汉邦问答 / 问答 / 问答详情

我是一名准高三的职高生,谁有职高数学公式,给我发一下谢谢

2023-08-13 09:27:33
NerveM

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60°的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48定理 四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论 任意多边的外角和等于360°

52平行四边形性质定理1 平行四边形的对角相等

53平行四边形性质定理2 平行四边形的对边相等

54推论 夹在两条平行线间的平行线段相等

55平行四边形性质定理3 平行四边形的对角线互相平分

56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等

62矩形判定定理1 有三个角是直角的四边形是矩形

63矩形判定定理2 对角线相等的平行四边形是矩形

64菱形性质定理1 菱形的四条边都相等

65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1 四边都相等的四边形是菱形

68菱形判定定理2 对角线互相垂直的平行四边形是菱形

69正方形性质定理1 正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1 关于中心对称的两个图形是全等的

72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一

点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理 如果一组平行线在一条直线上截得的线段

相等,那么在其他直线上截得的线段也相等

79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第

三边

81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它

的一半

82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的

一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应

线段成比例

87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94 判定定理3 三边对应成比例,两三角形相似(SSS)

95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平

分线的比都等于相似比

97 性质定理2 相似三角形周长的比等于相似比

98 性质定理3 相似三角形面积的比等于相似比的平方

99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

于它的余角的正弦值

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等

于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理 不在同一直线上的三点确定一个圆。

110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2 圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理 一条弧所对的圆周角等于它所对的圆心角的一半

117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交 d<r

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理 圆的切线垂直于经过切点的半径

124推论1 经过圆心且垂直于切线的直线必经过切点

125推论2 经过切点且垂直于切线的直线必经过圆心

126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理 弦切角等于它所夹的弧对的圆周角

129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-r<d<R+r(R>r)

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)

136定理 相交两圆的连心线垂直平分两圆的公共弦

137定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积Sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2

146内公切线长= d-(R-r) 外公切线长= d-(R+r)

实用工具:常用数学公式

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h

正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"

圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

圆锥曲线包括椭圆,双曲线,抛物线

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

·圆锥曲线的参数方程和直角坐标方程:

1)直线

参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)

直角坐标:y=ax+b

2)圆

参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )

直角坐标:x^2+y^2=r^2 (r 为半径)

3)椭圆

参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1

4)双曲线

参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )

直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)

5)抛物线

参数方程:x=2pt^2 y=2pt (t为参数)

直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )

圆锥曲线(二次非圆曲线)的统一极坐标方程为

ρ=ep/(1-e·cosθ)

其中e表示离心率,p为焦点到准线的距离。

我是高考过来的,一般我们省是自主命题,最后一道大题通常就是圆锥曲线的综合型题目,这种题目的分值大约18分左右但是计算量相当的巨大,一般会设几个小问题,建议楼主视自己的情况而定,有取舍的做这些题目,而所谓的重点就是平常练习中的熟练程度了,高考的数学还是考察个人的解题熟练程度,所以想要取得高分还是要做一些有代表性的题目在注意总结考120以上应该没有问题,最后祝你金榜题名! 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同)

2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

首先该图形能建坐标系

如果能建

则先要会求面的法向量

求面的法向量的方法是

1。尽量在空中找到与面垂直的向量

2。如果找不到,那么就设n=(x,y,z)

然后因为法向量垂直于面

所以n垂直于面内两相交直线

可列出两个方程

两个方程,三个未知数

然后根据计算方便

取z(或x或y)等于一个数

然后就求出面的一个法向量了

会求法向量后

1。二面角的求法就是求出两个平面的法向量

可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积 :cos<a,b>=|n·n1|/|n|

如过在两面的同一边可以看到两向量的箭头或箭尾相交

那么二面角就是上面求的两法向量的夹角的补角

2。点到平面的距离就是求出该面的法向量 在平面上任取(除被求点在该平面的射影外)一点,

求出平面外那点和你所取的那点所构成的向量记为n1

点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求

设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν 则

线线平行 l‖m <=> a‖b <=> a=kb;

线面平行 l‖α <=> a⊥μ <=> a·μ=0;

面面平行 α‖β <=> μ‖ν <=> μ=kν

线线垂直 l⊥m <=> a⊥b <=>a·b=0;

线面垂直 l⊥α <=> a‖μ <=> a=kμ;

