- kikcik
-
幂函数性质分为正值性质、负值性质、零值性质。幂函数定义域和值域分为:
1、当m,n都为奇数,k为偶数时,定义域、值域均为R;
2、当m,n都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
3、当m为奇数,n为偶数,k为偶数时,定义域、值域均为[0,+∞),为非奇非偶函数;
4、当m为奇数,n为偶数,k为奇数时,定义域、值域均为(0,+∞),为非奇非偶函数;
5、当m为偶数,n为奇数,k为偶数时,定义域为R、值域为[0,+∞),为偶函数;
6、当m为偶数,n为奇数,k为奇数时,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。
扩展资料:
幂函数的单调区间:
当α为整数时,α的正负性和奇偶性决定了函数的单调性:
1、当α为正奇数时,图像在定义域为R内单调递增;
2、当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增;
3、当α为负奇数时,图像在第一三象限各象限内单调递减(但不是在定义域R内单调递减);
④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。
参考资料来源:百度百科-幂函数
- 小白
-
(1)y=x、y=x^3等,定义域、值域均为R,为奇函数;
(2)y=x^-1,y=x^-3等,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数;
(3)y=x^1/2,定义域、值域均为[0,+∞),为非奇非偶函数;
(4)y=x^-1/2等,定义域、值域均为(0,+∞),为非奇非偶函数;
(5)y=x^2,定义域为R、值域为[0,+∞),为偶函数;
图形如下:
扩展资料:
幂函数的特点:
1、当α>0时,幂函数y=xα有:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2、当α<0时,幂函数y=xα有:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
参考资料来源:百度百科-幂函数
幂函数的性质是什么?
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。2023-07-02 11:16:481
幂函数的概念和性质
幂函数的概念及性质如图所示2023-07-02 11:17:282
幂函数的几个性质
幂函数的性质:当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数。幂函数的性质幂函数的性质正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。1幂函数幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。2023-07-02 11:17:421
幂函数的性质
幂函数y=x^α重点是α=±1,±2,±3,±1/2. 1.α=0. y=x^0. 图象:过点(1,1),平行于x轴的直线一条(剔去点(0,1)). 定义域:(-∞,0)∪(0,+∞). 值域:{1}. 奇偶性:偶函数 2.α∈Z+. ①α=1 y=x 图象:过点(1,1),一、三象限的角平分线(包含原点(0,0)). 定义域:(-∞,+∞). 值域:.(-∞,+∞) 单调性:增函数. 奇偶性:奇函数. ②α=2 y=x^2 图象:过点(1,1),抛物线. 定义域:(-∞,+∞). 值域:.[0,+∞) 单调性:减区间(-∞,0],增区间[0,+∞) 奇偶性:偶函数. 注:当α=2n,n∈N+时,幂函数y=x^α也具有上述性质. ③α=3 y=x^3 图象:过点(1,1),立方抛物线. 定义域:(-∞,+∞). 值域:.(-∞,+∞) 单调性:增函数. 奇偶性:奇函数. 注:当α=2n+1,n∈N+时,幂函数y=x^α也具有上述性质. 3.α是负整数. ①α=-1 y=x^(-1). 图象:过点(1,1),双曲线. 定义域:(-∞,0)∪(0,+∞). 值域:.(-∞,0)∪(0,+∞) 单调性:减区间(-∞,0)和(0,+∞). 奇偶性:奇函数. ②α=-2 y=x^(-2). 图象:过点(1,1),分布在一、二象限的拟双曲线. 定义域:(-∞,0)∪(0,+∞). 值域:(0,+∞) 单调性:增区间(-∞,0),减区间(0,+∞) 奇偶性:偶函数. 注:当α=-2n,n∈N+时,幂函数y=x^α也具有上述性质. ③α=-3 y=x^(-3) 图象:过点(1,1),双曲线型. 定义域:(-∞,0)∪(0,+∞). 值域:(-∞,0)∪(0,+∞) 单调性:减区间(-∞,0)和(0,+∞) 奇偶性:奇函数. 注:当α=-2n+1,n∈N+时,幂函数y=x^α也具有上述性质. 4.α是正分数. ①α=1/2. y=x^(1/2)=√x. 图象:过点(1,1),分布在一象限的抛物线弧(含原点). 定义域:[0,+∞). 值域:[ 0,+∞). 单调性:增函数. 奇偶性:非奇非偶. 