营2023-06-10 08:16:124

用定义和例子解释统计学里面的随机变量是什么?

统计学发展史说明,先有社会统计学后有数理统计学,先有变量后有随机变量;社会统计学以变量为基楚,数理统计学以随机变量为基础。且变量与随机变量是在一定条件下可以相互转化的数学概念。我们知道变量与随机变量是既有联系又有区别的。当变量取值的概率不是1时,变量就变成了随机变量;当随机变量取值的概率为1 时,随机变量就变成了变量。解读:通俗的讲就是先有谁后有谁,在统计学中先有变量后有随机变量,它俩个是既有联系又有区别,切在一定的条件下可以相互转化的数学概念。通俗的讲:就是确定它们两个有血缘关系,也就是说先有老子后有儿子。现在是儿子不认老子,还要当老子,称自己为科学统计;统计学就是数理统计学。这不是乱了套了吗,连老子都不认了,连辈分都不讲,这天下那有儿子当老子的道理,简直是岂有此理,这孩子真是三天不打上房揭瓦;非得把他关起来,三天不让他出门在家狂写作业吧。 社会统计学与数理统计学的统一理论,确立了社会统计学流派变量在统计学的主导地位;使以,美国为代表的发达国家数理统计学流派随机变量,走下了神坛及领导地位成为支流。近70年,由于数理统计学的飞速发展,大有“吃掉”社会统计学的势头,尤其是 以美国为代表的发达国家几乎认为统计学就是数理统计学,称为科学统计。实际上,这是一个极大的误区。就是一个大呼悠,是一种统计学的错误学说。
mlhxueli 2023-06-10 08:16:112

为什么联立方程组模型解释变量可能与随机扰动项相关?

因为在计量经济模型中不可能穷尽或找出所有的变量对被解释变量的影响,因此加入扰动项表示其它未知变量对被解释变量的影响,扰动项也可以用来估量误差的大小。
凡尘2023-06-10 08:16:101

回归分析和相关分析所分析的两个变量一定是随机变量吗

回归分析:自变量给定 因变量随机相关分析中两个变量都是随机
人类地板流精华2023-06-10 08:16:083

线性回归分析中为什么把解释变量假设为非随机变量

因为是现行回归了,比如对于两个变量的,x,y,假设了用解释变量x的方程式表示y,此时只有确定x,才能有对应的y预测值因此x此时不是随机变量,
北营2023-06-10 08:16:081

相关关系是非随机变量与随机变量的关系,啥意思?

就是这个量的取值不是随机的,就是随机变量的反义词嘛。例子:线性回归分析中的解释变量就是假设为非随机变量因为是线性回归了,比如对于两个变量的,x,y,假设了用解释变量x的方程式表示y,此时只有确定x,才能有对应的y预测值因此x此时不是随机变量
北营2023-06-10 08:16:072

随机变量分布函数的取值区间解释?

对于离散型随机变量,它的取值只能是一些分立的值,而分布函数F(x)定义为随机变量X小于等于x的概率,即F(x)=P{X<=x}。假定离散型随机变量相邻的两个可能取值(也就是相差最小的两个取值)为X1,X2(X1<X2),那么当x的取值在区间[X1,X2)时,无论x的值为多少,由于随机变量不可能取到X1和X2之间的值,所以X小于等于x的概率与X小于等于X1的概率是相等的,亦即函数F(x)在区间[X1,X2)上为一个常数。同理,X2,X3为相邻的两个可能取值(X2<X3),那么函数F(x)在区间[X2,X3)上也为常数。反映到图像上来,就是阶梯型曲线。
苏萦2023-06-10 08:16:061

被解释变量和随机扰动项的分布是一样的吗

不一样。随机扰动项是被解释变量实际值与条件均值的偏差,代表排除在模型以外的所有因素对Y的影响。简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)。所以是不一样的。
Chen2023-06-10 08:16:061

怎解释二维随机变量( X, Y)独立性?