面面垂直 α⊥β <=> μ⊥ν <=> μ·ν=0

肖振

谢谢! 正弦函数 sin(A)=a/h 余弦函数 cos(A)=b/h 正切函数三角函数常用公式: 同角三角函数间的基本关系式: ·平方关系: sin^2(α

hi投

书本上不是有很多数学公式吗?还需要发吗

圆锥曲线的参数方程

圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)
2023-08-12 22:50:022

圆锥曲线参数方程

圆锥曲线的参数方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)2)圆的参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)4)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)
2023-08-12 22:50:112

高中数学圆锥曲线公式定理

圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a>0)x=ay^2+by+c(开口方向为x轴,a>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。
2023-08-12 22:50:181

圆锥参数方程 圆锥曲线参数方程题目

圆锥曲线的参数方程 1、椭圆的参数方程 x =a cos u03d5x 2y 2 由例42+2=1(a >b >0) 的一个参数方程为{(u03d5为参数) y =b sin u03d5a b 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 思考: 类比圆的参数方程中参数的意义,椭圆的参数方程中参数u03d5的意义是什么? (1)如下图,以原点为圆心,分别以a ,b (a >b >0)为半径作两个圆,点B 是大圆 半径OA 与小圆的交点,过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程 . 设以ox 为始边,OA 为终边的角u03d5,点M 的坐标是(x , y ) ,那么点A 的横坐标为x , 点B 的纵坐标为y ,由点A , B 均在角u03d5的终边上,由三角函数的定义有 x =cos u03d5=a cos u03d5y =OB sin u03d5=b sin u03d5 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是{ x =a cos u03d5 (u03d5为参数) y =b sin u03d5 这是中心在原点O ,焦点在x 轴上的椭圆。 在椭圆的参数方程中,通常规定参数u03d5的范围是u03d5∈[0, 2π) u23a7x =b cos u03d5, u23a7x =a cos u03d5, 焦点在Y 轴u23a8焦点在X 轴u23a8 u23a9y =a sin u03d5. u23a9y =b sin u03d5. 练习1:把下列普通方程化为参数方程. 极坐标与参数方程 一、极坐标方程与直角坐标方程的互化 例1. 在直角坐标系xoy 中,以O 为极点,x 正半轴为极轴建立极坐标系,⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.曲线C 的极坐标方程为ρcos(θ-M,N 分别为曲线C 与x 轴,y 轴的交点。 (1)写出曲线C 的直角坐标方程,并求M,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程; (3)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (4)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程; 二、参数方程的问题 例2. 在直角坐标系xoy 中,曲线C 1的参数方程为u23a8 π 3 ) =1, u23a7x =3cos αu23a9y =sin α (α为参数) ,以原点O 为极 点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin(θ+ π 4 ) =42. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标. (3)若点Q (x , y ) 为曲线C 1上的动点,求x +y 的最大值和最小值. 跟踪训练2:已知直线l 的参数方程为:u23a8 u23a7x =-2+t cos α (t 为参数) ,以坐标原点为极点, u23a9y =t sin α x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ. (Ⅰ)求曲线C 的参数方程;(Ⅱ)当α= 巩固练习:1. 在平面直角坐标系xoy 中,若 π 4 时,求直线l 与曲线C 交点的极坐标. u23a7x =t , u23a7x =3cos u03d5, l :u23a8(t为参数) 过椭圆C :u23a8u23a9y =t -a u23a9y =2sin u03d5(u03d5为参数) 的右顶点,则常数 a 的值为u23a7x =cos α xoy C 2. 在直角坐标系中,曲线1的参数方程为u23a8,(α为参数). 在极坐标系 y =1+sin αu23a9 (与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ (cos θ-sin θ)+1=0,则C 1与C 2的交点个数为 圆锥曲线极坐标及参数方程练习题 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.曲线u23a8 u23a7x =-2+5t . (t 为参数) 与坐标轴的交点是( ) y =1-2t u23a9 25 12 15 12 59 (,0) B .(0,) (,0) C .(0,-4) 、(8,0) (8,0) D .(0,) 、A .(0,) 2.把方程xy =1化为以t 参数的参数方程是( ). 1 u23a7u23a7x =sin t u23a7x =cos t u23a7x =tan t u23aax =t 2u23aau23aau23aaA .u23a8 B . C . D .111 u23a8u23a8u23a81 -y =y =y =u23aay =t 2u23aau23aau23aasin t cos t tan t u23a9u23a9u23a9u23a9 3.若直线的参数方程为u23a8 A . u23a7x =1+2t . (t 为参数) ,则直线的斜率为( ) u23a9y =2-3t 2233 B .- C . D .- 3322 4.点(1,2)在圆u23a8 u23a7x =-1+8cos θ 的( ). u23a9y =8sin θ B .外部 C .圆上 D .与θ的值有关 A .内部 1u23a7 u23aax =t + 5.参数方程为u23a8. t (t 为参数) 表示的曲线是( ) u23aau23a9y =2 A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆u23a8 u23a7x =-3+2cos θu23a7x =3cos θ 与u23a8的位置关系是( ). u23a9y =4+2sin θu23a9y =3sin θ C .相离 D .内含 A .内切 B .外切 7 .与参数方程为u23a8 u23a7u23aax =u23aau23a9y =t 为参数) 等价的普通方程为( ). y 2y 22 =1 B .x +=1(0≤x ≤1) A .x +44 2 y 2y 22=1(0≤y ≤2) D .x +=1(0≤x ≤1,0≤y ≤2) C .x +44 2 8.曲线u23a8 u23a7x =5cos θπ . (≤θ≤π) 的长度是( ) u23a9y =5sin θ3 A .5π B .10π C .5π10π D . 33 9.点P (x , y ) 是椭圆2x 2+3y 2=12上的一个动点,则x +2y 的最大值为( ). A . B . C D 1u23a7x =1+t u23aa2u23aa10 .直线u23a8(t 为参数) 和圆x 2+y 2=16交于A , B 两点, u23aay =-u23aau23a92 则AB 的中点坐标为( ). A .(3,-3) B .( C .-3) D .(3, u23a7x =4t 2 11.若点P (3,m ) 在以点F 为焦点的抛物线u23a8. (t 为参数) 上,则|PF |等于( ) u23a9y =4t A .2 B .3 C .4 D .5 u23a7x =-2+t 12.直线u23a8. (t 为参数) 被圆(x -3) 2+(y +1) 2=25所截得的弦长为( )y =1-t u23a9 A B .401 C D 4 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. t -t u23a7u23aax =e +e (t 为参数) 的普通方程为__________________. 13.参数方程u23a8t -t u23aau23a9y =2(e -e ) u23a7u23aax =-2(t 为参数) 上与点A (- 2,3) _______. 14 .直线u23a8u23aau23a9y =315.直线u23a8u23a7x =t cos θu23a7x =4+2cos α与圆u23a8相切,则θ=_______________. y =t sin θy =2sin αu23a9u23a9 2216.设y =tx (t 为参数) ,则圆x +y -4y =0的参数方程为____________________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) u23a7u23aax =1+t (t 为参数 ) 和直线l 2:x -y -=0的交点P 的坐标,及点P 求直线l 1:u23a8u23aau23a9y =-5+与Q (1,-5) 的距离. 18.(本小题满分12分) 过点P 作倾斜角为α的直线与曲线x 2+12y 2=1交于点M , N , 2 求|PM |u22c5|PN |的值及相应的α的值. 19.(本小题满分12分) 已知u2206ABC 中,A (-2,0), B (0,2),C (cosθ, -1+sin θ) (θ为变数) , 求u2206ABC 面积的最大值. 20.(本小题满分12分)已知直线l 经过点P (1,1), 倾斜角α= (1)写出直线l 的参数方程. (2)设l 与圆x +y =4相交与两点A , B ,求点P 到A , B 两点的距离之积. 22π6, 21.(本小题满分12分) 1t u23a7-t x =(e +e ) cos θu23aau23aa2分别在下列两种情况下,把参数方程u23a8化为普通方程: 1u23aay =(e t -e -t )sin θu23aau23a92 (1)θ为参数,t 为常数;(2)t 为参数,θ为常数. 22.(本小题满分12分) 已知直线l 过定点P (-3, -) 与圆C :u23a83 2u23a7x =5cos θ(θ为参数) 相交于A 、B 两点. u23a9y =5sin θ 求:(1)若|AB |=8,求直线l 的方程; (2)若点P (-3, -) 为弦AB 的中点,求弦AB 的方程. 32
2023-08-12 22:50:581

圆锥曲线 参数方程

原式化为:(x-3)^2+y^2=9令x-3=3cosθ y=3sinθ 所以这个方程的参数方程为:x=3+3cosθ y=3sinθ
2023-08-12 22:51:061

请问圆锥曲线怎么化成参数方程? 曲线上点到直线的距离的最值怎么列式?

