汉邦问答 / 问答 / 问答详情

求反函数跟真值表,求助大神

2023-07-16 12:31:55
meira

举一例说明之:

若: F = A + BC

那么:F" = (A + BC)" = A"(BC)" = A"(B"+ C") = A"B" + A"C"

式中 F" 为F的非(逆),也就是F的反函数。

总之一个逻辑代数的表达式F或称逻辑函数的反函数F"可用逻辑代数的定理、公式、真值表获得。

反函数与原函数的转化公式是什么?

dy=(df/dx)dx。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y=f-1(x)。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。1、值域:因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。2、函数中,自变量的取值范围叫做这个函数的定义域。例如Y=aX+bX+c中的定义域即是X的取值范围。3、反函数f(x)与他的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称,函数存在反函数的重要条件是,函数的定义域与值域是映射;一个函数与它的反函数在相应区间上单调性一致。
2023-07-15 09:43:001

高中数学反函数有哪些反三角函数的所有公式

1 反三角函数公式: 1、arcsin(-x)=-arcsinx 2、arccos(-x)=π-arccosx 3、arctan(-x)=-arctanx 4、arccot(-x)=π-arccotx 5、arcsinx+arccosx=π/2=arctanx+arccotx 6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x 8、当x∈〔0,π〕,arccos(cosx)=x 9、x∈(—π/2,π/2),arctan(tanx)=x 10、x∈(0,π),arccot(cotx)=x 11、x〉0,arctanx=arctan1/x, 12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy) 1 高中数学反函数: 1、反正弦函数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。 2、反余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π] 我推荐: 三角函数的8个诱导公式 3、反正切函数:正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。 4、反余切函数:余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。 5、反正割函数:正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。 6、反余割函数:余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
2023-07-15 09:43:151

反函数与原函数的关系公式

反函数与原函数的关系公式:dy=(df/dx)dx。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
2023-07-15 09:43:241

复合函数的反函数公式推导

复合函数的反函数公式推导如下:求反函数需要将自变量和因变量置换,然后求出类似于y=φx的函数即可。1、反函数是对一个定函数做逆运算的函数。若确定函数y=f(x)的映射f是函数的定义域到值域上的“一一映射”,那么由f的“逆”映射f-1所确定的函数y=f-1(x)就叫做函数y=f(x)的反函数. 反函数y=f-1(x)的定义域、值域分别对应原函数y=f(x)的值域、定义域.。2、反函数x=f^(-1)(y)的定义域、值域分别是函数y=f(x)的值域、定义域。 如果我们总是以自变量的值作横坐标,以函数值(因变量的值)作为纵坐标,而不论自变量和函数(因变量)用什么字母(或符号)来表示,那么函数 y=f(x) 与其反函数 x=arcf(y) 的图像关于直线 y=x 对称。3、反函数与原函数的复合函数等于x。反函数定理还可以推广到巴拿赫空间之间的可微映射。设X和Y为巴拿赫空间,U是X内的原点的一个开邻域。设F : U → Y连续可微,并假设F在点0的导数(dF)0 : X → Y是从X到Y的有界线性同构。
2023-07-15 09:43:311

反三角函数的公式是什么?

arctantanx=x。解:令y=tanx,那么根据反函数可得x=arctany。所以arctantanx=arctan(tanx)=arctany=x。即arctantanx=x。同理可得aecsinsinx=x,arccoscosx=x。扩展资料:1、反函数性质(1)一个函数与它的反函数在相应区间上单调性一致(2)一段连续的函数的单调性在对应区间内具有一致性(3)反函数是相互的且具有唯一性。2、反三角函数分类(1)反正弦函数(2)反余弦函数(3)反正切函数3、反三角函数公式(1)余角公式arcsinx+arccosx=π/2、arctanx+arccotx=π/2、arccscx+arcsecx=π/2(2)负数关系arcsin(-x)=-arcsinx、arccos(-x)=π-arccosx、arctan(-x)=-arctanx、arccot(-x)=π-arccotx参考资料来源:百度百科-反三角函数
2023-07-15 09:44:051

常见的反导公式

公式:∫x^9dx/(1+x^20)。1、反正弦函数的求导:(arcsinx)"=1/√(1-x^2)。2、反余弦函数的求导:(arccosx)"=-1/√(1-x^2)。3、反正切函数的求导:(arctanx)"=1/(1+x^2)。4、反余切函数的求导:(arccotx)"=-1/(1+x^2)。一般来说设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
2023-07-15 09:44:191

反三角函数公式如何使用?

