- 大鱼炖火锅
-
在介绍排列组合方法之前 我们先来了解一下基本的运算公式!
C5取3=(5×4×3)/(3×2×1) C6取2=(6×5)/(2×1)
通过这2个例子 看出
CM取N 公式 是种子数M开始与自身连续的N个自然数的降序乘积做为分子. 以取值N的阶层作为分母
P53=5×4×3 P66=6×5×4×3×2×1
通过这2个例子
PMN=从M开始与自身连续N个自然数的降序乘积 当N=M时 即M的阶层
排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.
解答排列、组合问题的思维模式有二:
其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;
其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.
分 类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.
分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.
两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.
在解决排列与组合的应用题时应注意以下几点:
1.有限制条件的排列问题常见命题形式:
“在”与“不在”
“邻”与“不邻”
在解决问题时要掌握基本的解题思想和方法:
⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.
⑵“不邻”问题在解题时最常用的是“插空排列法”.
⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.
⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.
2.有限制条件的组合问题,常见的命题形式:
“含”与“不含”
“至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”.
3. 在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.
提供10道习题供大家练习
1、三边长均为整数,且最大边长为11的三角形的个数为( C )
(A)25个 (B)26个 (C)36个 (D)37个
------------------------------------------------------
【解析】
根据三角形边的原理 两边之和大于第三边,两边之差小于第三边
可见最大的边是11
则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候
因此我们以一条边的长度开始分析
如果为11,则另外一个边的长度是11,10,9,8,7,6,.1
如果为10 则另外一个边的长度是10,9,8.2,
(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)
如果为9 则另外一个边的长度是 9,8,7,.3
(理由同上 ,可见规律出现)
规律出现 总数是11+9+7+.1=(1+11)×6÷2=36
2、
(1)将4封信投入3个邮筒,有多少种不同的投法?
------------------------------------------------------------
【解析】 每封信都有3个选择.信与信之间是分步关系.比如说我先放第1封信,有3种可能性.接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3=3^4
(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?
-------------------------------------------------------------
【解析】跟上述情况类似 对于每个旅客我们都有4种选择.彼此之间选择没有关系 不够成分类关系.属于分步关系.如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择.知道最后一个旅客也是4种可能.根据分步原则属于乘法关系 即 4×4×4=4^3
(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?
-------------------------------------------------------------
【解析】分步来做
第一步:我们先选出3本书 即多少种可能性 C8取3=56种
第二步:分配给3个同学. P33=6种
这 里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择.即3×2×1 这是分步选择符合乘法原则.最常见的例子就是 1,2,3,4四个数字可以组成多少4位数? 也是满足这样的分步原则. 用P来计算是因为每个步骤之间有约束作用 即下一步的选择受到上一步的压缩.
所以该题结果是56×6=336
3、
七个同学排成一横排照相.
(1)某甲不站在排头也不能在排尾的不同排法有多少种? (3600)
---------------------------------------------
【解析】
这个题目我们分2步完成
第一步: 先给甲排 应该排在中间的5个位置中的一个 即C5取1=5
第二步: 剩下的6个人即满足P原则 P66=720
所以 总数是720×5=3600
(2)某乙只能在排头或排尾的不同排法有多少种? (1440)
-------------------------------------------------
【解析】
第一步:确定乙在哪个位置 排头排尾选其一 C2取1=2
第二步:剩下的6个人满足P原则 P66=720
则总数是 720×2=1440
(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种? (3120)
---------------------------------------------------
【解析】特殊情况先安排特殊
第一种情况:甲不在排头排尾 并且不在中间的情况
去除3个位置 剩下4个位置供甲选择 C4取1=4, 剩下6个位置 先安中间位置 即除了甲乙2人,其他5人都可以 即以5开始,剩下的5个位置满足P原则 即5×P55=5×120=600 总数是4×600=2400
第2种情况:甲不在排头排尾, 甲排在中间位置
则 剩下的6个位置满足P66=720
因为是分类讨论.所以最后的结果是两种情况之和 即 2400+720=3120
(4)甲、乙必须相邻的排法有多少种? (1440)
-----------------------------------------------
【解析】相邻用捆绑原则 2人变一人,7个位置变成6个位置,即分步讨论
第1: 选位置 C6取1=6
第2: 选出来的2个位置对甲乙在排 即P22=2
则安排甲乙符合情况的种数是2×6=12
剩下的5个人即满足P55的规律=120
则 最后结果是 120×12=1440
(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)
-------------------------------------------------------
【解析】
这个题目非常好,无论怎么安排甲出现在乙的左边 和出现在乙的右边的概率是一样的. 所以我们不考虑左右问题 则总数是P77=5040 ,根据左右概率相等的原则 则排在左边的情况种数是5040÷2=2520
4、用数字0,1,2,3,4,5组成没有重复数字的数.