设圆锥曲线方程为x^2/a^2+y^2/b^2=1,这里a,b都是正数,不限制谁大,谁小。也就是说焦点在哪个轴上不知道。因为(cosφ)^2+(sinφ)^2=1,为了把x^2/a^2=(cosφ)^2 y^2/b^2=(sinφ)^2一定是x与cosφ对着,y与sinφ对着两边开方得x=acosφ y=bsina(φ为参数)这就是参数方程的来历。
2023-08-12 22:51:161

高中数学 圆锥曲线的参数方程

1、椭圆斜率为3的弦中点的运动轨迹一定是在椭圆内啊,2、如果这个轨迹你求出来的是直线方程l,那么应该是该直线l在椭圆内的一段,即线段ab3、把该直线l与椭圆c联立,就是求这个线段ab的两个端点,实际上只要求出a<x<b,就可以由l确定ab了
2023-08-12 22:51:362

高中圆锥曲线怎么用参数方程解?能举例说明什么情况下能用吗?最好有题目

椭圆x^2/a^2+y^2/b^2=1,a>b>0参数方程为x=acosψ y=bsinψ ψ为参数
2023-08-12 22:51:461

圆锥曲线的方程或者参数方程是什么

圆锥曲线的极坐标方程p=ed/(1-ecost)表示离心率为e,焦点到相应准线距离为d的圆锥曲线方程.(1)当e=1时,极点在抛物线的焦点;(2)当e1时,极点在双曲线的右焦点,若p属于实数则表示双曲线,p属于正实数则表示双曲线右支;(3)当0<e<1,极点在椭圆的左焦点.(注:当极点与直角坐标原点重合,极轴与X轴正半轴重合时,圆锥曲线的方程只需利用互化公式转化可得到).
2023-08-12 22:51:531

圆锥曲线中一些常见证明题的结论?

[编辑本段]圆锥曲线的参数方程和直角坐标方程  1)椭圆  参数方程:X=acosθ Y=bsinθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1  2)双曲线  参数方程:x=asecθ y=btanθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)  3)抛物线  参数方程:x=2pt^2 y=2pt (t为参数)  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )  圆锥曲线(二次非圆曲线)的统一极坐标方程为  ρ=ep/(1-e×cosθ)  其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。  |PF1|=a+ex |PF2|=a-ex  双曲线:  P在左支,|PF1|=-a-ex |PF2|=a-ex  P在右支,|PF1|=a+ex |PF2|=-a+ex  P在下支,|PF1|= -a-ey |PF2|=a-ey  P在上支,|PF1|= a+ey |PF2|=-a+ey  圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2  即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)  圆锥曲线中求点的轨迹方程  在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。
2023-08-12 22:52:011

选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数

(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=3
2023-08-12 22:52:081

圆锥曲线焦点弦的性质有那些?

圆锥曲线开放分类:数学、几何、椭圆、双曲线、抛物线圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x轴,a<>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。
2023-08-12 22:52:384

直线和圆锥曲线的参数方程

的参数方程
2023-08-12 22:52:592

参数是一个什么东西呢?

一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。
2023-08-12 22:53:051

圆锥曲线参数方程的几何意义

没意义
2023-08-12 22:53:216

圆锥曲线的所有定理 高中以上

圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)直角坐标:y=ax+b 2)圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )直角坐标:x^2+y^2=r^2 (r 为半径)3)椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 14)双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)5)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。
2023-08-12 22:53:561

圆锥曲线的特征?

·圆锥曲线的参数方程和直角坐标方程:  1)直线   参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)  直角坐标:y=ax+b   2)圆  参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )  直角坐标:x^2+y^2=r^2 (r 为半径)  3)椭圆  参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1  4)双曲线  参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)  5)抛物线  参数方程:x=2pt^2 y=2pt (t为参数)  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )  圆锥曲线(二次非圆曲线)的统一极坐标方程为  ρ=ep/(1-e×cosθ)  其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。  |PF1|=a+ex |PF2|=a-ex  双曲线:  P在左支,|PF1|=-a-ex |PF2|=a-ex  P在右支,|PF1|=a+ex |PF2|=-a+ex  P在下支,|PF1|= -a-ey |PF2|=a-ey  P在上支,|PF1|= a+ey |PF2|=-a+ey  圆锥曲线的光学性质:  1)椭圆:点光源在一个焦点上,光线通过另一个焦点。  2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。  3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。
2023-08-12 22:54:041

高中直线与圆锥曲线的参数方程应用问题

直线参数方程中,如果参数t在x,y中的系数的平方和为1,则参数t具有几何意义,即直线所通过的定点到参数t所对应点的有向线段长度为tt为正,表示有向线段方向与正方向相同,t为负,表示有向线段方向与正方向相反。线段的长度为有向线段长度的绝对值,即t的绝对值将参数方程代入圆方程,得t^2+2(1+√3)t-8=0该方程的两个根t1、t2即为有向线段PA,PB的长度。由韦达定理,t1*t2=-8,其相反数(绝对值)即为所求。
2023-08-12 22:54:141

过圆锥曲线上任意一点的切线方程是什么?