三角函数常用正切公式:1、tanb=sinb/cosb2、tan(a+b)=(tana+tanb)/(1-tana*tanb)注:若是a-b,则把后面的加减都换一下。3、1/tanb=cotb(这个公式不常用,偶尔用也经常写成正切的倒数的形式)4、tanB=q(常数)则角B=acttan(q),这是反函数的公式。反三角函数的公式:反三角函数的和差公式与对应的三角函数的和差公式没有关系:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];y=arccos(x),定义域[-1,1],值域[0,π];y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);y=arccot(x),定义域(-∞,+∞),值域(0,π);sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。
2023-07-15 09:44:331

反函数,向量,三角函数的计算公式?

三角函数全部公式?
2023-07-15 09:45:192

反函数求导公式原理是什么?

首先要保证函数y=f(x)在包含a点的开区间I上严格单调且连续,如果这函数在a点可导并且导数f"(a)≠0,那么反函数x=g(y)在点b=f(a)可导,且g"(b)=1/f"(a)=1/f"(g(b)).证明:在所给条件下,函数x=g(y)也严格单调且连续.于是,当y≠b,y→b时,有g(y)≠g(b),g(y)→g(b).因而:lim[(g(y)→g(b))/(y-b)]=lim1/[(y-b)/(g(y)→g(b))]=lim1/[(f(x)-f(a))/(x-a)]=1/f"(a)=1/f"(g(b)).
2023-07-15 09:45:282

反三角函数的积分公式是什么?

反三角函数的不定积分如图拓展资料反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);3、为了使研究方便,常要求所选择的区间包含0到π/2的角;4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。参考资料:百度百科-反三角函数
2023-07-15 09:45:461

怎么推导反函数公式?

令f^-1=g则f(f^-1(x))=f(g(x))举个例子:函数y=f(x)=2x,即x=f^-1(y)=y/2=g(y)所以f(f^-1(x))=f(g(x))=f(x/2)=2(x/2)=x
2023-07-15 09:46:011

怎样excel求自然对数的反函数?

1、首先让我们打开一个样表作为例子。2、插入exp函数,函数的格式是=Exp( number ),number参数是底数e的指数。3、插入ln函数,函数的格式是=ln(number),number参数是想要计算其自然对数的正实数。4、我们可以看到结果上exp函数和ln函数互为自然对数中的指数和底,两个函数其实就是颠倒函数。5、然后记住这两个函数求的是自然对数,如果需要求幂,使用的是^求幂公式。
2023-07-15 09:46:101

三角函数与反三角函数的关系公式

三角函数与反三角函数的关系公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。
2023-07-15 09:46:481

有没有反三角函数的求和公式。

应该有+
2023-07-15 09:47:393

双曲函数的反函数怎么求导?

设x=tanytany"=sex^yarctanx"=1/(tany)"=1/sec^ysec^y=1+tan^y=1+x^2所以(arctanx)"=1/(1+x^2)对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。扩展资料:在推导的过程中有这几个常见的公式需要用到:⒈(链式法则)y=f[g(x)],y"=f"[g(x)]·g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』2. y=u*v,y"=u"v+uv"(一般的leibniz公式)3.y=u/v,y"=(u"v-uv")/v^2,事实上4.可由3.直接推得4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y"=1/x"正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。于是,把 y=arctan x (x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把 y=Arctan x=kπ+arctan x (x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线 y=x 的对称变换而得到。反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。
2023-07-15 09:48:021

逻辑代数中 反函数怎么求

举一例说明之:若: F = A + BC那么:F" = (A + BC)" = A"(BC)" = A"(B"+ C") = A"B" + A"C"式中 F" 为F的非(逆),也就是F的反函数。总之一个逻辑代数的表达式F或称逻辑函数的反函数F"可用逻辑代数的定理、公式、真值表获得。
2023-07-15 09:48:441

反函数求导公式

反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。 反函数性质 (1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (2)一个函数与它的反函数在相应区间上单调性一致; (3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (4)一段连续的函数的单调性在对应区间内具有一致性; (5)严增(减)的函数一定有严格增(减)的反函数; (6)反函数是相互的且具有唯一性; (7)定义域、值域相反对应法则互逆(三反) 原函数 已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
2023-07-15 09:49:391

反函数公式?