二维随机变量(X,Y)独立的定义式为:F(x,y)=F(x)*F(y )等价的命题如下:二维离散型随机变量X,Y独立的充分必要条件为 :对(X,Y)任意可能的取值(xi,yj)均有P(X=xi,Y=yj)=P(X=xi)*P(Y=yj)2. 二维连续型随机变量X,Y独立的充分必要条件为 :f(x,y)=f(x)*f(y )这里,f(x,y)为(X,Y)的联合概率密度函数,f(x)为一维随机变量X的概率密度函数,f(y )为一维随机变量Y的概率密度函数。参考资料百度知道:https://zhidao.baidu.com/question/565021512959105724.html
善士六合2023-06-10 08:16:051

相关关系是非随机变量与随机变量的关系,啥意思?

就是这个量的取值不是随机的,就是随机变量的反义词嘛。例子:线性回归分析中的解释变量就是假设为非随机变量因为是线性回归了,比如对于两个变量的,x,y,假设了用解释变量x的方程式表示y,此时只有确定x,才能有对应的y预测值因此x此时不是随机变量
阿啵呲嘚2023-06-10 08:16:051

为什么回归分析中解释变量是非随机变量

是的,回归分析中因变量y是随机变量,但是众x都是一般变量.相关分析是要考虑两组变量之间的关系,比如工厂原料的质量x1到xp和产品的质量y1到yq,这些x和y都是随机变量.
苏州马小云2023-06-10 08:16:041

工具变量替代随机解释变量后,实际上是工具变量变成了解释变量 为什么是错的

import java.io.*;import java.net.*;public class URLTest{public static void main(String[] args){try{
瑞瑞爱吃桃2023-06-10 08:16:041

高数 随机变量 求网友解释一下

X~P(λ),即随机变量X服从泊松分布,也就是P(X=i)=λ^(i)e^(-λ)/i!,i=0,1,2...P(X=2)=P(X=3)将上述公式中的i分别换成2,3即可温馨提醒:你一定要对一些分布的字母表示熟悉,考试时如果不告诉你什么分布,你就完了。比如,X~U[a,b]是均匀分布,P泊松分布,N正态分布,B二项分布,
九万里风9 2023-06-10 08:16:031

单方程计量经济学模型中被解释变量是随机的吗

经典假设中,解释变量是非随机变量,被解释变量是随机变量例如:双变量模型中y=a+bx+u,x是非随机的,u是随机的,故y是随机的且与u有相同的正态分布形式。
gitcloud2023-06-10 08:16:032

计量经济学的题目,回归分析中,解释变量和被解释变量 是 随机变量 还是非随机变量?

都是随机变量。样本数据为其观察值。
阿啵呲嘚2023-06-10 08:16:021

解释变量与被解释变量是随机变量吗

经典回归分析中假定解释变量为确定变量,这样是为了让参数检验时能方便地到处一些参数的分布。比如,在得到被解释变量的分布时,y=a+bx+u,因为前面的a+bx是缺点变量,则y与u有相同的分布。 在实证中,经济数据不像其它科学实验那样可以设定控制...
再也不做站长了2023-06-10 08:16:021

如何理解随机变量和随机过程?

(1)随机变??量的不应该是很难理解的,随机过程是一个随机变量的有序排列(通常按时间顺序排列)系列,这一系列的随机变量满足一定的法律(2)似乎并不随机变量维或二维的说法(3)对于平稳随机过程,任何一个时间分界点的平均,和整群随机过程的均值相等。非平稳过程不一定。的图案随机过程(类型随机过程包括几个类别,如在正常过程中,独立增量过程)可以得到的平均的函数,可以看出,从在不同的时间的随机过程的平均值的平均函数是一个函数的时间。
北营2023-06-10 08:16:012

工具变量法是什么意思?