(1)能组成多少个四位数? (300)
--------------------------------------------------------
【解析】 四位数 从高位开始到低位 高位特殊 不能排0. 则只有5种可能性
接下来3个位置满足P53原则=5×4×3=60 即总数是 60×5=300
(2)能组成多少个自然数? (1631)
---------------------------------------------------------
【解析】自然数是从个位数开始所有情况
分情况
1位数: C6取1=6
2位数: C5取2×P22+C5取1×P11=25
3位数: C5取3×P33+C5取2×P22×2=100
4位数: C5取4×P44+C5取3×P33×3=300
5位数: C5取5×P55+C5取4×P44×4=600
6位数: 5×P55=5×120=600
总数是1631
这里解释一下计算方式 比如说2位数: C5取2×P22+C5取1×P11=25
先从不是0的5个数字中取2个排列 即C5取2×P22 还有一种情况是从不是0的5个数字中选一个和0搭配成2位数 即C5取1×P11 因为0不能作为最高位 所以最高位只有1种可能
(3)能组成多少个六位奇数? (288)
---------------------------------------------------
【解析】高位不能为0 个位为奇数1,3,5 则 先考虑低位,再考虑高位 即 3×4×P44=12×24=288
(4)能组成多少个能被25整除的四位数? (21)
----------------------------------------------------
【解析】 能被25整除的4位数有2种可能
后2位是25: 3×3=9
后2位是50: P42=4×3=12
共计9+12=21
(5)能组成多少个比201345大的数? (479)
------------------------------------------------
【解析】
从数字201345 这个6位数看 是最高位为2的最小6位数 所以我们看最高位大于等于2的6位数是多少?
4×P55=4×120=480 去掉 201345这个数 即比201345大的有480-1=479
(6)求所有组成三位数的总和. (32640)
---------------------------------------------
【解析】每个位置都来分析一下
百位上的和:M1=100×P52(5+4+3+2+1)
十位上的和:M2=4×4×10(5+4+3+2+1)
个位上的和:M3=4×4(5+4+3+2+1)
总和 M=M1+M2+M3=32640
5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查.
(1)“其中恰有两件次品”的抽法有多少种? (152096)
【解析】 也就是说被抽查的5件中有3件合格的 ,即是从98件合格的取出来的
所以 即C2取2×C98取3=152096
(2)“其中恰有一件次品”的抽法有多少种? (7224560)
【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个
C2取1×C98取4=7224560
(3)“其中没有次品”的抽法有多少种? (67910864)
【解析】则即在98个合格的中抽取5个 C98取5=67910864
(4)“其中至少有一件次品”的抽法有多少种? (7376656)
【解析】全部排列 然后去掉没有次品的排列情况 就是至少有1种的
C100取5-C98取5=7376656
(5)“其中至多有一件次品”的抽法有多少种? (75135424)
【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的
C100取5-C98取3=75135424
6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有( )
(A)140种 (B)84种 (C)70种 (D)35种
--------------------------------------------------------
【解析】根据条件我们可以分2种情况
第一种情况:2台甲+1台乙 即 C4取2×C5取1=6×5=30
第二种情况:1台甲+2台乙 即 C4取1×C5取2=4×10=40
所以总数是 30+40=70种
7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种.