反函数公式是x=f ^(-1)(y)。反函数求法:首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。例如y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。反函数性质(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(2)一个函数与它的反函数在相应区间上单调性一致。(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
2023-07-15 09:49:591

函数y= f^(-1)反函数的公式是什么?

反函数公式是x=f ^(-1)(y)。反函数求法:首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。例如y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。反函数性质(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(2)一个函数与它的反函数在相应区间上单调性一致。(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
2023-07-15 09:50:111

反函数与原函数的关系公式

原函数的导数等于反函数导数的倒数。设y=f(x),其反函数为x=g(y),可以得到微分关系式:dy=(df/dx)dx,dx=(dg/dy)dy。那么,由导数和微分的关系我们得到,原函数的导数是df/dx=dy/dx,反函数的导数是dg/dy=dx/dy。所以,可得df/dx=1/(dg/dx)。原函数:是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。反函数:一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。
2023-07-15 09:50:271

反函数的定义及公式

理解反函数的概念,掌握求反函数的方法步骤。设有函数,若变量y在函数的值域内任取一值y时,变量x在函数的定义域内必有一值x与之对应,所以,那么变量x是变量y的函数.这个函数用来表示,称为函数的反函数.  (1)由原函数y=f(x)求出它的值域;  (2)由原函数y=f(x)反解出x=f-1(y);  (3)交换x,y改写成y=f-1(x);  (4)用f(x)的值域确定f-1(x)的定义域。我们知道,函数y=f(x)若存在反函数,则y=f(x)与它的反函数y=f-1(x)有如下性质:  性质 若y=f-1(x)是函数y=f(x)的反函数,则有f(a)=bf-1(b)=a。  这一性质的几何解释是y=f(x)与其反函数y=f-1(x)的图象关于直线y=x对称。
2023-07-15 09:52:051

一元一次函数的反函数公式

反函数即输入和输出交换。输入x输出y——>输入y输出x将y和x互换。例y=2x+1,反函数x=2y+1,y=(x-1)/2。
2023-07-15 09:52:131

反函数的定义及公式

理解反函数的概念,掌握求反函数的方法步骤。 设有函数, 若变量y在函数的值域内任取一值y时, 变量x在函数的定义域内必有一值x与之对应,所以,那么变量x是变量y的函数.这个函数用来表示,称为函数的反函数.  (1) 由原函数y=f(x)求出它的值域;   (2) 由原函数y=f(x)反解出x=f-1(y);  (3) 交换x,y改写成y=f-1(x);  (4) 用f(x)的值域确定f-1(x)的定义域。 我们知道,函数y=f(x)若存在反函数,则y=f(x)与它的反函数y=f-1(x)有如下性质:   性质  若y=f-1(x)是函数y=f(x)的反函数,则有f(a)=bf-1(b)=a。   这一性质的几何解释是y=f(x)与其反函数y=f-1(x)的图象关于直线y=x对称。
2023-07-15 09:52:211

反三角函数的基本公式有哪些呢?

反三角函数基本公式如下:一、余角关系公式arcsin(x)+arccos(x)=π/2arctan(x)+arccot(x)=π/2arcsec(x)+arccsc(x)=π/2二、负数关系公式arcsin(-X)=-arcsin(x)arccos(-x)=π-arccos(x)arctan(-x)=-arctan(x)arccot(-x)=π-arccot(x)arcsec(-x)=π-arcsec(x)arcsec(-x)=-arcsec(x)三、倒数关系公式arcsin(1/x)=arccsc(x)arccos(1/x)=arcsec(x)arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)arcsec(1/x)=arccos(x)arccsc(1/x)=arcsin(x)反三角函数的分类:反正弦函数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。反余弦函数:余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。反正切函数:正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。反余切函数:余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx。表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。反正割函数:正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。反余割函数:余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示个余割值为x的角,该角的范围在[π/2,0)U(0,π/2]区间内。
2023-07-15 09:53:021

反函数套原函数等于什么

反函数与原函数的关系公式:dy=(df/dx)dx。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
2023-07-15 09:53:291

反三角函数的和差公式是什么?

