汉邦问答 / 问答 / 问答详情

有一个二次函数的图象``3个学生分别说了它的一些特点..

2023-07-12 10:19:38
余辉

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)] 对于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)</CA>

交点式:y=a(x-xu2081)(x-x u2082) [仅限于与x轴有交点A(xu2081 ,0)和 B(xu2082,0)的抛物线]

其中x1,2= -b±√b^2-4ac

注:在3种形式的互相转化中,有如下关系:

______

h=-b/2a k=(4ac-b^2)/4a xu2081,xu2082=(-b±√b^2-4ac)/2a

二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=ax^2

y=a(x-h)^2

y=a(x-h)^2+k

y=ax^2+bx+c

顶点坐标

(0,0)

(h,0)

(h,k)

(-b/2a,sqrt[4ac-b^2]/4a)

对 称 轴

x=0

x=h

x=h

x=-b/2a

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(xu2081,0)和B(xu2082,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|xu2082-xu2081| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点)

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-xu2081)(x-xu2082)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

中考典例

1.(北京西城区)抛物线y=x2-2x+1的对称轴是( )

(A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2

考点:二次函数y=ax2+bx+c的对称轴.

评析:因为抛物线y=ax2+bx+c的对称轴方程是:y=-,将已知抛物线中的a=1,b=-2代入,求得x=1,故选项A正确.

另一种方法:可将抛物线配方为y=a(x-h)2+k的形式,对称轴为x=h,已知抛物线可配方为y=(x-1)2,所以对称轴x=1,应选A.

2.( 北京东城区)有一个二次函数的图象,三位学生分别说出了它的一些特点:

甲:对称轴是直线x=4;

乙:与x轴两个交点的横坐标都是整数;

丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.

请你写出满足上述全部特点的一个二次函数解析式: .

考点:二次函数y=ax2+bx+c的求法

评析:设所求解析式为y=a(x-x1)(x-x2),且设x1<x2,则其图象与x轴两交点分别是A(x1,0),B(x2,0),与y轴交点坐标是(0,ax1x2).

∵抛物线对称轴是直线x=4,

∴x2-4=4 - x1即:x1+ x2=8 ①

∵S△ABC=3,∴(x2- x1)·|a x1 x2|= 3,

即:x2- x1= ②

①②两式相加减,可得:x2=4+,x1=4-

∵x1,x2是整数,ax1x2也是整数,∴ax1x2是3的约数,共可取值为:±1,±3。

当ax1x2=±1时,x2=7,x1=1,a=±

当ax1x2=±3时,x2=5,x1=3,a=±

因此,所求解析式为:y=±(x-7)(x-1)或y=±(x-5)(x-3)

即:y=x2-x+1 或y=-x2+x-1 或y=x2-x+3 或y=-x2+x-3

说明:本题中,只要填出一个解析式即可,也可用猜测验证法。例如:猜测与x轴交点为A(5,0),B(3,0)。再由题设条件求出a,看C是否整数。若是,则猜测得以验证,填上即可。

5.( 河北省)如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )

A、6 B、4 C、3 D、1

考点:二次函数y=ax2+bx+c的图象及性质的运用。

评析:由函数图象可知C点坐标为(0,3),再由x2-4x+3=0可得x1=1,x2=3所以A、B两点之间的距离为2。那么△ABC的面积为3,故应选C。

图13-28

6.( 安徽省)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43(0<x<30)。y值越大,表示接受能力越强。

(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?

(2)第10分时,学生的接受能力是什么?

(3)第几分时,学生的接受能力最强?

考点:二次函数y=ax2+bx+c的性质。

评析:将抛物线y=-0.1x2+2.6x+43变为顶点式为:y=-0.1(x-13)2+59.9,根据抛物线的性质可知开口向下,当x≤13时,y随x的增大而增大,当x>13时,y随x的增大而减小。而该函数自变量的范围为:0≤x≤30,所以两个范围应为0≤x≤13;13≤x≤30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下:

解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9

所以,当0≤x≤13时,学生的接受能力逐步增强。

当13<x≤30时,学生的接受能力逐步下降。

(2)当x=10时,y=-0.1(10-13)2+59.9=59。

第10分时,学生的接受能力为59。

(3)x=13时,y取得最大值,

所以,在第13分时,学生的接受能力最强。

9.( 河北省)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为

:(55–40)×450=6750(元).