写出圆锥曲线的方程,或者求导,或者用”蝶儿他“等于0求出斜率,再把那点坐标带进去就行了。
2023-08-12 22:54:232

如图,求圆锥曲线方程?

用截面法来求解!∭dxdydz=∫(0,1)dz∬dxdy显然,∬dxdy为曲面上的截面面积x^2+y^2=z则截面为半径为√z的圆,则∬dxdy=πz则原式=∫(0,1) πzdz=π/2z^2|(0,1)=π/2
2023-08-12 22:54:302

直线,圆,圆锥曲线参数方程中参数的意义,举例说明

椭圆是x2/a+y2/b=1,c2=a2-b2不妨画一个椭圆,你可以画成像个水平放置的鸡蛋的形状,那么,a就表示长半轴长,b表示短半轴长,c表示焦点到原点的距离。抛物线是y2=2px,p没有什么确实的几何意义,不过,p的正负可以决定开口方向。双曲线是x2/a-y2/b=1,a2=b2+c2a表示实轴长,b表示虚轴长。a和b可以确定双曲线的渐近线。
2023-08-12 22:54:391

这道圆锥曲线题能不能用参数方程解?

1╱(1-cosa)=2╱(1+cosa)~k=二倍根号二,
2023-08-12 22:54:582

圆锥曲线的极坐标方程

圆锥曲线的极坐标方程1、圆锥曲线是平面上的曲线。2、极坐标表示法:在直角坐标系中,用直线与平面的夹角作为极轴,把点到直线上各点的距离作为极距(即到定点O的距离),以点P为圆心、极点O为焦点的圆锥曲线称为圆锥曲线。3、设P(x)是过定点O的任意一点p(x0)的轨迹,那么P(x)就是该点在直角坐标系中所对应的极坐标位置X=a+b-c。4、当A0时,有X=a+b-c;B0时X=a+b;C0时 X= a+ b + c - d 。5、若已知抛物线y=2px/2,且p>0,则可知Y=2px*cos2α/2,其中α<0。(1) 椭圆参数方程1 椭圆标准方程2 标准椭圆的焦点在E上3 标准椭圆的准线通过原点4 准线长L=(1/2π*e^2/2)/2 (e^2/2) = 2 L/(2-1) = 1/4 L / 2/3 l / 4/3 l / 3/8 l * 5/8 L / 8/16 l ,其中l 为常数项。注意:如果E和L不同的话,应分别计算后再相减
2023-08-12 22:55:061

数学选修讲什么

【2-2】第一章 导数及其应用 第二章 推理与证明 第三章 数系的扩充与复数的引入 【2-3】1.离散型随机变量及分布列 2.二项分布及其应用 3.离散型随机变量均值与方差 4.正态分布 【4-4】第一讲 坐标系 1.平面直角坐标系 2.极坐标系 3.简单曲线的极坐标系 4.柱坐标系与球坐标系 第二讲 参数方程 1.曲线的参数方程 2.圆锥曲线的参数方程 3.直线的参数方程 4.渐近线与摆线 【4-5】 第一讲 不等式和绝对值不等式 1.不等式 2.绝对值不等式 第二讲 证明不等式的基本方法 1.比较法 2.综合法与分析法 3.反证法与放缩法 第三讲 柯西不等式与排序不等式 1.二维形式的柯西不等式 2.一般形式的柯西不等式 3.排序不等式 第四讲 数学归纳法证明不等式 1.数学归纳法 2.用数学归纳法证明不等式 打这么久也不容易,是吧.如要再详细一点再联系.
2023-08-12 22:56:001