1、反正弦函数的求导:(arcsinx)"=1/√(1-x^2)2、反余弦函数的求导:(arccosx)"=-1/√(1-x^2)3、反正切函数的求导:(arctanx)"=1/(1+x^2)4、反余切函数的求导:(arccotx)"=-1/(1+x^2)为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。1、反正弦函数正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。2、反余弦函数余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。3、反正切函数正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。5、反余切函数余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。6、反正割函数正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。7、反余割函数余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。扩展资料:反三角函数的公式:反三角函数的和差公式与对应的三角函数的和差公式没有关系:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];y=arccos(x),定义域[-1,1],值域[0,π];y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);y=arccot(x),定义域(-∞,+∞),值域(0,π);sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。其他几个用类似方法可得。cos(arccosx)=x,arccos(-x)=π-arccosx。tan(arctanx)=x,arctan(-x)=-arctanx。反三角函数其他公式:cos(arcsinx)=√(1-x^2)。arcsin(-x)=-arcsinx。arccos(-x)=π-arccosx。arctan(-x)=-arctanx。arccot(-x)=π-arccotx。arcsinx+arccosx=π/2=arctanx+arccotx。sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。当x∈[-π/2,π/2]有arcsin(sinx)=x。x∈[0,π],arccos(cosx)=x。x∈(-π/2,π/2),arctan(tanx)=x。x∈(0,π),arccot(cotx)=x。x>0,arctanx=π/2-arctan1/x,arccotx类似。若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。三角函数的诱导公式(四公式) 。公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。公式四: sin(π-α) = sinα cos(π-α) = -cosα 。参考资料来源:百度百科-反三角函数
2023-07-15 09:53:481

ln反函数公式

LN函数是EXP函数的反函数,用于返回一个数的自然对数。如果A1=100、A2=67,则公式“=LN(A1+A2)”返回5.117993812;=LN(EXP(3))返回3;=EXP(LN(4))返回4。
2023-07-15 09:54:361

反三角函数的不定积分公式是什么?

具体公式如下图片:
2023-07-15 09:55:102

反三角函数求导公式大全 反三角函数定义域

大家都听过三角函数,那么什么是反三角函数呢?反三角函数是一种基本初等函数。下面,就和我一起来看下反三角函数求导公式有哪些。 反三角函数求导公式大全 反三角函数求导公式:两角和公式 sin(A B) = sinAcosB cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB sinAsinB tan(A B) =tanA tanB/1-tanAtanB? tan(A-B) =tanA-tanB/1 tanAtanB? cot(A B) =cotAcotB-1/cotBcotA?cot(A-B) = cotAcotB 1/cotB-cotA?? 反三角函数求导公式:倍角公式 tan2A = 2tanA/1-tan2A ? Sin2A=2SinA·CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 反三角函数求导公式:三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(π/3 a)·tan(π/3-a) 反三角函数求导公式:半角公式 反三角函数定义域 y=arcsin(x),定义域[-1,1] y=arccos(x),定义域[-1,1] y=arctan(x),定义域(-∞, ∞) y=arccot(x),定义域(-∞, ∞) sin(arcsin x)=x,定义域[-1,1] 什么是反三角函数 反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件: 1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性; 2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的); 3、为了使研究方便,常要求所选择的区间包含0到π/2的角; 4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
2023-07-15 09:55:361

关于反函数的?

arctan(tanx)等于x基础公式:tan(a) = b ;arctan(b) = a解题步骤:令 tanx =M;则 arctanM=x由此可得: arctan(tanx)=x由于y=arcsinx值域是(-π╱2,π╱2),故arctan(tanx)=x,只在x属于(-π╱2,π╱2)情况下成立。
2023-07-15 09:55:492

反函数怎么打出来?

一般地,如果确定函数y=f(x)的对应f是从函数的定义域到值域上的一一对应,那么由f的“逆”对应f-1所确定的函数就叫做函数的反函数,反函数x=f-1(x)的定义域、值域分别为函数y=f(x)的值域、定义域。
2023-07-15 09:55:562

反函数的导数公式

反函数的导数公式:dg/dy=dx/dy,反函数的求导法则是反函数的导数是原函数导数的倒数。反函数是相互的且具有唯一性;一个函数与它的反函数在相应区间上单调性一致。大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
2023-07-15 09:56:051