-------------------------------------------------------
【解析】至少有3件 则说明是3件或4件
3件:C4取3×C46取2=4140
4件:C4取4×C46取1=46
共计是 4140+46=4186
8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有( C )
(A)1260种 (B)2025种 (C)2520种 (D)5040种
---------------------------
【解析】分步完成
第一步:先从10人中挑选4人的方法有:C10取4=210
第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况
则根据分步原则 乘法关系 210×12=2520
9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__
C(4,12)C(4,8)C(4,4)
___种
------------------------
【解析】每个路口都按次序考虑
第一个路口是C12取4
第二个路口是C8取4
第三个路口是C4取4
则结果是C12取4×C8取4×C4取4
可能到了这里有人会说 三条不同的路不是需要P33吗 其实不是这样的 在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含. 如果再×P33 则是重复考虑了
如果这里不考虑路口的不同 即都是相同路口 则情况又不一样 因为我们在分配人数的时候考虑了路口的不同.所以最后要去除这种可能情况 所以在上述结果的情况下要÷P33
10、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法? 990
【解析】
这是排列组合的一种方法 叫做2次插空法
直接解答较为麻烦,故可先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插10个空位,有P(10,1)种方法;用最后一个节目去插11个空位,有P(11,1)方法,由乘法原理得:所有不同的添加方法为P(9,1)×P(10,1)×P(11,1)=990种.
另先在11个位置中排上新添的三个节目有P(11,3)种,再在余下的8个位置补上原有的8个节目,只有一解,所以所有方法有P311×1=990种.
- hi投
-
三种情况:1,、左口袋取出2红球。这个概率是p1=1/C2,5 此时右边有4红3白
2、左手取出1红1白,这个概率是 p2=2×3/C2,5 此时右边有3红4白
3、左手取出2白球。这个概率是p3=1/C2,5 此时右边有2红5白
那么取出2红球概率就是P1+P2+P3=p1C2,4/C2,7+3p2/C2,7+p3/C2,7
- 左迁
-
7/90
数学中的排列组合公式是怎样计算的?
排列与组合的概念与计算公式 1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).2023-08-13 16:19:581
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
表示在n不同的元素里取m个元素不限顺序有几种取法要取m次第一次可以取的元素有n种情况第二次可以取的元素有n-1种情况...第m次可以取的元素有n-m+1种情况根据乘法原理得取m次的情况有n*(n-1)*(n-2)...*(n-m+1)=n!/(n-m)!因为是无序组合所以要除去重复计算的种类就是m!种得到的公式就是cnm=n!/[(n-m)!*m!]2023-08-13 16:20:532
排列组合中最基本公式A上m下n,等于什么来着
排列组合的公式是排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!此外规定0!=1(n!表示n(n-1)(n-2)1,也就是6!=6x5x4x3x2x1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号C(n,m)表示。C(n,m)=A(n,m)/m!;C(n,m)=C(n,n-m)。(n≥m)其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m!=n!/m!(n-m)!.n个元素被分成k类,每类的个数分别是n1,n2,nk这n个元素的全排列数为n!/(n1!×n2!××nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。2023-08-13 16:21:302
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来的
Cnm= Anm/m!= n(n-1)(n-2)……(n-m+1)/m(m-1)(m-2)……3*2*1=n(n-1)(n-2)……(n-m+1)(n-m)*……*3*2*1/(n-m)!m!=n!/m!(n-m)!2023-08-13 16:21:453
排列组合公式讲解
对于每一份信来说都有4个邮箱可以选择,即4种方案现在总共有三封信,将投完所有信看成一个事件,这个事件要分三步完成(即分别投三次信),没一步都有4种方案,所以完成该事件总共有64种2023-08-13 16:21:563
高二数学中关于排列组合的公式 变形公式 计算公式有哪些? 谢谢~
奥林匹克书上有```p什么的``很难写排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n!/(n-m)!组合数,从n个中取m个,相当于不排,就是n!/[(n-m)!m!]2023-08-13 16:22:202
高二数学知识点必修五:排列组合公式
排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式 右式. ∴等式成立. 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5化简. 解法一原式 解法二原式 点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可变为 ∵,, ∴原方程可化为. 即,解得2023-08-13 16:22:261
数学中的排列组合是什么意思?能举例说明吗?