(2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:

y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),

∴y与x的函数解析式为:y =–10x2+1400x–40000.

(3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,

即:x2–140x+4800=0,

解得:x1=60,x2=80.

当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:

40×400=16000(元);

当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:

40×200=8000(元);

由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元

九万里风9

设函数为f(x)=a(x-b)^2+c

与x轴有两个交点且对称轴为直线x=4

得f(x)=a(x-4)^2+c得

0=a(x-4)^2+c有解且为x1,x2

(x1+x2)/2=4得x1+x2=8

且x1∈Z,x2∈Z

(x1-x2)=(8-2x2)∈{x|x=2k,k∈Z}

与y轴有交点

f(0)=c

c∈Z

S=|c|*(|x1-x2|)/2=3

|c|(|x1-x2|)=6 得(x1-x2)∈{-6,-2,2,6}得c∈{-3,-1,1,3}

分别代入x1+x2=8,0=a(x-4)^2+c(可化为a(x-x1)(x-x2)=0方便计算)

c1=-3,a1=-15

c2=-1,a2=-1/7

c3=1,a3=1/7

c4=3,a4=15

f(x)=-15(x-4)-3

f(x)=-1/7(x-4)-1

f(x)=1/7(x-4)+1

f(x)=15(x-4)+3

小白

假设图像与x轴交点为(x1,0),(x2,0) 且x2>x1

与y轴交于点(0,y1)

则(x1+x2)/2=4

设二次方程为

y=ax^2+bx+c

则:-b/a=x1+x2=8

c/a=x1*x2

因为Y1的绝对值*(x2-x1)=3*2

y1^2*[(x1+x2)^2-4x1x2]=36

c^2*(64-4c/a)=36

c^2*(16-c/a)=9

因为x1 x2 y1 都是整数

因此c/a 和c也都是整数

因此 9/c^2也要是整数 符合条件只有

c=正负1和正负3

当c=1时 a=1/7 b=-8/7

当c=-1 a=-1/7 b=8/7

c=3 a=1/5 b=-8/5

c=-3 a=-1/5 b=8/5

因此解析式为:

y=1/7x^2-8/7x+1

y=-1/7x^2+8/7x-1

y=1/5x^2-8/5x+3

y=-1/5x^2+8/5x-3

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销

解:(1)销量500-65-501×10=350(千克);利润(65-40)×350=8750(元),答:月销售量为350千克,月销售利润为8750元;(2)y=[500-(x-50)10](x-40),=(1000-10x)(x-40),=-10x2+1400x-40000;(3)不能.由(2)知,y=-10(x-70)2+9000,当销售价单价x=70时,月销售量利润最大为9000元.∴月销售利润不能达到10000元
2023-07-12 09:57:182

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销

解答:解:(1)500-10(55-50)=450,450×(55-40)=6750,答:当销售单价定为每千克55元时,月销售量为450kg,月销售利润为6750元.(2)由题意得 y=(x-40)[500-10(x-50)],即y=-10x2+1400x-40000,(3)由(2)得y=-10(x2-140x)-40000,=-10(x-70)2+9000; ∴当月销售单价为每千克70元时,月销售利润最大,最大利润为9000元.(4)当y=8000时,由(3)得 8000=-10(x2-140x)-40000,整理得(x-70)2=100,解之得x1=60,x2=80,又由销售成本不超过10000元得40[500-10(x-50)]≤10000,解之得x≥75,故x1=60应舍去,则x=80;答:销售单价应定为每千克80元.
2023-07-12 09:57:271

某商店经销一种销售成本为每千克40元的水产品

假设对于50元的价格涨了x元则单价为(50+x),销售量=(500-10x)kg首先满足月成本<=10000有40*(500-10x)<=10000500-10x<=250x>=25销售利润=8000(50+x-40)(500-10x)=8000(x+10)(50-x)=800-x^2+40x+500=800x^2-40x+300=0(x-10)(x-30)=0x=30(舍去10<25)所以销售定价为(50+30)=80元/KG
2023-07-12 09:57:373