反三角函数基本公式

反三角函数是一种基本的初等函数,常见的公式主要有:arcsin(-x)=-arcsinx、 arccos(-x)=π-arCCOSX、arctan(-x)=-arctanx、 arccot(-x)=π-arccotx等。常见的反三角函数公式:1、arcsin(-x)=-arcsinx2、arccos(-x)=π-arccosx3、arctan(-x)=-arctanx4、arccot(-x)=π-arccotx5、arcsinx arccosx=π/2= arctanx arccotx6、sin(arcsinx)=x=cos(arccosx)= tan(arctanx)=cot(arccotx)7、当x∈[- -π/2,π/2] 时,有arcsin(sinx)=x8、当x∈[0,π] ,arccos(cosx)=x9、x∈(- -π/2,π/2),arctan(tanx)=x10、x∈(0,π),arccot(cotx)=x11、x> 0,arctanx=arctan1/x12、若(arctanx arctany)∈(- -π/2,π/2),则arctanx arctany=arctan(x y/1-xy)反三角函数介绍:反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性。2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的)。3、为了使研究方便,常要求所选择的区间包含0到π/2的角。4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
2023-07-15 09:56:261

对数函数的反函数怎么求

求对数函数的反函数的公式:log(a)(MN)=log(a)(M)+log(a)(N)。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。 一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2023-07-15 09:56:461

tany的反函数公式?

设x=tanytany"=sex^yarctanx"=1/(tany)"=1/sec^ysec^y=1+tan^y=1+x^2所以(arctanx)"=1/(1+x^2)对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y"=u"土v" 5.y=uv,y=u"v+uv" 均能较快捷地求得结果。扩展资料:在推导的过程中有这几个常见的公式需要用到:⒈(链式法则)y=f[g(x)],y"=f"[g(x)]·g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』2. y=u*v,y"=u"v+uv"(一般的leibniz公式)3.y=u/v,y"=(u"v-uv")/v^2,事实上4.可由3.直接推得4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y"=1/x"正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。于是,把 y=arctan x (x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把 y=Arctan x=kπ+arctan x (x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线 y=x 的对称变换而得到。反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。
2023-07-15 09:57:091

如何求反三角函数的反函数?有公式吗?如:求函数y = pai+arctanx/2的反函数

有,教你土方法 ,把角度和数值直接对换
2023-07-15 09:57:203

反函数的求导法则

反函数的求导法则是:反函数的导数是原函数导数的倒数。如果函数x=f(y)在区间Iy内单调、可导且f′(y)≠0,那么它的反函数y=fu22121(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,且[fu22121(x)]′=1f′(y)或dydx=1dxdy这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。例: 设x=siny,y∈[u2212π2,π2]为直接导数,则y=arcsinx是它的反函数,求反函数的导数。解:函数x=siny在区间内单调可导,f′(y)=cosy≠0因此,由公式得(arcsinx)′=1(siny)′=1cosy=11u2212sin2yu2212u2212u2212u2212u2212u2212u2212u2212√=11u2212x2u2212u2212u2212u2212u2212√一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
2023-07-15 09:58:171

反三角函数求导公式及证明方法

反三角函数是一类初等函数,指三角函数的反函数。下面我整理了反三角函数求导公式及证明方法,供大家参考!1 反三角函数求导公式是什么 为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
2023-07-15 09:58:311

求f(x)反函数的三阶导数公式

如下图所示,供参考。
2023-07-15 09:58:391

甲.乙两人同时从A地去B地,甲骑摩托车,乙骑自行车?

假设乙的速度为x千米/小时 那么甲的速度为3x+5 千米/小时 乙总共行驶的时间为3小时,那么乙行驶的路程为3x 千米 甲在B地停留了一小时,那么甲行驶的时间为2小时,行驶的路程为:2*(3x+5)=6x+10 两人行驶的总距离为AB两地的两倍,可以列出方程: 3x+6x+10=72.5*2 解得x=15 所以3x+5=50 答:甲的速度为50千米/小时 乙的速度为15千米/小时,9,设乙速度为X千米/小时,则甲为(3X+5)千米/小时 乙一直在走,走的路程=3×X 甲停了一个小时,只用2小时,走了AB距离又折返,和乙相遇时,两人共走2倍AB距离,所以 (3X+5)×2+3X=72.5×2 解得乙速度X=15千米/小时 甲速度=50千米/小时,2,1.She is talking about ___ some housework for the poor woman. A.do B.to do C.doing D.does 2.中文翻译(短文提问,问题木看懂) Does Mr Smith understand his wife"s words?,0,甲.乙两人同时从A地去B地,甲骑摩托车,乙骑自行车 甲.乙两人同时从A地去B地,甲骑摩托车,乙骑自行车,甲每小时行的路程比乙行的路程的3倍还多5千米,甲到达B地停留一小时(乙尚未到达B地)然后从B地返回A地,在途中遇见乙,这时乙已在途中遇见乙,这时乙已行了三小时。若A.B相距72.5千米求甲乙速度.
2023-07-15 09:59:261