两个数字能组成几个两位数,这是一个排列问题1,2能组成12,21它的排列数就是2!= 2 排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。 目录[隐藏]定义符号历史组合数的奇偶排列组合的基本理论和公式音乐专辑专辑介绍专辑曲目定义 符号 历史 组合数的奇偶 排列组合的基本理论和公式 音乐专辑 专辑介绍 专辑曲目排列组合公式[编辑本段]定义 公式P是排列公式,从N个元素取R个进行排列(即排序)。 (P是旧用法,现在教材上多用A,即Arrangement) 公式C是组合公式,从N个元素取R个,不进行排列(即不排序)。[编辑本段]符号 常见的一道题目 C-组合数 P-排列数 (现在教材为A) N-元素的总个数 R-参与选择的元素个数 !-阶乘 ,如5!=5*4*3*2*1=120 C-Combination 组合 P-Permutation排列 (现在教材为A-Arrangement) 一些组合恒等式 组合恒等式 排列组合常见公式2023-08-13 16:22:361
跪求..高中数学排列组合以及概率的所有计算方法以及公式..
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2023-08-13 16:22:581
高中数学排列组合公式Cnm(n为下标,m为上标)=n!/m!(n-m)!是怎么来...
表示在n不同的元素里取m个元素不限顺序有几种取法要取m次第一次可以取的元素有n种情况第二次可以取的元素有n-1种情况...第m次可以取的元素有n-m+1种情况根据乘法原理得取m次的情况有n*(n-1)*(n-2)...*(n-m+1)=n!/(n-m)!因为是无序组合所以要除去重复计算的种类就是m!种得到的公式就是Cnm=n!/[(n-m)!*m!]2023-08-13 16:23:071
排列组合数学公式解答
=C2,10 注:10-8=2在上,10在下=10*9/2*1请别忘了结题,谢谢!2023-08-13 16:23:263
高中数学排列组合公式
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。 排列组合定义 从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。 排列组合公式 A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! C-Combination 组合数 A-Arrangement 排列数 n-元素的总个数 m-参与选择的元素个数 !-阶乘 排列组合基本计数原理 加法原理与分布计数法 1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。 2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。 3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。 乘法原理与分布计数法 1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。 2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。2023-08-13 16:23:351
关于数学排列组合公式
看课本,上面说的很清楚。2023-08-13 16:23:464
高中数学的排列组合有哪些公式
公式如图所示2023-08-13 16:24:041
排列组合公式是什么?
排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。例如:A(4,2)=4!/2!=4*3=12。组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。扩展资料:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m*n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同即分类不重;完成此任务的任何一种方法,都属于某一类即分类不漏。排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。参考资料来源:百度百科-排列组合(组合数学中的一种)2023-08-13 16:24:291
.高中数学排列组合以及概率的所有计算方法以及公式..
1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2023-08-13 16:25:021
排序和组合的公式各是什么?
排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。例如:A(4,2)=4!/2!=4*3=12。组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。扩展资料:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m*n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同即分类不重;完成此任务的任何一种方法,都属于某一类即分类不漏。排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。参考资料来源:百度百科-排列组合(组合数学中的一种)2023-08-13 16:25:091
有什么公式可以用于排列组合呢?
排列的公式:A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。例如:A(4,2)=4!/2!=4*3=12。组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!*(n-m)!。例如:C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。扩展资料:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m*n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同即分类不重;完成此任务的任何一种方法,都属于某一类即分类不漏。排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。参考资料来源:百度百科-排列组合(组合数学中的一种)2023-08-13 16:25:351
排列组合公式有几个?