某一个变量与模型中随机解释变量高度相关,但却不与随机误差项相关,那么就可以用此变量与模型中相应回归系数得到一个一致估计量,这个变量就称为工具变量,这种估计方法就叫工具变量法。在模型估计过程中被作为工具使用,以替代模型中与误差项相关的随机解释变量的变量,称为工具变量。作为工具变量,必须满足下述四个条件:1、与所替的随机解释变量高度相关;2、与随机误差项不相关;3、与模型中其他解释变量不相关;4、同一模型中需要引入多个工具变量时,这些工具变量之间不相关。扩展资料:工具变量的相关性和工具变量的外生性,其中相关性是指工具变量与回归因子相关,外生性是指工具变量与残差项u无关。为了在具体操作能够实现,常常分两步来做:1、第一步将X分解两部分:一个是可能与回归误差项相关的有问题的部分,另一个是与回归误差项无关的没有问题的部分;2、第二步就是使用这个没有问题的部分来估计参数。工具变量可以起到随机抽样的结果,同时,除第一阶段的影响外,工具变量不会通过其他影响被解释变量。参考资料来源:百度百科-工具变量法
真颛2023-06-10 08:16:011

单方程计量经济学模型中被解释变量是随机的吗

经典假设中,解释变量是非随机变量,被解释变量是随机变量 例如:双变量模型中y=a+bx+u,x是非随机的,u是随机的,故y是随机的且与u有相同的正态分布形式.
可桃可挑2023-06-10 08:16:001

解释变量与随机误差项相关,是产生多重共线性的主要原因对吗

解释变量与随机误差项相关,是产生多重共线性的主要原因。这个说法不对。多重共线性主要有3个方面:(1)经济变量相关的共同趋势(2)滞后变量的引入(3)样本资料的限制一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。扩展资料多重共线性使参数估计值的方差增大,如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
FinCloud2023-06-10 08:15:591

名词解释,随机解释变量

随机变量randomvariable表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。
陶小凡2023-06-10 08:15:581

回归中的解释变量x是不是随机变量

欢迎追问现行归比于两变量xy假设用解释变量x程式表示y确定x才能应y预测值x随机变量
wpBeta2023-06-10 08:15:582

spss17一般线性模型多变量检验为什么因变

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务
小白2023-06-10 08:15:571

spss单因素方差分析,分析多个因变量,结果出不来完全

结果不是有吗,你要做多变量分析,不是多个自变量,是因变量的?
CarieVinne 2023-06-10 08:15:561

方差分析变量水平多于样本量怎么办

方差分析变量水平多于样本量的解决办法如下。1、提高数据的准确性,降低数据误差。2、进行多次的对比实验,测量得出最佳的答案。
小菜G的建站之路2023-06-10 08:15:541

spss里one-way anova和univariate(多因素单因变量方差分析)的主要区别是什么?有实例!

单因素方差分析主要就是只针对一个分类变量时 探讨该分类变量的不同分类下是否有差异的 多因素单因变量的方差分析 是用在有多个分类自变量时,可以探讨分类自变量之间是否存在交互作用,然后可以分析边际均值的 当只有一个分类自变量时,无论采用哪个的结果是一样的
小白2023-06-10 08:15:521

spss的多因素方差分析中,怎么判断一个因素是否为协变量?

多因素方差分析是研究两个及两个以上控制变量是否对观测变量产生显著影响。而协变量是存在于协方差分析中人们往往比较难以控制的因素。 举个例子说,用了几种不同的教学方法来给40名学生教英语,另外还知道这40名学生的英语入学成绩,当分析有哪些因素影响到学生的英语考试成绩时,这个入学成绩就是协变量。 问题的前提不对,应该是协方差分析。希望能帮到你,望采纳。
西柚不是西游2023-06-10 08:15:501

spss的多因素方差分析中,怎么判断一个因素是否为协变量?