什么是椭圆的参数方程

椭圆的参数方程x=acosθ,y=bsinθ。(一个焦点在极坐标系原点,另一个在θ=0的正方向上)r=a(1-e^2)/(1-ecosθ)(e为椭圆的离心率=c/a)求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解x=a×cosβ, y=b×sinβ a为长轴长的一半相关性质由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥曲线(也称圆锥截线)。例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2由定义1知:截面是一个椭圆,且以F1、F2为焦点用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.1.求椭圆C的方程.2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值.3.在⑵的基础上求△AOB的面积.一、分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,二、要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大。过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形m=-2.x=1.5,y=-0.5,p(1.5,-0.5)。三、直线方程x-y+1=0,利用点到直线的距离公式求得√2/2,面积1/2*√2/2*3√2/2=3/4
2023-08-12 22:56:191

数学三角函数和圆锥曲线

圆锥曲线都有以角度为参数的参数方程;所以圆锥曲线问题常转化为三角问题来解决;联系的纽带就是圆锥曲线的参数方程;通常有一个动点在曲线上运动的问题常设点的坐标为三角形式,例如:P(x,y)是椭圆x^2/16+y^2/4=1 上的任意一点,求2x+y的最大值;另外图形的面积问题;求轨迹问题也很常用
2023-08-12 22:56:261

有关圆锥曲线的所有关系式

圆锥曲线通用的离心率公式e=c/a学习圆锥曲线,首先要记熟基本概念,定义式,很多填空,选择题其实可以用定义很快的解决,如果用解析法去算很花时间至于圆锥曲线的大题,高考必有一道,运算量一般都会是相当大的,因此要提高自己运算的速度和正确度。熟悉常考的几种题型:如直线与圆锥曲线相切的问题,中点弦,轨迹方程……以及常用的方法:判别式,韦达定理,点差法,也可用导数求切线方程……初学圆锥曲线,一般学生可能会感到比较困难,这是正常的,实际上高考要求达到的水平不是很高,只要你按照老师要求的去做,自己注意总结,归纳,最好能把考试中的错题收集起来,(圆锥曲线的题不要做很多,高中的只有那些题型)你就能够提高这方面的能力。
2023-08-12 22:56:352