甲与乙一起骑自行车从a地去b地,自行车的速度

设甲的速度为x千米/小时,则乙的速度为(x-2)千米/小时, 根据提议得:2x+2(x-2)+36=4x+4(x-2)-36 经过求解得:x=19 所以甲的速度为19千米/小时,乙的速度为17千米/小时. 设甲乙两地的距离为s 所以s=2x+2(x-2)+36 通过计算得:s=108千米
2023-07-15 09:59:331

什么是非谓语动词?

非谓语动词是什么意思? 5分 在句子中充当除谓语以外的各种句子成分的动词形式,叫做非谓语动词。 非谓语动词也是动词的一种,他们有着动词的其他特点,可以充当主语、宾语、状语等。非谓语动词与谓语动词是相对的概念。 比如:1.It"s nice to meet you. 这里的to meet(to do)动词不定式就是一个非谓语动词 2.I regret not following his advice.这里的following,动名词形式还有比如现在分词。 简单点说,就是除了主要的那个动词以外的其他动词形式,从字面理解是不是谓语的动词(是动词,但是不是谓语,只是动词的一种形式) 英语中非谓语是什么意思?有什么形式? 简单的英语句式是主语-谓语-宾语。常见形式是非谓语动词,是对谓语的补充说明。非谓语动词主要包括不定式、动名词以及分词三种形式。 为了区分这三种非谓语动词的用法,我们从它们在句子或者特殊句型中充当的不 同成分以及用法等角度来具体比较它们的用法。 不定式、动名词及分词做表语的区别: 不定式做表语 1)不定式做表语一般表示具体动作,尤其是用来表示将来的动作To do two things at a time is to do neither.(一次做两件事情就等于没有。) My job is to drive them to the pany every day.(我的工作是每天把他们载到公司。) 主语和表语都是不定式时,其一表示条件,其二表示结果 To see (表示条件)is to believe. (表示结果)(百闻不如一见。) To be kind to the enemy(表示条件) is to be cruel to the people.(表示结果)(对敌人仁慈就是对自己残忍。) 当主语是以aim, duty, hope, idea,problem, purpose, thing, wish等为中心的名词或以what引导的名词性从句,不定式做表语对主语起补 充说明的作用 My chief purpose is to point out the difficulties of the matter.(我的主要任务是指出事件中的难点所在。) His wish is to buy a luxurious car in the near future.(他的希望是在不久的将来买一辆豪华轿车。) 2. 动名词做表语 1)动名词做表语表示抽象的一般性的动作 His hobby is collecting stamps.(他的爱好是收集邮票。) Our work is serving the people.(我们的工作是为人民服务。) 2)动名词做表语时与进行时态中的现在分词形式相同,但意义不同,进行时中的分词表示动作是由主语完成的,但动名词做表语是说明主语的性质或 者情况。 He is writing his homework now.(他正在做家庭作业。) He is interesting.(他很风趣。) 3. 分词做表语 1)分词做表语有两种情况,一种是现在分词做表语,一种是过去分词做表语。一般来说,表示心理状态的动词如excite, interest等都是及物动词 ,汉语意思不是“激动”,“高兴”,而是“使激动”、“使高兴”,因而现在分词应该是“令人激动的”、“令人高兴的”,过去分词则是“感到 激动的”和“感到高兴的”。所以,凡表示“令人……的”都是-ing形式,凡是表示“感到……”都用-ed形式。换句话说,若人对……感兴趣,就是 somebody is interested in……,若人/物本身有兴趣时,就是说 *** ./sth. is interesting. 2)常见的词语举例 interesting使人感到高兴interested感到高兴的 exciting令人激动的excited感到激动的 delighting令人高兴的delighted感到高兴的 pleasing令人愉快的pleased感到愉快的 puzzling令人费解的puzzled感到费解的 satisfying令人满意的satisfied感到满意的 不定式和动名词做主语的区别: (1) 动名(2) 词做主语表示抽象动作,而(3...... 非谓语动词指的是什么?? 非谓语动词包括:不定式,现在分词,过去分词,动名词。
2023-07-15 09:59:341

甲骑自行车从a地到b地,出发10分钟后,乙从a地出发追赶甲,结果离出发点15KM赶上,(1)求乙的速度(2)若

(1)10min=600SV甲(600+t)=15000t=2400sV乙t=15000V乙=6.25m/s(2)2400-600=18001800V乙=(1800+600)V甲V乙=6.67m/s
2023-07-15 09:59:391

非谓语动词怎么区分?有哪几种?