排列组合计算公式如下:1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。扩展资料排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。参考资料:百度百科—排列组合2023-08-13 16:25:471
数学中的排列组合的公式是多少来着?
pmn=m!/(m-n)!cmn=pmn/n!2023-08-13 16:26:062
高三数学排列组合知识点
排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法.排列 把5本书分给3个人,有几种分法组合 1.排列及计算公式 从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的.元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于排列P计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,如果三个一组,代表三国联盟,可以组合成多少个三国联盟? A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于组合C计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*12023-08-13 16:26:271
排列组合C几几怎么算的
A(3,2)=3×2,写的时候等号左边3是下标,2是上标,等号右边从下标3开始,连续乘上标2个数字,每个数字都比前面小1。C(3,2)=(3×2)÷(2×1)=3,或者C(3,2)=3!÷2!÷(3-2)!=(3×2)÷(2×1)÷1=3,写的时候等号左边3是下标,2是上标,等号右边的分子从下标3开始,连续乘上标2个数字,每个数字都比前面小1,分母从上标2开始,连续乘上标2个数字,每个数字都比前面小1;或者用上标的阶乘,除以下标的阶乘,再除以上标与下标的差的阶乘。2023-08-13 16:26:382
如何正确理解排列组合公式?
在高中数学的排列部分,使用"An"和"Cn"公式的情况要取决于两个因素:是否考虑元素的顺序以及是否允许重复。1. "An"式(也称为angement):当需要考虑元素的顺序时,使用"An"公式。排列是指从给定元素中选取一部分(或全部)进行排列,考虑元素的顺序。通常情况下,排列的元素个数与原始给定的元素个数相同。"An"的公式表示为An = n!/(n-r)!,其中n代表原始给定的元素个数,r代表需要排列的元素个数。例子:从A、B、C三个字母中选取两个字母进行排列,则使用"An"公式:A2 = 3!/(3-2)! = 6。2. "Cn"公式(也称为Combination):当不考虑元素的顺序时,使用"Cn"公式。组合是指从给定的元素中选取一部分(或全部)进行组合,不考虑元素的顺序。通常情况下,组合的元素个数少于原始给定的元素个数。"Cn"的公式表示为Cn = n!/[(n-r)! * r!],其中n代表原始给定的元素个数,r代表需要组合的元素个数。例子:从A、B、C三个字母中选取两个字母进行组合,则使用"Cn"公式:C2 = 3!/[(3-2)! * 2!] = 3。总结起来,无论使用"An"还是"Cn"公式,关键是要明确是否需要考虑元素的顺序,以及是否允许重复元素的选择。如果需要考虑顺序并且不允许重复选择,则使用"An"公式;如果不考虑顺序或允许重复选择,则使用"Cn"公式。2023-08-13 16:27:191
数学的排列组合公式C(n,m)的计算
公式中,前面列出三项是要让人看出规律,真正的项数未必有这么多。错误是最后多写了(5-3+1),也就是前面写了 (5-2)后,后面就没有了,因为它就是最后一项 5-3+1 。排列a与组合c计算方法计算方法如下:排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。组合C(n,m)=P(n,m)/P(m,m)=n!/m!(n-m)!例如A(4,2)=4!/2!=4*3=12。C(4,2)=4!/(2!*2!)=4*3/(2*1)=6。排列组合中的基本计数原理(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。2023-08-13 16:27:281
排列组合公式讲解