注:当α=(2n+1)/(2m),m,n∈N+时,幂函数y=x^α也具有上述性质. ②α=1/3. y=x^(1/3) 图象:过点(1,1),与立方抛物线y=x^3关于直线y=x对称.. 定义域:(-∞,+∞). 值域:.(-∞,+∞). 单调性:增函数. 奇偶性:奇函数. 注:当α=(2n-1)/(2m+1),m,n∈N+时,幂函数y=x^α也具有上述性质. 5.α是负分数. ①α=-1/2. y=x^(-1/2)=1/√x. 图象:过点(1,1),只分布在一象限的双曲线弧. 定义域:(0,+∞). 值域:( 0,+∞). 单调性:减函数. 奇偶性:非奇非偶. 注:当α=-(2n-1)/(2m),m,n∈N+时,幂函数y=x^α也具有上述性质. ②α=-1/3. y=x^(-1/3)=1/(3)√x. 图象:过点(1,1),双曲线型. 定义域:(-∞,0)∪(0,+∞). 值域:(-∞,0)∪(0,+∞). 单调性:减区间(-∞,0)和(0,+∞). 奇偶性:奇函数. 注:当α=-(2n-1)/(2m+1),m,n∈N+时,幂函数y=x^α也具有上述性质2023-07-02 11:18:141
什么是幂函数,它有什么性质?
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。扩展资料:幂函数性质:当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。参考资料来源:百度百科——幂函数2023-07-02 11:18:211
幂函数的性质
性质所有的幂函数在(0,+∞)上都有各自的定义,并且图像都过点(1,1)。(1)当a>0时,幂函数y=x^a有下列性质:a、图像都通过点(1,1)(0,0) ;b、在第一象限内,函数值随x的增大而增大;c、在第一象限内,a>1时,图像开口向上;0<a<1时,图像开口向下;d、函数的图像通过原点,并且在区间[0,+∞)上是增函数。(2)当a<0时,幂函数y=x^a有下列性质:a、图像都通过点(1,1);b、在第一象限内,函数值随x的增大而减小,图像开口向上;c、在第一象限内,当x从右趋于原点时,图象在y轴上方趋向于原点时,图像在y轴右方无限逼近y轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴[1]。(3)当a=0时,幂函数y=x^a有下列性质:a、y=x^0是直线y=1去掉一点(0,1) 它的图像不是直线2023-07-02 11:18:411
幂函数及性质
一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。性质编辑幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.取正值当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;取负值当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。取零当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。(x=0时,函数值没意义)2023-07-02 11:20:471
幂函数图像及性质
幂函数的图像性质包括当a>0时,图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数。 扩展资料 幂函数是y=xα(α为有理数)的"函数,性质包括正值性质、负值性质、零值性质。当a>0时,图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。2023-07-02 11:20:541
幂函数有哪些性质?
1) 过定点(0,1)2)底数不变,指数增加,图像越陡3)与对数函数护卫反函数2023-07-02 11:21:032
幂函数图像及性质总结表格是什么?
幂函数的图像:幂函数的性质:一、正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。二、负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1)。b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。三、零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。幂函数的单调区间当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。当α为分数时(且分子为1),α的正负性和分母的奇偶性决定了函数的单调性:①当α>0,分母为偶数时,函数在第一象限内单调递增。②当α>0,分母为奇数时,函数在第一三象限各象限内单调递增。③当α<0,分母为偶数时,函数在第一象限内单调递减。④当α<0,分母为奇数时,函数在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。2023-07-02 11:21:111
幂函数指的是什么呢?