圆锥曲线难题

圆锥曲线包括椭圆,双曲线,抛物线   1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。   2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。   3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。  4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。   圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。  ·圆锥曲线的参数方程和直角坐标方程:  1)椭圆  参数方程:X=acosθ Y=bsinθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1  2)双曲线  参数方程:x=asecθ y=btanθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)  3)抛物线  参数方程:x=2pt^2 y=2pt (t为参数)  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )  圆锥曲线(二次非圆曲线)的统一极坐标方程为  ρ=ep/(1-e×cosθ)  其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。  |PF1|=a+ex |PF2|=a-ex  双曲线:  P在左支,|PF1|=-a-ex |PF2|=a-ex  P在右支,|PF1|=a+ex |PF2|=-a+ex  P在下支,|PF1|= -a-ey |PF2|=a-ey  P在上支,|PF1|= a+ey |PF2|=-a+ey  圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2  即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2+y0y/b^2=1;抛物线:y0y=p(x0+x)  圆锥曲线中求点的轨迹方程  在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。   圆锥曲线漫谈  圆锥曲线包括椭圆、抛物线、双曲线和圆,通过直角坐标系,它们又与二次方程对应,所以,圆锥曲线又叫做二次曲线。圆锥曲线一直是几何学研究的重要课题之一,在我们的实际生活中也存在着许许多多的圆锥曲线。  我们生活的地球每时每刻都在环绕太阳的椭圆轨迹上运行,太阳系其他行星也如此,太阳则位于椭圆的一个焦点上。如果这些行星运行速度增大到某种程度,它们就会沿抛物线或双曲线运行。人类发射人造地球卫星或人造行星就要遵照这个原理。相对于一个物体,按万有引力定律受它吸引的另一物体的运动,不可能有任何其他的轨道了。因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式。  由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面。它也有一条轴,即抛物线的轴。在这个轴上有一个具有奇妙性质的焦点,任何一条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线。这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。  由双曲线绕其虚轴旋转,可以得到单叶双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交。人们在设计高大的立塔时,就采取单叶双曲面的体形,既轻巧又坚固。  由此可见,对于圆锥曲线的价值,无论如何也不会估计过高。  对于圆锥曲线的最早发现,众说纷法。有人说,古希腊数学家在求解“立方倍积”问题时,发现了圆锥曲线:设x、y为a和2a的比例中项,即。a:x=x:y=y:2a,则x=ay, y=2ax,xy=2a,从而求得x=2a。又有人说,古希腊数学家在研究平面与圆锥面相截时发现了与“立方倍积”问题中一致的结果。还有认为,古代天文学家在制作日晷时发现了圆锥曲线。日晷是一个倾斜放置的圆盘,中央垂直于圆盘面立一杆。当太阳光照在日晷上,杆影的移动可以计时。而在不同纬度的地方,杆顶尖绘成不同的圆锥曲线。然而,日晷的发明在古代就已失传。  早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之作。  在《圆锥曲线》中,阿波罗总结了前人的工作,尤其是欧几里得的工作,并对前人的成果进行去粗存精、归纳提炼并使之系统化的工作,在此基础上,又提出许多自己的创见。全书8篇,共487个命题,将圆锥曲线的性质网罗殆尽,以致后代学者几乎没有插足的余地达千余年。  现在,我们都知道,用一个平面去截一个双圆锥面,会得到圆、椭圆、抛物线、双曲线以及它们的退化形式:两相交直线,一条直线和一个点,如图1,所示。  在此,我们仅介绍阿波罗尼关于圆锥曲线的定义。如图2,给定圆BC及其所在平面外一点A,则过A且沿圆周移动的一条直线生成一个双锥面。  