某商店经营一种销售成本为每千克40元的水产品。据市场分析。若按每千克50元销售一个月能售出500千

设涨x元根据利润:(50+x-40)*(500-10x)≥8000化简整理:x平方-40x+300≤0解得:10≤x≤30根据成本:40*(500-10x)≤10000解得:x≥25综合起来25≤x≤30再加上原定价50元所以定价为75~80元。
2023-07-12 09:57:441

商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销

(1)设每千克需涨价为x元,则商店月销售量减少10x千克,每千克水产品盈利50+x-40=(10-x)元,故答案为:10x,10-x;(2)设每千克需涨价x元,则销售价为(50+x)元.月销售利润为y元.由利润=(售价-进价)×销售量,可得:y=(50+x-40)×(500-10x),令y=8000,解得x 1 =10,x 2 =30.当x=10时,销售价为60元,月销售量为400千克,则成本价为40×400=16000(元),超过了10000元,不合题意,舍去;当x=30时,销售价为80元,月销售量为200千克,则成本价为40×200=8000(元),低于10000元,符合题意.故销售价为80元.答:销售单价应在50元的基础上提高30元.
2023-07-12 09:57:501

某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克

说明企业每月最好备足2万元的流动资金备底,相对应的是5000元的盈利,刨去其他成本和开支,能挣个三四千元,可以维持生计。
2023-07-12 09:57:571

某商店经销一种销售成本为每千克40元的水产品

假设对于50元的价格涨了x元则单价为(50+x),销售量=(500-10x)kg首先满足月成本<=10000有40*(500-10x)<=10000500-10x<=250x>=25销售利润=8000(50+x-40)(500-10x)=8000(x+10)(50-x)=800-x^2+40x+500=800x^2-40x+300=0(x-10)(x-30)=0x=30(舍去10<25)所以销售定价为(50+30)=80元/KG
2023-07-12 09:58:061

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;

(1)可卖出千克数为500-10(x-50)=1000-10x,y与x的函数表达式为y=(x-40)=-10x 2 +1400x-40000,(2)当x=- b 2a =70时,y有最大值.答:商店销售单价应定为70元时,销售利润最大.
2023-07-12 09:58:131

某商店经销一种销售成本为每千克40元的水产品;据市场分析,若按每千克50元销售,一个月能售出500千克,

(1)月销售量为500-10(55-50)=450(千克)月销售利润为(55-40)×450=6750元;(2)设销售单价为x元(x-40)[500-10(x-50)]=8000 x 2 -1400x+4800=0 解得x 1 =60 x 2 =80 当x=60时月销售成本40×[500-(60-50)×10]=16000>10000元 ∴x=60元当x=80月销售成本40×[500-(80-50)×10]=8000元<10000元 ∴销售单价应定为每千克80元。(3)y=(x-40)[500-(x-50) ×10]=-10x 2 +1400x-4000
2023-07-12 09:58:221

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销

(1)月销售量 55x[500-(55-50)x10]=24750(千克)月销售利润(55-40)x24750=371250(元)
2023-07-12 09:58:312

某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元

(1)当销售单价定为每千克x元时,月销售量为:[500-(x-50)×10]千克.每千克的销售利润是:(x-40)元,所以月销售利润为:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000,∴y与x的函数解析式为:y=-10x2+1400x-40000;(2)∵当销售单价定为每千克55元时,则销售单价每涨(55-50)元,少销售量是(55-40)×10千克,∴月销售量为:500-(55-50)×10=450(千克),所以月销售利润为:(55-40)×450=6750(元);(3)由(2)的函数可知:y=-10(x-70)2+9000因此:当x=70时,ymax=9000元,即:当售价是70元时,利润最大为9000元.
2023-07-12 09:58:521

某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千

设销售单价定为每千克x元,获得利润为y元,则:y=(x-40)[500-(x-50)×10],=(x-40),=-10x 2 +1400x-40000,=-10(x-70) 2 +9000,∴当x=70时,利润最大为9000元.
2023-07-12 09:59:011