多因素方差分析是研究两个及两个以上控制变量是否对观测变量产生显著影响。而协变量是存在于协方差分析中人们往往比较难以控制的因素。 举个例子说,用了几种不同的教学方法来给40名学生教英语,另外还知道这40名学生的英语入学成绩,当分析有哪些因素影响到学生的英语考试成绩时,这个入学成绩就是协变量。 问题的前提不对,应该是协方差分析。希望能帮到你,望采纳。
小菜G的建站之路2023-06-10 08:15:491

用spss怎么做多因变量,多自变量的线性回归分析?

回归分析 不能做 多因变量 的线性回归分析,回归分析只能一次一个因变量 你可以采用多元方差分析来代替线性回归分析来做,通过多因素方差分析,可以同时对多因变量和多自变量进行分析,然后也可以进行参数估计,得到回归系数和拟合值
bikbok2023-06-10 08:15:471

一个自变量,一个因变量,因变量有多个指标,用什么分析方法分析自变量与这些维度之间的关系

可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.因子分析的步骤:菜单栏"分析"——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量"框内,将自变量选入”固定因子“框内,点确定.回归分析:分析——回归.选择线性或曲线模型.
苏州马小云2023-06-10 08:15:421

多个自变量多个因变量用SPSS如何分析?

可以做的我经常帮别人做这类的数据统计分析的
wpBeta2023-06-10 08:15:402

两变量单因素方差分析和两因素方差分析的区别是什么?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
康康map2023-06-10 08:15:392

spss中怎么做多自变量的方差分析

多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务
小菜G的建站之路2023-06-10 08:15:151

两变量多因素方差分析中,单因素指什么?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
北境漫步2023-06-10 08:15:131

单因素多变量方差分析适用于(…)?

多因素方差分析适用于可以分解为若干独立因素的多变量问题。
wpBeta2023-06-10 08:15:122

单因素多变量方差分析适用于()。

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
铁血嘟嘟2023-06-10 08:15:121

单因素多变量方差分析适用于()。

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
无尘剑 2023-06-10 08:15:111

单因素多变量方差分析适用于什么检验?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
豆豆staR2023-06-10 08:15:101

单因素多变量方差分析适用于()个因素、()个以上观测变量的检验?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
肖振2023-06-10 08:15:101

单因素多变量方差分析适用于什么样的实验?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
Chen2023-06-10 08:15:091

什么是单因素多变量方差分析?

单因素多变量方差分析适用于两个个因素、两个个以上观测变量的检验。单因子多变量方差分析适用于一个自变量两个以上因变量的检验,其中因变量为连续型变量,自变量为类别变量。在单变量方差分析中(univariate analysis of variance),只检验因变量各水平在单一因变量测量值平均数的差异,使用的检验方法为F检验,而多变量方差分析(multivariate analysis of variance,简称MANOVA)则同时检验K组间在两个以上因变量是否有显著差异。单因素方差分析试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。方差分析就是对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。
hi投2023-06-10 08:15:071

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
瑞瑞爱吃桃2023-06-10 08:15:061

什么是单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。试验中要考察的指标称为试验指标,影响试验指标的条件称为因素,因素所处的状态称为水平,若试验中只有一个因素改变则称为单因素试验,若有两个因素改变则称为双因素试验,若有多个因素改变则称为多因素试验。对试验数据进行分析,检验方差相等的多个正态总体均值是否相等,进而判断各因素对试验指标的影响是否显著,根据影响试验指标条件的个数可以区分为单因素方差分析、双因素方差分析和多因素方差分析。扩展资料因素可分为两类:一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。如果在一项试验中只有一个因素在改变,则称为单因素试验;如果多于一个因素在改变,则称为多因素试验。
再也不做站长了2023-06-10 08:15:061

单因素多变量方差分析有什么意义?