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。幂函数属于基本初等函数之一,一般y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。幂函数的特征:(1)解析式右边是一个幂。(2)系数为1。(3)底数是自变量。(4)指数是常数。幂函数图像正值性质:当α>0时,幂函数y=xα有下列性质:1、图像都经过点(1,1)(0,0)。2、函数的图像在区间[0,+∞)上是增函数。3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。以上内容参考:百度百科-幂函数2023-07-02 11:21:251
幂函数有什么性质(具体点)?
幂函数 开放分类:数学、函数 幂函数的一般形式为y=x^a. 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识.因此我们只要接受它作为一个已知事实即可. 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞).当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数. 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数. 在x大于0时,函数的值域总是大于0的实数. 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数. 而只有a为正数,0才进入函数的值域. 由于x大于0是对a的任意取值都有意义的, 因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点. (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数. (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸. (4)当a小于0时,a越小,图形倾斜程度越大. (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点. (6)显然幂函数无界限.2023-07-02 11:21:511
幂函数知识点归纳有哪些?
性质:幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。取正值:当α>0时,幂函数y=x^a有下列性质。a、图像都经过点(1,1)(0,0)。b、函数的图像在区间[0,+∞)上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;0<α<1时,导数值逐渐减小,趋近于0。取负值:当α<0时,幂函数y=x^a有下列性质:a、图像都通过点(1,1)。b、图像在区间(0,+∞)上是减函数。c、在第一象限内,有两条渐近线,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。取零:当a=0时,幂函数y=xa有下列性质。a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。(00没有意义)。定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据a的奇偶性来确定,即如果同时p为奇数, 则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时p为偶数,则函数的定义域为所有非零实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。2023-07-02 11:22:001
幂函数图像性质
关于原点对称,因为f(x)是奇函数函数先增后减,因为导数是3x^2-3,并且在-1点取得极大值,1点取得极小值,函数有零点0,正负根3,因为f(x)=x(x^2-3)2023-07-02 11:22:142
幂函数y=a的x次方的图象和性质
y=a^x1. 如果a>1, 这实际是个指数上升的曲线。x=1,y=1,单调上升,而且越来越快2.如果a<1,这实际是个指数下降的曲线,x=1,y=1,单调递减。(和1的区别是就是,如果反转 x轴一样)3.如a=1,那y=1是个平行于x轴的直线。2023-07-02 11:22:342
标题幂函数,指数函数,幂指函数的区别?三者求导方法一样吗?
求导方法不一样,区别如下:、函数的自变量不同:指数函数的指数是自变量,底数是常数,而幂函数的底数是自变量,指数是常数2、自变量的取值范围不同:指数函数的自变量可以取大于0且不等于1的值,而幂函数的自变量可取不等于1的值。3、性质不同:指数函数和幂函数的性质随自变量的取值范围不同而改变,幂函数的性质有多种,而指数函数的性质有两种,若自变量大于0且小于1时,指数函数是递减函数,若自变量大于1时,指数函数是递增函数。2023-07-02 11:22:461
指数函数和幂函数有什么不同?
区别:这两个完全是不同的函数。1、定义不同,从两者的数学表达式来看,两者的未知量X的位置刚好互换。指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0<a<1时,函数是递减函数,且y>0.幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。2、图像不同:指数函数的图象是单调的,始终在一、二象限,经过(0,1)点;幂函数需要具体问题具体分析。3、性质不同幂函数性质:1、正值性质即当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;2、负值性质即当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。3、零值性质当α=0时,幂函数y=xa有下列性质:y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。指数函数性质:指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。扩展资料幂的比较常用方法:1、做差(商)法:A-B大于0即A大于B A-B等于0即A=B A-B小于0即A小于B 步骤:做差—变形—定号—下结论 ;AB大于1即A大于B AB等于1即A等于B A/B小于1即A小于B (A,B大于0)2、函数单调性法;3、中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。参考资料指数函数百度百科幂函数百度百科2023-07-02 11:22:551
y=2的x次方是多少?