某商店经销一种销售成本为每千克40元的水产品。根据市场调查分析,若按每千克50元销售一个月能销售500千

什么东东?
2023-07-12 09:59:182

某商店经销一种销售成本为每千克40元的水产品,据市场分析,按每千克50元销售,一个月能售出500千克;若

(1)销量500-65?501×10=350(千克);利润(65-40)×350=8750(元),答:月销售量为350千克,月销售利润为8750元;(2)y=[500-(x-50)10](x-40),=(1000-10x)(x-40),=-10x2+1400x-40000;(3)不能.由(2)知,y=-10(x-70)2+9000,当销售价单价x=70时,月销售量利润最大为9000元.∴月销售利润不能达到10000元.
2023-07-12 09:59:331

某商店经营一种水产品,成本为每千克40元

销售价应该为70元,利润30元/千克。月销售量就减少到300千克。利润*月销售量=9000,获利最高
2023-07-12 09:59:401

销售应用题

成本不超过1000元,利润达到8000元.................有问题吧
2023-07-12 09:59:482

解答题 数学

1、月销售量:500-(55-50)*10=450 月销售利润:450*(55-40)=67502、设销售单价为X,则:[500-(X-50)*10]*40小于等于10000; [500-(X-50)*10]*(X-40)=8000;解得X=80再次看出这是个奸商
2023-07-12 10:00:152

某商店经营一种销售成本为每千克40元的水产品。据市场分析。若按每千克50元销售一个月能售出500千

设涨x元根据利润:(50+x-40)*(500-10x)≥8000 化简整理:x平方-40x+300≤0 解得:10≤x≤30根据成本:40*(500-10x)≤10000解得:x≥25综合起来25≤x≤30再加上原定价50元所以定价为75~80元。
2023-07-12 10:00:251

某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千

设销售单价定为每千克x元,获得利润为y元,则:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000=-10(x-70)2+9000.∴当x=70时,利润最大为9000元.
2023-07-12 10:00:311

几道数学题(初中三年级)

好难哦,祝你好运
2023-07-12 10:00:428

谁能帮我做一些 八年级下的数学题

列方程 很容易
2023-07-12 10:00:582

一元二次方程的应用题,不用解出来都可以,只列方程

设:销售价格为X,销售数量为Y (X-40)×Y=8000 Y=500-(X-50)÷2×20 X×Y<10000
2023-07-12 10:01:063

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能销售500kg,销售单

设定价x元,月利润为y元y=[500-10(x-50)]*(x-40)(x≥50)整理:y=-10(x^2-140x+4000)当x=-140/-2=70时,y取得最大y最大值=-10(70^2-140*70+4000)=9000
2023-07-12 10:01:162

二次函数

2023-07-12 10:01:251

某商店经销一种销售成本为每千克40元的水产品、、、销售成本不超过12000元,销售利润达到8750元,单价多少

设涨价为x元(10+x)*(500-10*x)=8750然后算出x,再用x1与x2分别代入40*x《12000就好了
2023-07-12 10:01:321

初三数学一元二次成本问题(高手讲解一下)

设:销售单价为x元列方程组为:[500-(x-50)*10]*(x-40)=8000 (1) [500-(x-50)*10]*40<=10000 (2)解出两个数,有个不满足条件舍去。 卖东西不用说价钱越高卖出去的数量越少啊,这有啥疑问吗。而确定了利润,也就确定了售价。
2023-07-12 10:02:061

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销

题目看不见
2023-07-12 10:02:151

问一道题:某超市经销一种成本为40元/kg的水产品,经市场调查发现,按50元/kg,一个月能销售500kg,销售单

我看你问题没问完,不过还是答了,希望你满意,++分哈某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围); (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为:(55–40)×450=6750(元). (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为: y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元), ∴y与x的函数解析式为:y =–10x2+1400x–40000. (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000, 即:x2–140x+4800=0, 解得:x1=60,x2=80. 当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:40×400=16000(元); 当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:40×200=8000(元); 由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元
2023-07-12 10:02:221

二次函数

0
2023-07-12 10:02:312

二次函数的习题

把1代入得N=-6
2023-07-12 10:02:411

某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能售出500千克.