单因素多变量方差分析适用于(两个)个因素、(两)个以上观测变量的检验。单因素方差分析是研究一个变量的多种水平对观测量的影响。比如研究施肥的多少对于庄稼生长的影响。单因素方差分析就是检测施肥多少这个单因素对于庄稼生长这应变量的影响。若方差分析显著,就表明存在影响,若不显著就表明没有影响。扩展资料:一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。
hi投2023-06-10 08:15:051

协方差分析单变量和多变量的区别 spss

现代统计学1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 2.主成分分析 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 ******************************************************************************************************************主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。 ******************************************************************************************************************3.聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。 根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。 贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。 距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。6.典型相关分析 典型相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓广。各组随机变量中既可有定量随机变量,也可有定性随机变量(分析时须F6说明为定性变量)。本法还可以用于分析高维列联表各边际变量的线性关系。******************************************************************************************************************注意:1.严格地说,一个典型相关系数描述的只是一对典型变量之间的相关,而不是两个变量组之间的相关。而各对典型变量之间构成的多维典型相关才共同揭示了两个观测变量组之间的相关形式。2.典型相关模型的基本假设和数据要求 要求两组变量之间为线性关系,即每对典型变量之间为线性关系; 每个典型变量与本组所有观测变量的关系也是线性关系。如果不是线性关系,可先线性化:如经济水平和收入水平与其他一些社会发展水之间并不是线性关系,可先取对数。即log经济水平,log收入水平。3.典型相关模型的基本假设和数据要求 所有观测变量为定量数据。同时也可将定性数据按照一定形式设为虚拟变量后,再放入典型相关模型中进行分析。 ******************************************************************************************************************7.多维尺度分析(Multi-dimension Analysis) 多维尺度分析(Multi-dimension Analysis) 是市场研究的一种有力手段,它可以通过低维空间(通常是二维空间)展示多个研究对象(比如品牌)之间的联系,利用平面距离来反映研究对象之间的相似程度。由于多维尺度分析法通常是基于研究对象之间的相似性(距离)的,只要获得了两个研究对象之间的距离矩阵,我们就可以通过相应统计软件做出他们的相似性知觉图。 在实际应用中,距离矩阵的获得主要有两种方法:一种是采用直接的相似性评价,先所有评价对象进行两两组合,然后要求被访者所有的这些组合间进行直接相似性评价,这种方法我们称之为直接评价法;另一种为间接评价法,由研究人员根据事先经验,找出影响人们评价研究对象相似性的主要属性,然后对每个研究对象,让被访者对这些属性进行逐一评价,最后将所有属性作为多维空间的坐标,通过距离变换计算对象之间的距离。****************************************************************************************************************** 多维尺度分析的主要思路是利用对被访者对研究对象的分组,来反映被访者对研究对象相似性的感知,这种方法具有一定直观合理性。同时该方法实施方便,调查中被访者负担较小,很容易得到理解接受。当然,该方法的不足之处是牺牲了个体距离矩阵,由于每个被访者个体的距离矩阵只包含1与0两种取值,相对较为粗糙,个体距离矩阵的分析显得比较勉强。但这一点是完全可以接受的,因为对大多数研究而言,我们并不需要知道每一个体的空间知觉图。************************************************************************************************************************************************************************************************************************************ 多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据的问题。能否从表面上看起来杂乱无章的数据中发现和提炼出规律性的结论,不仅对所研究的专业领域要有很好的训练,而且要掌握必要的统计分析工具。对实际领域中的研究者和高等院校的研究生来说,要学习掌握多元统计分析的各种模型和方法,手头有一本好的、有长久价值的参考书是非常必要的。这样一本书应该满足以下条件:首先,它应该是“浅入深出”的,也就是说,既可供初学者入门,又能使有较深基础的人受益。其次,它应该是既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,而且在一定程度上了解“为什么”这样做。最后,它应该是内涵丰富、全面的,不仅要基本包括各种在实际中常用的多元统计分析方法,而且还要对现代统计学的最新思想和进展有所介绍、交代。************************************************************************************************************************************************************************************************************************************因子分析 主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接观测到的、但影响可观测变量变化的公共因子?因子分析(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。 例如,随着年龄的增长,儿童的身高、体重会随着变化,具有一定的相关性,身高和体重之间为何会有相关性呢?因为存在着一个同时支配或影响着身高与体重的生长因子。那么,我们能否通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子呢?因子分析就是从大量的数据中“由表及里”、“去粗取精”,寻找影响或支配变量的多变量统计方法。 可以说,因子分析是主成分分析的推广,也是一种把多个变量化为少数几个综合变量的多变量分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。 因子分析主要用于:1、减少分析变量个数;2、通过对变量间相关关系探测,将原始变量进行分类。即将相关性高的变量分为一组,用共性因子代替该组变量。 1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里,(1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。 A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i=1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。(1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。(2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出。 F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X(3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。(i)因子分析常常有以下四个基本步骤:(1)确认待分析的原变量是否适合作因子分析。(2)构造因子变量。(3)利用旋转方法使因子变量更具有可解释性。(4)计算因子变量得分。(ii)因子分析的计算过程:(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。(2)求标准化数据的相关矩阵;(3)求相关矩阵的特征值和特征向量;(4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。(7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。(8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。 F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率。(9)得分排序:利用综合得分可以得到得分名次。 ************************************************************************************************************************************************************************************************************************************ 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 ******************************************************************************************************************
kikcik2023-06-10 08:15:041