y=2的x次方没有答案。y=2的x次方是幂函数,x是自变量,y是因变量,自变量不确定,就不能得到确定的答案。例如x=1,y=2。幂函数是基本初等函数之一。扩展资料:幂函数的性质:一、正值性质:1、当α>0时,幂函数y=xα有下列性质:(1)图像都经过点(1,1)、(0,0)。(2)函数的图像在区间[0,+∞)上是增函数。(3)在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。二、负值性质:1、当α<0时,幂函数y=xα有下列性质:(1)图像都通过点(1,1)。(2)图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。(3)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。三、零值性质:1、当α=0时,幂函数y=xa有下列性质:2、y=x0的图象是直线y=1去掉一点(0,1)。参考资料来源:百度百科-幂函数2023-07-02 11:23:031
幂函数和指数函数有什么关系?
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2) 指数函数的值域为大于0的实数集合。(3) 函数图形都是下凹的。(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。(7) 函数总是通过(0,1)这点。(8) 显然指数函数无界。2023-07-02 11:23:173
幂函数的性质和定义
若幂函数y=x^[(-1)^p*n/m](m,n,p都是正整数,且m,n互质)的图象不经过第三象限,试研究m,n,p是奇数还是偶数(1)如果p为偶数,原函数为:x^(n/m)图象不经过第三象限--->n为偶数m,n互质-------------->m为奇数(2)如果p奇数,原函数为:1/x^(n/m)图象不经过第三象限--->n为偶数m,n互质-------------->m为奇数综合(1)(2):m为奇数,n为偶数,p可奇可偶2023-07-02 11:23:342
幂函数性质 , 第一象限单调递增的情况
幂函数是指形如y=x^a的函数,其中a∈R.当a>0,y=x^a的图象在第一象限单调递增.当a<0,y=x^a的图象在第一象限单调递减.(希望对你有所帮助^_^)2023-07-02 11:23:411
幂函数的一系列性质
特性 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意[实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不[能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。编辑本段定义域 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 因此下面给出幂函数在第一象限的各自情况.编辑本段第一象限 可以看到: (1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6)a=0,该函数为偶函数 {x|x≠0}。编辑本段图象2023-07-02 11:23:491
幂函数的求导方法有哪些?
幂函数(y=f(x)^g(x))的求导方法有四种,分别为:①x^y=y^x方程形式、②z^x=y^z方程形式、③y=x^(1/y)方程形式、④y=(x/x+1)^x+x^(x/x+1)方程形式,以上四种就是幂函数的求导方式,接下来我们详细的看一下具体内容吧!①x^y=y^x方程形式:通过变形,代入公式通过公式a^b=e^(blna),对于方程的两边进行一个同时求导,即可解出答案。②z^x=y^z方程形式a^b=e^(blna),最后再进行变形同时对方程丽娜改变的x进行求导,在求导的过程中需要将y看作一个常数值。③y=x^(1/y)方程类型:通过变形,然后代入公式进行两边取对数之后,然后对于方程的另外两边进行一个求导,最终得到结果。④y=(x/x+1)^x+x^(x/x+1)方程形式:通过变形,公式变换之后,需要再对方程两边求导,最终经过求导之后得出结论。幂函数是一种基本的初等函数,主要是将一个y=xα(α为有理数)的函数,也就是这个底数为一个自变量而幂是一个因变量,而指数则是一个常数的汉书作为幂函数,这一类别的其他相似的函数都叫作幂函数。幂函数有哪些性质呢?幂函数的性质分为三种,第一种是正值性质、第二种是负值性质、第三种是零值性质,其中这三种性质分别可以用以下方式来表示:当α>0时,幂函数y=xα的性质是都过点(1.1)和(0.0),而当α<0时,幂函数y=xα的性质是都过点(1.1),当α等于0时,a、y=x0这个函数的图像都是直线y=1去掉一点(0,1)。而且这个函数的图像并不是一个直线。以上就是幂函数的求导以及其他相关知识,在学习的过程中一定要注意这其中的易混点,不要写错也不要乱写,一定要熟练掌握相关知识。2023-07-02 11:23:551
幂级数的性质
幂级数,2113是数学分析当中重要概念之一,5261是指在级数的每一项均为与级数项序号4102n相对应的以常1653数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。设是定义在某区间I上的函数列,则表达式(1)称为定义在区间I上函数项级数。如果式(1)上的各项都是定义在区间上的幂函数,函数项级数(2)称作幂级数,其中为常数,称为幂级数的系数。扩展资料:幂函数的性质:一、当α为整数时,α的正负性和奇偶性决定了函数的单调性:1、当α为正奇数时,图像在定义域为R内单调递增。2、当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。3、当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。4、当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。二、当α为分数时,α的正负性和分母的奇偶性决定了函数的单调性:1、当α>0,分母为偶数时,函数在第一象限内单调递增。2、当α>0,分母为奇数时,若分子为偶数,函数在第一象限内单调递增,在第二象限单调递减;若分子为奇数,函数在第一、三象限各象限内单调递增。3、当α<0,分母为偶数时,函数在第一象限内单调递减。4、当α<0,分母为奇数时,函数在第一、三象限各象限内单调递减(但不能说在定义域R内单调递减)。三、当α>1时,幂函数图形下凹(竖抛);当0<α<1时,幂函数图形上凸(横抛)。参考资料来源:百度百科-幂级数2023-07-02 11:24:262