嗯,楼上正解,我是进来参观学习下的
2023-07-12 10:02:592

初中数学啊啊啊~!!!!!111

现在初中的数学有这么难?惭愧
2023-07-12 10:03:063

一道数学问题

解:(1)销售量:500-(55-50)*10=450kg 销售利润:450*(55-40)=6750元 (2)y=(x-40)[500-10*(x-50)] =-10x^2+1400x-40000 所以 y=-10x^2+1400x-40000 (3)由题意,得 40[500-10*(x-50)]<=10000 -10x^2+1400x-40000=8000 解得 x>=75 x=60或80 所以x=80
2023-07-12 10:03:151

某商店经营一种水产品,成本为每千克40元的水产品

  某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:  (1)当销售单价定为每千克55元时,计算月销售量和月销售利润;  (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);  (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?  解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为  :(55–40)×450=6750(元).  (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:  y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),  ∴y与x的函数解析式为:y =–10x2+1400x–40000.  (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,  即:x2–140x+4800=0,  解得:x1=60,x2=80.  当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:  40×400=16000(元);  当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:  40×200=8000(元);  由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元
2023-07-12 10:03:431

九年级数学题

1)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:   (1)当销售单价定为每千克55元时,计算月销售量和月销售利润;   (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围);   (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?   解:(1)当销售单价定为每千克55元时,月销售量为:500–(55–50)×10=450(千克),所以月销售利润为:(55–40)×450=6750(元).   (2)当销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:   y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),   ∴y与x的函数解析式为:y =–10x2+1400x–40000.   (3)要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,   即:x2–140x+4800=0,   解得:x1=60,x2=80.   当销售单价定为每千克60元时,月销售量为:500–(60–50)×10=400(千克),月销售成本为:40×400=16000(元);   当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:40×200=8000(元);   由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元2)170-(170-130)=30件30×(170-120)=1500元2设定价x元1600=(70-x+130)×(x-120) x1=x2=160第三题方程看不懂啊kx平方+(k+2)x+4分之k=0写准确点啊
2023-07-12 10:03:521

初中数学:某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,

解:(1)依题意有: 销售量:500-(55-40)/1*10=350千克 月利润:350*(55-40)=5250元。 (2)y=[500-(x-40)/1*10]*(x-40) 整理得: y=-10x^2+1300x-36000(50<x≤90)
2023-07-12 10:03:593

某商店经销一种成本为每千克40元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克,销售

解:销售单价定为每千克x元时,月销售量为:[500–(x–50)×10]千克而每千克的销售利润是:(x–40)元,所以月销售利润为:   y=(x–40)[500–(x–50)×10]=(x–40)(1000–10x)=–10x2+1400x–40000(元),   ∴y与x的函数解析式为:y =–10x2+1400x–40000.   SO 要使月销售利润达到8000元,即y=8000,∴–10x2+1400x–40000=8000,   即:x2–140x+4800=0,   解得:x1=60,x2=80.     当销售单价定为每千克80元时,月销售量为:500–(80–50)×10=200(千克),月销售单价成本为:40×200=8000(元);   由于8000<10000<16000,而月销售成本不能超过10000元,所以销售单价应定为每千克80元
2023-07-12 10:04:131

(1/3)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销...

<1>很简单 定价55元/kg时,月销量为450kg,月利润为15*450元 ,即6750元
2023-07-12 10:04:202

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克

利润达8000元,售出数量为8000/(50-40)=800千克月销售额只为500千克,多出300千克,500:300=5:38000*(5/8-3/8)=20002000/50=40元定价应为40元
2023-07-12 10:04:271

一道数学题

进 售 量40 50+X 500-10XY=(50-40+X)(500-10X)=-10X方+400X+5000当X=400/20=20,即售价70时,利润最高=-10*400+400*20+5000=9000元500-10X小于等于10000/40,X大于等于25-10X方+400X+5000=8000,X方-40X+300=0,(X-10)(X-30)=0因X大于等于25,则X=30,即定价为80元-10X方+400X+5000大于等于800010小于等于X小于等于30则60小于等于定价小于等于80
2023-07-12 10:04:371