这个圆叫圆锥的底,A到圆心的直线叫圆锥的轴(未画出),轴未必垂直于底。  设锥的一个截面与底交于直线DE,取底圆的垂直于DE的一条直径BC,于是含圆锥轴的△ABC叫轴三角形.轴三角形与圆锥曲线交于P、P",PP"未必是圆锥曲线的轴,PP"M是由轴三角形与截面相交而定的直线,PM也未必垂直于DE。设QQ"是圆锥曲线平行于DE的弦,同样QQ"被PP"平分,即VQ=QQ"。  现作AF∥PM,交BM于F,再在截面上作PL⊥PM。如图3,PL⊥PP"  对于椭圆、双曲线,取L满足,而抛物线,则满足,对于椭圆、双曲线有QV=PV·VR,对于抛物线有QV=PV·PL,这是可以证明的两个结论。  在这两个结论中,把QV称为圆锥曲线的一个纵坐标线,那么其结论表明,纵坐标线的平方等于PL上作一个矩形的面积。对于椭圆来讲,矩形PSRV尚未填满矩形PLJV;而双曲线的情形是VR>PL,矩形PSRV超出矩形PLJV;而抛物线,短形PLJV恰好填满。故而,椭圆、双曲线、抛物线的原名分别叫“亏曲线”、“超曲线”和“齐曲线”。这就是阿波罗尼引入的圆锥曲线的定义。  阿波罗尼所给出的两个结论,也很容易用现代数学符号来表示:  趋向无穷大时,LS=0,即抛物线,亦即椭圆或双曲线的极限形式。  在阿波罗尼的《圆锥曲线》问世后的13个世纪里,整个数学界对圆锥曲线的研究一直没有什么新进展。11世纪,阿拉伯数学家曾利用圆锥曲线来解三次代数方程,12世纪起,圆锥曲线经阿拉伯传入欧洲,但当时对圆锥曲线的研究仍然没有突破。直到16世纪,有两年事促使了人们对圆锥曲线作进一步研究。一是德国天文学家开普勒(Kepler,1571~1630)继承了哥白尼的日心说,揭示出行星按椭圆轨道环绕太阳运行的事实;二是意大利物理学家伽利略(Galileo,1564~1642)得出物体斜抛运动的轨道是抛物线。人们发现圆锥曲线不仅是依附在圆锥面上的静态曲线,而且是自然界物体运动的普遍形式。于是,对圆锥曲线的处理方法开始有了一些小变动。譬如,1579年蒙蒂(Guidobaldo del Monte,1545~1607)椭圆定义为:到两个焦点距离之和为定长的动点的轨迹。从而改变了过去对圆锥曲线的定义。不过,这对圆锥曲线性质的研究推进并不大,也没有提出更多新的定理或新的证明方法。  17世纪初,在当时关于一个数学对象能从一个形状连续地变到另一形状的新思想的影响下,开普勒对圆锥曲线的性质作了新的阐述。他发现了圆锥曲线的焦点和离心率,并指出抛物线还有一个在无穷远处的焦点,直线是圆心在无穷远处的圆。从而他第一个掌握了这样的事实:椭圆、抛物线、双曲线、圆以及由两条直线组成的退化圆锥曲线,都可以从其中一个连续地变为另一个,只须考虑焦点的各种移动方式。譬如,椭圆有两个焦点F1、F2,如图4,若左焦点F1固定,考虑F2的移动,当F2向左移动,椭圆逐渐趋向于圆,F1与F2重合时即为圆;当F2向右移动,椭圆逐渐趋向于抛物线,F2到无穷远处时即为抛物线;当F2从无穷远处由左边回到圆锥曲线的轴上来,即为双曲线;当F2继续向右移动,F2又与F1重合时即为两相交直线,亦即退化的圆锥曲线。这为圆锥曲线现代的统一定义提供了一个合乎逻辑的直观基础。  随着射影几何的创始,原本为画家提供帮助的投射、截影的方法,可能由于它与锥面有着天然的联系,也被用于圆锥曲线的研究。在这方面法国的三位数学家笛沙格(Desargue1591- 1661)、帕斯卡(Pascal,1623- 1662)和拉伊尔(Phailippe de La Hire,1640~1718)得出了一些关于圆锥曲线的特殊的定理,可谓别开生面。而当法国另外两位数学家笛卡儿和费马创立了解析几何,人们对圆锥曲线的认识进入了一个新阶段,对圆锥曲线的研究方法既不同于阿波罗尼,又不同于投射和截影法,而是朝着解析法的方向发展,即通过建立坐标系,得到圆锥曲线的方程,进而利用方程来研究圆锥曲线,以期摆脱几何直观而达到抽象化的目标,也可求得对圆锥曲线研究高度的概括和统一。   到18世纪,人们广泛地探讨了解析几何,除直角坐标系之外又建立极坐标系,并能把这两种坐标系相互转换。在这种情况下表示圆锥曲线的二次方程也被化为几种标准形式,或者引进曲线的参数方程。1745年欧拉发表了《分析引论》,这是解析几何发展史上的一部重要著作,也是圆锥曲线研究的经典之作。在这部著作中,欧拉给出了现代形式下圆锥曲线的系统阐述,从一般二次方程。出发,圆锥曲线的各种情形,经过适当的坐标变换,总可以化以下标准形式之一:  继欧拉之后,三维解析几何也蓬勃地发展起来,由圆锥曲线导出了许多重要的曲面,诸如往面、椭球面、单叶和双叶双曲面、以及各种抛物面等。   总而言之,圆锥曲线无论在数学以及其他科学技术领域,还是在我们的实际生活中都占有重要的地位,人们对它的研究也不断深化,其研究成果又广泛地得到应用。这正好反映了人们认识事物的目的和规律。   圆锥曲线的光学性质  椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上  双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上  抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的对称轴
2023-08-12 22:56:441