幂函数的定义域是什么?
幂函数的定义域是:当a为负数时,定义域为(-∞,0)和(0,+∞)。当a为零时,定义域为(-∞,0)和(0,+∞);当a为正数时,定义域为(-∞,+∞)。幂函数的定义域:形如y=x^a(a为常数)的函数,称为幂函数。1、一般地。形如y=x(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x 、y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。2、性质:幂函数的图象一定在第一象限内,一定不在第四象限,至于是否在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。3、正值性质;当α>0时,幂函数y=x有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;4、负值性质;当α<0时,幂函数y=x有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)5、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。6、零值性质;当α=0时,幂函数y=x有下列性质:y=x的图像是直线y=1去掉一点(0,1)。它的图像不是直线。2023-07-02 11:24:441
高一数学幂函数知识点
一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数,下面是苏教版高一数学幂函数知识点,数学网请大家及时学习。 幂函数定义: 对于形如:f(x)=xa,其中a为常数。叫做幂函数。定义说明: 定义具有严格性,xa系数必须是1,底数必须是x a取值是R 。 要求掌握α=1、2、3、?、—1五种情况 幂函数的图像: 幂函数的图像是由a决定的,可分为五类: 1)a>1时图像是竖立的抛物线。例如:f(x)=x2 2)a=1时图像是一条直线。即f(x)=x 3)0 4)a=0时图像是除去(0,1)的"一条直线。即f(x)=x0(其中x不为0) 5)a<0时图像是双曲线(可为双曲线一支)例如f(x)=x—1 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高); ②幂指数互为倒数时,图像关于y=x对称; ③结合以上规律,要求会做出任意一种幂函数图像。 幂函数的性质: 定义域、值域与α有关,通常化分数指数幂为根式求解 奇偶性要结合定义域来讨论 单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减 过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1) 由f(x)=xa可知,图像不过第四象限。2023-07-02 11:25:341
幂级数收敛半径幂级数收敛半径公式
幂级数收敛半径是:当z和a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。在|z-a|=r的收敛圆上,幂级数的敛散性是不确定的:对某些z可能收敛,对其它的则发散。如果幂级数对所有复数z都收敛,那么说收敛半径是无穷大。具体如下:收敛半径r是一个非负的实数或无穷大,使得在|z-a|;r时幂级数收敛,在|z-a|;r时幂级数发散。当z和a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。幂函数的性质:正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点。b、函数的图像在区间上是增函数。c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0;α<1时,导数值逐渐减小,趋近于0。负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点。b、图像在区间上是减函数;上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。2023-07-02 11:25:461
幂函数的性质 幂函数三个性质
1、正值性质 当α>0时,幂函数y=xα有下列性质: a、图像都经过点(1,1)(0,0)。 b、函数的图像在区间[0,+∞)上是增函数。 c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。 2、负值性质 当α<0时,幂函数y=xα有下列性质: a、图像都通过点(1,1)。 b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。 c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。 3、零值性质 当α=0时,幂函数y=xa有下列性质: a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。2023-07-02 11:26:091
幂函数的特性
幂函数的性质:当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数。幂函数的性质幂函数的性质正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。1幂函数幂函数是基本初等函数之一。一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数2023-07-02 11:26:161
幂函数的性质是什么呢?