某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售

这个不错,你是个天才
2023-07-12 10:04:441

某商店经销一种销售成本为每千克40元的水产品。根据市场调查分析,若按每千克50元销售一个月能销售500千

1、每千克55元时,销售450千克;利润=单品利润*销量=15*450元2、月销售利润为y元=单品利润*销量=(x-40)*[500-10(x-50)]=(x-40)*(1000-10x);x大于40时赚钱;3、月销售成本不超过10000元的情况下,即销售不超过250千克;y=8000。所以(x-40)*(1000-10x)=8000,x=60或者80;检验80符合题意,定价为80
2023-07-12 10:04:512

关于二次函数的初中数学问题

令二次函数的解析式:y=k(x-m)(x-n)函数与x轴的交点为x1=m,x2=n.设m<n.与y轴交点为yo=kmn对称轴x=4→m+n=8......(1)面积为3→(n-m)|kmn|=6......(2)由于|kmn|为整数,由(2)式知(n-m)可取得值有1,2,3,6于是令n-m=t......(3)解(1)和(3)得m=4-t/2 , n=4+t/2由于m,n都为整数,则t必为偶数.又t可取的值有1,2,3,6进一步筛选后t可能的取值有:2,6因而得到m,n的两组值:3,51,7将三组值分别代入(2)得到对应的两组k值:±1/5±1/7于是附合条件的解析式共有4个:y=±(x-3)(x-5)/5y=±(x-1)(x-7)/7
2023-07-12 10:05:102

某商店经销一种产品,其成本为40元每千克,据市场调查分析,若按照50元每千克销售,一个月能售出50

。。。
2023-07-12 10:05:181

数学解答题

2023-07-12 10:05:415

初三数学利润问题

设每套降价X元,得(40-X)(20+2X)=1200,解得X1=10,X2=20,∵要尽快减少库存,所以降价20元。
2023-07-12 10:06:053

二次函数 。 听不懂。 请把知识点详细发来。

二次函数知识点总结: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征: ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2. ⑵ 是常数,是二次项系数,是一次项系数,是常数项.二次函数的基本形式1. 二次函数基本形式:的性质:结论:a 的绝对值越大,抛物线的开口越小。总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:结论:上加下减。总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.3. 的性质:结论:左加右减。总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值. 4. 的性质:总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值.二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减,上加下减”.三、二次函数与的比较请将利用配方的形式配成顶点式。请将配成。总结: 从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.四、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.五、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值. 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.六、二次函数解析式的表示方法 1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 两根式:(,,是抛物线与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数中,作为二次项系数,显然. ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大. 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小. 2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴. ⑴ 在的前提下, 当时,,即抛物线的对称轴在轴左侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的右侧. ⑵ 在的前提下,结论刚好与上述相反,即 当时,,即抛物线的对称轴在轴右侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的左侧. 总结起来,在确定的前提下,决定了抛物线对称轴的位置.总结: 3. 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定: 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. 关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是; 4. 关于顶点对称 关于顶点对称后,得到的解析式是; 关于顶点对称后,得到的解析式是. 5. 关于点对称 关于点对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况): 一元二次方程是二次函数当函数值时的特殊情况. 图象与轴的交点个数: ① 当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离. ② 当时,图象与轴只有一个交点; ③ 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有. 2. 抛物线的图象与轴一定相交,交点坐标为,; 3. 二次函数常用解题方法总结: ⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.抛物线与轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 抛物线与轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 抛物线与轴无交点 二次三项式的值恒为正 一元二次方程无实数根.⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
2023-07-12 10:06:253

某销售商店经销一种销售成本为每千克40元的水产品,若按每千克50元能销售500千克,销售单价每涨1元...

假定销售单价上涨X元,则此时销售单价P=50+X,销售量Q=500-X此时收入i=P*Q成本C=40*(50+X)月销售利润R=i-P*Q (C小于等于10000元)剩下的你应该会了
2023-07-12 10:06:412

二次函数详解

一言难尽。http://baike.baidu.com/view/407281.htm
2023-07-12 10:07:431

初中高中的所有函数

都快忘光了
2023-07-12 10:07:544