公式P是指排列,从N个元素取R个进行排列(即排序)。(P是旧用法,现在教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。C-组合数P-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5*4*3*2*1=120C-Combination组合P-Permutation排列对组合数C(n,k)(n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1,则C(n,k)为偶数;否则为奇数。组合数的奇偶性判定方法为:结论:对于C(n,k),若n&k==k则c(n,k)为奇数,否则为偶数。证明:利用数学归纳法:由C(n,k)=C(n,k-1)+C(n-1,k-1);对应于杨辉三角:1121133114641...可以验证前面几层及k=0时满足结论,下面证明在C(n-1,k)和C(n-1,k-1)(k>0)满足结论的情况下,C(n,k)满足结论。1).假设C(n-1,k)和C(n-1,k-1)为奇数:则有:(n-1)&k==k;(n-1)&(k-1)==k-1;由于k和k-1的最后一位(在这里的位指的是二进制的位,下同)必然是不同的,所以n-1的最后一位必然是1。现假设n&k==k。则同样因为n-1和n的最后一位不同推出k的最后一位是1。因为n-1的最后一位是1,则n的最后一位是0,所以n&k!=k,与假设矛盾。所以得n&k!=k。2).假设C(n-1,k)和C(n-1,k-1)为偶数:则有:(n-1)&k!=k;(n-1)&(k-1)!=k-1;现假设n&k==k.则对于k最后一位为1的情况:此时n最后一位也为1,所以有(n-1)&(k-1)==k-1,与假设矛盾。而对于k最后一位为0的情况:则k的末尾必有一部分形如:10;代表任意个0。相应的,n对应的部分为:1{*}*;*代表0或1。而若n对应的{*}*中只要有一个为1,则(n-1)&k==k成立,所以n对应部分也应该是10。则相应的,k-1和n-1的末尾部分均为01,所以(n-1)&(k-1)==k-1成立,与假设矛盾。所以得n&k!=k。由1)和2)得出当C(n,k)是偶数时,n&k!=k。3).假设C(n-1,k)为奇数而C(n-1,k-1)为偶数:则有:(n-1)&k==k;(n-1)&(k-1)!=k-1;显然,k的最后一位只能是0,否则由(n-1)&k==k即可推出(n-1)&(k-1)==k-1。所以k的末尾必有一部分形如:10;相应的,n-1的对应部分为:1{*}*;相应的,k-1的对应部分为:01;则若要使得(n-1)&(k-1)!=k-1则要求n-1对应的{*}*中至少有一个是0.所以n的对应部分也就为:1{*}*;(不会因为进位变1为0)所以n&k=k。4).假设C(n-1,k)为偶数而C(n-1,k-1)为奇数:则有:(n-1)&k!=k;(n-1)&(k-1)==k-1;分两种情况:当k-1的最后一位为0时:则k-1的末尾必有一部分形如:10;相应的,k的对应部分为:11;相应的,n-1的对应部分为:1{*}0;(若为1{*}1,则(n-1)&k==k)相应的,n的对应部分为:1{*}1;所以n&k=k。当k-1的最后一位为1时:则k-1的末尾必有一部分形如:01;(前面的0可以是附加上去的)相应的,k的对应部分为:10;相应的,n-1的对应部分为:01;(若为11,则(n-1)&k==k)相应的,n的对应部分为:10;所以n&k=k。由3),4)得出当C(n,k)为奇数时,n&k=k。综上,结论得证!2023-08-13 16:28:031
cnm排列组合公式是什么?
CNM的排列组合公式如下:排列公式:P(n, m) = n! / (n-m)!组合公式:C(n, m) = n! / (m! * (n-m)!)其中,n表示元素总数,m表示取出的元素个数,n!表示n的阶乘,即n*(n-1)*...*2*1。2023-08-13 16:28:131
数学排列组合公式算法
找一本有关数学书,补缺”排列与组合“2023-08-13 16:29:393
组合排列的数学公式是什么?
如图:排列组合简介:排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。2023-08-13 16:29:461
cmn排列组合公式是什么?
组合是数学中的一个概念,表示从一组对象中选择若干个对象的方式,而不考虑它们的顺序。从 n 个不同的元素中选取 m 个元素的组合数记为 C(n, m),也可以表示为 "n choose m"。排列是从一组对象中按照一定的顺序选择若干个对象的方式。从 n 个不同的元素中选取 m 个元素进行排列的数目记为 P(n, m),也可以表示为 "n permute m"。下面是组合和排列的计算公式:组合公式:C(n, m) = n! / (m! * (n - m)!)其中,n! 表示 n 的阶乘,即 n! = n * (n - 1) * (n - 2) * ... * 2 * 1。排列公式:P(n, m) = n! / (n - m)!在计算排列时,要求 m ≤ n。这些公式可以用于计算从一组对象中选择若干个对象的方式的数目。它们在组合数学、概率论、计算机科学等许多领域中有广泛的应用。2023-08-13 16:30:143
排列组合cnk公式是什么?