性质:一、正值性质当α>0时,幂函数y=xα有下列性质:1、图像都经过点(1,1)(0,0)。2、函数的图像在区间[0,+∞)上是增函数。3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。二、负值性质当α<0时,幂函数y=xα有下列性质:1、图像都通过点(1,1)。2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。幂函数的特性对于α的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果,q和p都是整数,则,如果q是奇数,函数的定义域是R;如果q是偶数,函数的定义域是[0,+∞)。当指数α是负整数时,设α=-k,则,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R。2023-07-02 11:26:471
幂函数的性质及图像特点
不经过第四象限2023-07-02 11:27:221
幂函数是什么意思有什么特性及性质 幂函数的概念和性质
1、幂函数的概念: y=x(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。 2、幂函数的性质 正值性质当α>0时,幂函数y=xα有下列性质: (1)图像都经过点(1,1)(0,0); (2)函数的图像在区间[0,+∞)上是增函数,如果α为任意实数,则函数的定义域为大于0的所有实数。2023-07-02 11:27:571
幂函数的图像和性质图表!
1-12023-07-02 11:28:052
幂函数的图像和性质图表!!_| ̄|○
2023-07-02 11:28:292
什么是幂函数
幂函数的一般形式为y=x^a。 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的, 必须指出的是,当x<0时,幂函数存在一个相当棘手的内在矛盾:[x^(a/b)]^(c/d)、[x^(c/d)]^(a/b)、x^(ac/bd)这三者相等吗?若p/q是ac/bd的既约分数,x^(ac/bd)与x^(p/q)以及x^(kp/kq)(k为正整数)又能相等吗?也就是说,在x<0时,幂函数值的唯一性与幂指数的运算法则发生不可调和的冲突。对此,现在有两种观点:一种坚持通过约定既约分数来处理这一矛盾,能很好解决幂函数值的唯一性问题,但米指数的运算法则较难维系;另一种观点则认为,直接取消x<0这种情况,即规定幂函数的定义域为[0,+∞)或(0,+∞)。看来这一问题有待专家学者们认真讨论后予以解决。 因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点.(a≠0) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)显然幂函数无界限。 (6) a=0,该函数为偶函数 {x|x≠0}。2023-07-02 11:30:098
幂函数的图像性质是什么?