在句子中不是谓语的动词叫做非谓语动词非谓语动词主要包括不定式&动名词&分词(现在分词和过去分词),.即动词的非谓语形式除了不能独立作谓语外,可以承担句子的任何成分  它有三种形式:不定式,分词(现在分词、过去分词),动名词  1.非谓语动词与谓语动词的相同点有:   (1)如果是及物动词都可与宾语连用,例如:   They built a garden.   They suggested building a garden.   (2)都可以被状语修饰:   The suit fits him very well.   The suit used to fit him very well.   (3)都有主动与被动, “体”式(一般式;进行式;完成式)的变化。例如:   He was punished by his parents.(谓语动词被动语态)   He avoided being punished by his parents.(动名词的被动式)   We have written the composition.(谓语动词的完成时)   Having written the composition, we handed it in.(现在分词的完成式)   (4)都可以有逻辑主语   They started the work at once.(谓语动词的逻辑主语)   The boss ordered them to start the work.(动词不定式的逻辑主语)   We are League members.(谓语动词的主语)   We being League member, the work was well done.   (现在分词的逻辑主语)   2、非谓语动词与谓语动词的不同点有:   (1)非谓语动词可以有名词作用(如动词不定式和动名词),在句中做主语、宾语、表语。   (2)非谓语动词可以有形容词作用(如动词不定式和分词),在句中做定语、表语或宾语补足语。   (3)非谓语动词可以有副词作用(如动词不定式和分词),在句中作状语。   (4)谓语动词在句中作谓语,受主语的人称和数的限制;非谓语动词在句中不能单独作谓语,它不受主语的人称和数的限制。
2023-07-15 09:59:424

非谓语怎么用?