cnk公式如下图所示:莱布尼兹公式好比二项式定理,它是用来求f(x)*g(x)的高阶导数的。(uv)" = u"v+uv",(uv)"‘ = u""v+2u"v"+uv"‘依数学归纳法,……,可证该莱布尼兹公式。(uv)一阶导=u一阶导乘以v+u乘以v一阶导(uv)二阶导=u二阶导乘以v+2倍u一阶导乘以v一阶导+u乘以v二阶导(uv)三阶导=u三阶导乘以v+3倍u二阶导乘以v一阶导+3倍u一阶导乘以v二阶导+u乘以v三阶导排列组合的发展历程:根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。2023-08-13 16:30:301
组合数学口诀是什么
口诀如下:加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。相关介绍:虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。同时,人们对数有了深入的了解和研究,在形成与形密切相关的各种数学分支的过程中,如几何学、拓扑学以至范畴论的形成与发展,逐步地从形的多样性也发现了数形的多样性,产生了各种数形的技巧。近代的集合论、数理逻辑等反映了潜在的数与形之间的结合。而现代的代数拓扑和代数几何等则将数与形密切地联系在一起了。这些,对于以数的技巧为中心课题的近代组合学的形成与发展都产生了而且还将会继续产生深刻的影响。2023-08-13 16:30:451
1平方千米等于多少平方米
1平方千米=1000000平方米边长1000米的正方形的面积是1平方千米,1000X1000=1000000(平方米)所以:1平方千米等于1000000平方米。希望帮到你望采纳谢谢加油2023-08-13 16:31:361
一平方千米是多少平方米?
算一平方千米等于多少平方米可以先算一平方千米等于多少公顷再算一平方千米等于多少平方米?1平方千米:100公顷:1000000平方米2023-08-13 16:31:432
1平方千米等于多少平方米?
根据1千米=1000米可得 1平方千米=1千米*1千米=10u2076平方米。2023-08-13 16:32:061
1平方千米等于多少平方米?
1平方千米=1000000平方米换算方法:1、可以直接记住,平方毫米、平方厘米、平方分米、平方米之间的每两级之间的进制是100,平方米和平方千米之间的进制是1000000.2、1平方千米=1千米×1千米=1000米×1000米=1000000平方米。2023-08-13 16:32:451
1平方千米等于多少平方米?
1千米=1000米1平方千米=1000000平方米2023-08-13 16:33:081
1平方千米等于多少平方米 怎么换算
1、1平方千米=1000000平方米。 2、换算方法:可以直接记住,平方毫米、平方厘米、平方分米、平方米之间的每两级之间的进制是100,平方米和平方千米之间的进制是1000000。1平方千米=1千米×1千米=1000米×1000米=1000000平方米。2023-08-13 16:34:391
1平方千米等于多少平方米
记住1平方千米实际上就是 1000米 *1000米得到的是10的6次方也就是100万平方米2023-08-13 16:34:481
1平方千米=多少平方米是怎么算的?
很显然1千米=1000米那么求面积的时候再两边同时进行平方就可以得到1平方千米=100000平方米,即10万平方米2023-08-13 16:35:291
10平方千米等于多少平方米
10平方千米=10000000平方米本题已解答,如果满意请点击右下角采纳答案2023-08-13 16:36:172
1平千米等于多少平方米
1平方千米等于1000000平方米。 就是边长是1千米的正方形的面积1平方千米等于1千米乘以1千米等于1000000平方米。2023-08-13 16:36:541
Pb 与浓盐酸反应
铅放在空气中很快被一层氧化物覆盖,,一般以+2、+4价化合物存在,,+4价化合物有强氧化性2023-08-13 16:19:354
Cr、Mn、Sn、Pb分别和Cl能生成什么化合物?