性质:(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。(5)显然幂函数无界限。(6)a=0,该函数为偶函数 {x|x≠0}。2023-07-02 11:30:411
幂函数是必修几的内容
幂函数是高中数学必修一的内容。幂函数的性质如下:1、所有的幂函数在(0,+∞)上都有定义,并且图像都通过定点(1,1)。2、单调性:在区间(0,+∞)上,当α>0时,是增函数;当α<0时,是减函数。3、奇偶性:当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数。幂函数的正值性质当α>0时,幂函数y=xα有下列性质:1、图像都经过点(1,1)(0,0)。2、函数的图像在区间[0,+∞)上是增函数。3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。2023-07-02 11:31:191
幂函数的性质
概念:形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。 特性:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:a小于0时,x不等于0;q为偶数时,x不小于0;q为奇数时,x取R。 定义域与值域:当a为不同的数值时,幂函数的定义域的不同情况如下:1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 当x为不同的数值时,幂函数的值域的不同情况如下:1.在x大于0时,函数的值域总是大于0的实数。 2.在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。 第一象限的特殊性:(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)(2)当a大于0时,幂函数为单调递增为增函数,而a小于0时,幂函数为单调递减为减函数。(3)当a大于1时,幂函数图形下凸(竖抛);当a小于1大于0时,幂函数图形上凸(横抛)。当a小于0时,图像为双曲线。(4)当a小于0时,a越小,图形倾斜程度越大。(5)显然幂函数无界限。(6)a=2n,该函数为偶函数 {x|x≠0}。 图象:①当a≤-1且a为奇数时,函数在第一、第三象限为减函数②当a≤-1且a为偶数时,函数在第二象限为增函数,第一象限为减函数③当a=0且x不为0时,函数图象平行于x轴且y=1、但不过(0,1) ④当0<a<1时,函数是增函数⑤当a≥1且a为奇数时,函数是奇函数⑥当a≥1且a为偶数时,函数是偶函数2023-07-02 11:31:321
幂函数a的取值范围性质
非零有理数。幂函数是基本初等函数之一。一般地,y=x^α(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。单调区间:当α为整数时,α的正负性和奇偶性决定了函数的单调性:①当α为正奇数时,图像在定义域为R内单调递增。②当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。③当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。④当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。2023-07-02 11:32:111
幂函数的性质
。。。性质有很多 不知道你具体要的是什么?大概说几点吧 y=x^α1)α>0时 y=x^α在(0,+∞)上是增函数 α<0时 y=x^α在(0,+∞)上是减函数2)α是奇数 y=x^α是奇函数 α是偶数 y=x^α是偶函数3)所有的y=x^α都过定点(1,1) 而如果α>0的话 y=x^α还过另一个定点(0,0)大概就这几个了吧 单调性 奇偶性 定点一般做题的时候用单调性来比较底数不同,指数相同的大小的题相对出现的多一点2023-07-02 11:32:262
幂函数的基本性质
1a大于零且小于1则在0到正无穷上单调递增,且为凹函数,增长越来越慢。如二分之一时。a大于10到正无穷增长越来越快,凸函数。如2时。 a小于零,0到正无穷减函数,如是负1时。在负无穷到零上不研究。2图像必过(1,1)点。3当a为整数时,奇奇偶偶,奇是奇函数,偶是偶函数。2023-07-02 11:32:363
幂函数的定义域
R2023-07-02 11:33:3013
幂函数定义中a可以等于0吗?
如果是指数没有问题,【如果是底数则不一定,】比如0的0次方没有意义2023-07-02 11:34:048
幂函数是什么定义?
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。扩展资料:幂函数性质:当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。参考资料来源:百度百科——幂函数2023-07-02 11:34:311
幂函数定义是什么
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。扩展资料:幂函数性质:当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。参考资料来源:百度百科——幂函数2023-07-02 11:36:421
幂函数的图像与性质
幂函数的一般形式为y=x^a。 如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂函数无界。2023-07-02 11:37:101
幂函数的图像性质是什么?
性质:(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数. (3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大. (5)显然幂函数无界限. (6)a=0,该函数为偶函数 {x|x≠0}.2023-07-02 11:37:331
函数幂与指数幂区别
答:函数幂应该是幂函数,y=ⅹ^a,其中a是已知的有理数,指数幂y二a^x其中x∈R,且a﹥0,a≠1。前者y二ⅹ^a底数x是变化的,后者y二a^x指数x是变化的。2023-07-02 11:38:142
幂函数是什么意思?
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。扩展资料:幂函数性质:当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。参考资料来源:百度百科——幂函数2023-07-02 11:38:201
高一数学必修四知识点:幂函数
【 #高一# 导语】进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要, 无 高一频道为大家整理了《高一数学必修四知识点:幂函数》希望大家能谨记呦!! 定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂函数*。2023-07-02 11:38:341