多个自变量多个因变量怎么做逐步回归分析?

这个做多元线性回归好了,其实是二元线性回归,自变量2个A和B,因变量C。一元线性回归方程y=ax+b,系数a>0,y与x正相关,x高时,y高,x低时,y低,a<0相反。二元线性回归方程是y=ax1+bx2+c,x1,x2对应本题的A、B变量。如果系数a,b都是正的,那么就是A高B高时,C也会高。如果系数是负值,那么就A高B高时,C会低。如果系数a为正,b为负,那么A高,B低,C会高,但A低B高,效应相减,C的高低就难确定了。同理A为负,B为正的情况。操作步骤:分析-回归-线性,C为因变量,A,B为自变量,如果anova表的P值小于0.05,回归方法成立,可以按以上步骤进行。如果大于0.05,说明线性模型不成立,那就需要考虑非线性模型进行相关分析啦,道理一样。
九万里风9 2023-06-10 08:15:021

SPSS分析多个自变量对多个因变量的影响用什么分析?

关键词:spss自变量因变量,spss自变量和因变量,spss自变量相关性分析,spss多自变量回归分析提问:我是在做问卷,然后是要研究A与B两个问题之间的关系.然后AB分别设定了n个问题,从完全不符合到完全符合设为1到5的数值.昨晚问卷后我就有A1,A2……An这些自变量,然后B1,B2……Bn这些因变量,都有数值,要分析A对B的影响,该怎么办?实在不能直接分析能不能用简单相加的方法,就是把一个问卷的A1到An加起来,B1到Bn加起来,然后再把所有问卷放在一起分析,这样可不可以?如果用因子分析提取主成分的话,就只能把收集来的所有问卷的A1提取一个主成分,所有问卷的A2提取一个主成分以此类推,可是我想要的是一个问卷中的A1到An提取一个主成分,如果不能的话能不能简单相加啊……精彩回答:可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.因子分析的步骤:菜单栏”分析”——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量”框内,将自变量选入”固定因子“框内,点确定.回归分析:分析——回归.选择线性或曲线模型个自变量多个因变量用SPSS如何分析?我是在做问卷,然后是要研究A与B两个问题之间的关系.然后AB分别设定了n个问题,从完全不符合到完全符合设为1到5的数值.昨晚问卷后我就有A1,A2……An这些自变量,然后B1,B2……Bn这些因变量,都有数值,要分析A对B的影响,该怎么办?实在不能直接分析能不能用简单相加的方法,就是把一个问卷的A1到An加起来,B1到Bn加起来,然后再把所有问卷放在一起分析,这样可不可以?如果用因子分析提取主成分的话,就只能把收集来的所有问卷的A1提取一个主成分,所有问卷的A2提取一个主成分以此类推,可是我想要的是一个问卷中的A1到An提取一个主成分,如果不能的话能不能简单相加啊…可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析请教各位同仁一个问题。我在论文实证部分遇到一个问题,如下,自变量与因变量有多个,我想检验自变量与因变量间的回归效应,用SPSS进行操作,自变量与因变量都是定距尺度,难点在于怎样检验多个自变量与多个因变量之间的关系呢,我的想法是将多个自变量分别与每一个因变量进行回归分析,即不将自变量与因变量整体放进去检验,但不知我的这种做法是否有理论根据,另外有没有其它办法(在SPSS里)同时检验多个自变量与多个因变量之间的回归效应。在此请教诸位,感谢。
小白2023-06-10 08:14:561