CrCl2【二氯化铬】CrCl3【三氯化铬/氯化铬(III)】CrCl4【四氯化铬/氯化铬(IV)】MnCl2【二氯化锰/氯化锰(II)/氯化亚锰】MnCl3【三氯化锰】(MnCl4【四氯化锰】{*注意!!*这一物质极其不常见,一般学习中从不提及,即使方程式中也只写成MnO2+4HCl=MnCl2+Cl2↑+2H2O,但其资料地址下附}分子量196.75。只存在于二氧化锰与浓盐酸相作用的过程中,并立即分解成二氯化锰及氯,但可制得其相应的络盐结晶。如化学式K2MnCl6为深红色的晶体,由高锰酸钙与氯化钾加入冷却的40%浓盐酸并搅拌而得。)SnCl2【二氯化锡/氯化亚锡】SnCl4【四氯化锡】PbCl2【二氯化铅】PbCl4【四氯化铅】2023-08-13 16:19:251
pbO2有什么性质
..................2023-08-13 16:19:184
如何鉴别二氯化锡和二氯化铅
可以测密度,铅比较重2023-08-13 16:19:093
pb3o4+hcl==pbcl2+cl2+h2o用化合价升降法配速度~~在线等
2Pb3O4+16HCl==6PbCl2+2Cl2+8H2O2023-08-13 16:19:003
铅的各种化合物的化学性质(急!!!!!!!!!!!)
1.Pb(NO3)2+2HCl=PbCl2↓+2HNO3↑2.铅的不溶盐有PbCrO4(黄色),PbCl2(难溶于冷水),PbSO4等等。3.醋酸铅是弱电解质4 2PbO2 + 2H2SO4 = 2PbSO4 + O2 + 2H2O PbO2本身加热分解也放出O2,当它与可燃物如P、S在一起研磨时即发火,所以用于制造火柴中。剩余的请参考2023-08-13 16:18:522
已知:Pb的化合价只有+2、+4,且+4价的Pb具有强氧化性,常温下能氧化浓HCl生成Cl2;PbO2不稳定,随温度升
(1)Pb在化合物里显+2价或+4价,根据化合价代数和为零的原则写出Pb的两种氧化物形式为:PbO和PbO2,那么Pb2O3的氧化物的表示形式可以写成 PbO?PbO2;故答案为:PbO?PbO2(2)Pb2O3中Pb的化合价只有+2、+4,再根据化合价代数和等于零,求得Pb的总化合价为+3价,即可确定Pb2O3中有一个+4价、有一个+2价,且+4价的Pb具有强氧化性,能氧化浓盐酸生成C12,本身被还原成+2价Pb,生成PbC12,根据元素守恒得反应物与生成物:Pb2O3+HCl(浓)→PbCl2+Cl2↑+H2O,根据化合价升降法配平该氧化还原反应,Pb2O3中一个+4价的Pb降低到+2价,降低2价;HCl(浓)中-1价的Cl上升到0价生成Cl2,上升1价×2,所以Pb2O3和Cl2前面的计量数都为1,根据原子守恒配平其它物质前计量数,得各物质前计量数为1、6、2、1、3,故方程式为Pb2O3+6HCl(浓)═2PbCl2+Cl2↑3H2O;故答案为:Pb2O3+6HCl(浓)═2PbCl2+Cl2↑3H2O;(3)根据题意:amol PbO2分解所得混合物中n(Pb2+)=ax mol、n(Pb4+)=(a-ax) mol.在反应过程中amol PbO2中+4价的Pb具有强氧化性作氧化剂,+4价的Pb最终全部降低为+2价,根据得失电子守恒:先加热分解生成O2,得n(O2)═2ax4=ax2mol;后再与足量的浓盐酸反应生成Cl2,得n(Cl2)═(a?ax)mol×22═(a-ax) mol,则 y═n(O2)+n(Cl2)═ax2mol+(a-ax) mol═(a-ax2)mol,故答案为:y═a(1-0.5x)mol;2023-08-13 16:18:421
pbci2与浓盐酸反应方程式
应该是PbO2吧,?PbCl2与盐酸不反应PbO2+4HCl=PbCl2+Cl2+2H2O2023-08-13 16:18:321
Pb2+ + Cl2 + OH- 反应生成什么
生成Pb(OH)2Cl42023-08-13 16:18:242