一、非谓语动词的概念 非谓语动词是指动词不定式、动名词和分词. 它们是动词的非限定形式. 在句子中它们起着一些特殊的作用. 以下简要介绍它们各自的构成、作用及应用. 二、动词不定式 不定式是指带to的动词原形(使用中有时不带to), 在句中起形容词或副词的作用, 可以作状语和定语. (一)作定语 1. 动词不定式与其修的词之间往往有动宾关系, 如果该不定式是不及物动词, 其后有必要的介词. He"s pleasant fellow to work with. There"s nothing to worry about. 2. 有些名词后常跟不定式作定语.例如: time, reason, chance, right, ability, willingness, need, anxiety, wish, plan等. Women should have the right to receive education. There is no time to hesitate. 3. the first, the second, the last, the best 等之后用不定式做定语. The monitor will be the first to come. He was the last man to blame. (二)作状语 1. 作目的状语 不定式作状语时, 其动作发生在谓语动词之后, 一般置于句子末尾. 但是, 如果表示强调, 亦可置于句首. 其否定形式为: 在不定式符号前加not. He went to Shanghai to visit his parents. To save the earth, we must prevent the earth from being polluted. I shut the door quietly, so as not to wake the baby. 2. 作结果状语 We came home after our holiday to find our garden neat and tidy. She left home, never to return again. 3. 作原因状语 不定式做原因状语时, 一般放在句子末尾. She burst into laughter to see his funny action. The boy was shocked to see the frightening scene. 4. 作独立成分 有些固定词组带to不定式, 表明说话人的立场或态度, 在句中作独立成分. 这些词有: to be honest, to begin with, to cut a long story short, to get (back) to the point, not to make much of it, to put it another way, to tell the truth等. To tell you the truth, I have never been to Beijing. To be honest, I have never heard of Winston Churchill. 三、动名词 动名词也是动词的一种非限定形式, 由动词原形加词尾-ing构成. 与现在分词构成法相同.它同时具有动词及名词特征. 以下主要介绍其做定语及状语的情况. 1. 作定语 None is allowed to smoke in the waiting room. The speeding car came to a stop all of a sudden. 2. 作状语 介词+动名词可以作状语用, 表示时间、原因、目的、让步、方式等. After finishing the job, he went home. He was blamed for having done something wrong. They went to Manchester with the object of winning the World Championship. 四、分词 分词是动词的三种非限定形式之一, 包括现在分词和过去分词两种. 分词可以在句中作状语及定语. (一)现在分词与过去分词的区别 现舂词与过去分词的区别主要表现在语态和时间概念上. 在语态上,现在分词(除被动式外)表示主动意思, 过去分词表示被动意思. 在时间上, 现在分词表示动作正在进行, 过去分词则表示动作已完成. developing countries(发展中国家) developed countries(发达国家) the touching tale(动人的传说) the touched audince(受感动的观众) (二)现在分词的用法 现在分词可在句中作定语和状语. 1. 作定语 现在分词作定语时多置于它所修饰的名词前: This is a pressing question. 这是一个紧迫的问题. He asked an embarrassing question. 他提了一个令人难堪的问题. 现在分词亦可置于它所修饰的名词之后: There were no soldiers drilling. 现在分词短语一般皆置于其修饰的名词之后: A little child learning to walk often falls. The men working here are all from the rural areas. 2. 现在分词用作状语 现在分词及其短语从表意的角度看, 也可用作状语, 表示时间、原因、 结果、条件、让步、方式或伴随情况等. 其动作可能发生在谓语动词之前或之后, 也可能与谓语动的动作同时发生. (1)表示时间 Climbing to the top of the tower, we saw a magnificent view. He went out shutting the door behind him. 强调与谓语动词的动作同时发生时, 现在分词之前可用连词when或while: When leaving the airport, they waved again and agin to us. While flying over the Channel, the pilot saw what he thought to be a meteorite. (2)表示原因 Being sick, I stayed at home. She caught cold sitting on the grass. (3)表示条件 Adopting this method, we will raise the average yield by 40 percent. Turning to the right, you will find a path leading to his cottage. (4)表示让步 Admitting what she has said, I still think that she hasn"t tried her best. (5)表示结果 It rained heavily, causing severe flooding in that country. It rained for two weeks on end, completely ruining our holday. (6)表示方式或伴随情况 He ran up to her breathing heavily. Please fill in the form, giving your name, address, etc.
2023-07-15 10:00:021

爸爸每天早上五点准时骑自行车从a地到b地锻炼身体如果他以每小时15千米的速度

甲乙速度比为15:10=3:2 行全程,甲乙时间比为2:3 甲行全程需要:10÷(3-2)×2=20分钟 AB相距:20/60×15=5千米 如果没学比例,如下:甲每行1千米需要1/15小时 乙每行1千米需要1/10小时 每行1千米,甲比乙少用:1/10-1/15=1/30小时=2分钟 行全程,甲一共比乙少用10分钟 全程为:10÷2=5千米
2023-07-15 09:59:201

甲乙两人都从a地赶往b地,甲步行速度为5km/h,乙骑车速度为15km/h,若甲先出发30

设甲出发x小时后他们相距2km, 由题意可得:5(x+1)-15x=2或15x-5(x+1)=2, 解得x=0.3或x=0.7, 答:甲出发0.3或0.7小时后他们相距2km.
2023-07-15 09:59:131

AB两地相距60千米 甲乙两人分别骑自行车,摩托车 从A地前往B地已知甲先出发1小时结果乙比甲早到

设甲的速度为x,则乙的速度为3x(60-1*x)/x-1=60/3x3*(60-x)-3x=606x=120x=203x=60答:甲的速度为20千米每小时,乙的速度为60千米每小时
2023-07-15 09:59:053

在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原

甲、乙两车合计车速=(36+36)/2=36千米/时A、B两地间的路程=36*(2+1)=108千米
2023-07-15 09:58:581

非谓语动词的三种形式是什么?

  1)不定式  时态语态    主动       被动  一般式     to do      to be done  完成式    to have done   to have been done  2)动名词  时态语态    主动       被动  一般式     doing      being done  完成式     having done   having been done  3)分词  时态语态    主动       被动  一般式     doing      being done  完成式     having done   having been done  否定形式: not +不定式,not + 动名词,not + 现在分词
2023-07-15 09:58:541