多个自变量,多个因变量,用因变量做的量表,自变量为一个问答题,用什么分析方法,求教,感激不尽

可以做因子分析.首先,先将A1到An用提取主成分分析的方法,形成一个因子,同理,对B项做同样处理.其次,再在因子的层面上对两个因子单变量方差分析(当然,如果存在多个自变量因子和多个因变量因子,可以用多变量方差分析).最后,如果想考察两者的线性的数量关系,可以再做回归分析.因子分析的步骤:菜单栏"分析"——“降维”——“因子分析”,在变量框里分别选入变量,记住将因子得分保存为新的变量.方差分析的步骤:分析——一般线性模型——单变量,将因变量选入“因变量"框内,将自变量选入”固定因子“框内,点确定.回归分析:分析——回归.选择线性或曲线模型.
mlhxueli 2023-06-10 08:14:562

求助spss高手,在多变量方差分析中Box‘s M 检测sig小于0.05 说明什么?

s M 检测sig小于0.05 说明很复杂。。
可桃可挑2023-06-10 08:14:542

方差分析可以用于两个多分类变量的分析吗

可以。方差分析可以用于两个多分类变量的分析,能分析多个因素对因变量的独立影响,方差分析(AnalysisofVariance,简称ANOVA),又称“变异数分析”,是RAFisher发明的,用于两个及两个以上样本均数差别的显著性检验。
bikbok2023-06-10 08:14:531

多变量方差分析和多元方差分析有什么区别?

其实多元方差分析,指的就是多变量方差分析,“多元”即是“多变量”,同时监测多个指标,与单变量方差分析相对;另外,有些人将多元方差分析理解为多因素方差分析也是不对的!
瑞瑞爱吃桃2023-06-10 08:14:501

如何使用单因素多变量方差分析?

单因素多变量方差分析适用于(两个)个因素、(两个)个以上观测变量的检验。单因素统计:单因素的盆栽试验;温室内、实验室内的实验等,应用该设计,若实验中获得的数据各处理重复数相等,采用重复数相等的单因素资料方差分析法分析,若实验中获得的数据各处理重复数不相等,则采用重复数不等的单因素资料方差分析法分析。扩展资料:在方差分析中,将要考察的对象的某种特征称为试验指标,影响试验指标的条件称为因素,因素可分为两类,一类是人们可以控制的(如原材料、设备、学历、专业等因素);另一类人们无法控制的(如员工素质与机遇等因素)。下面所讨论的因素都是指可控制因素。每个因素又有若干个状态可供选择,因素可供选择的每个状态称为该因素的水平。参考资料来源:百度百科-单因素方差分析
西柚不是西游2023-06-10 08:14:381
 首页 上一页  113 114 115 116 117 118 119 120 121 122 123  下一页  尾页