高中数学圆锥曲线公式定理

1.离心率0-1是椭圆,1是抛物线,大于1是双曲线。离心率是标准方程中的c/a,也是图像上某点到焦点的距离比该点到准线的距离。(有些灵活的小题需要这样转化)2.标准方程中的字母关系(这个不用多说了吧)3.圆锥曲线与直线方程联立的综合运用主要就是消去一个字母,再用韦达定理(这里要灵活应用,多做题多总结)。这里还可以引伸出“弦长公式”(不过就是由两点间的距离公式+直线斜率共同推导的)。值得注意的是垂直问题转化为向量方便计算,转化为圆有时候会比较简捷(这种不常用)。这些还都是要学好知识后,做题总结(或者说找到感觉)。无非就是两种方向,一是死算,一是技巧。死算就没啥可说的了,学好课本就行了。技巧也可分为两个方向,一是运用概念来转化问题,一是把代数问题转化为几何问题或解析几何。以上都是本人的观点,仅供参考。
2023-08-12 22:57:062

题:圆锥曲线的参数方程,急啊,求求各位了,要过程哇

圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)
2023-08-12 22:58:092

圆锥曲线标准方程的圆锥曲线的标准方程

标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r>0 离心率:e=0(注意:圆的方程的离心率为0,离心率等于0的轨迹不是圆,而是一个点(c,0)一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)√(D^2+E^2-4F) 标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a>b>0,在y轴上,b>a>0) 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)离心率:e=c/a,0<e<1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0两条焦半径与焦距所围三角形的面积:S=b^2*tan(α/2)(α为两焦半径夹角) 标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上) -x^2/a^2+y^2/b^2=1(焦点在y轴上) 焦点:F1(-c,0),F2(c,0)(a,b>0,b^2=c^2-a^2)离心率:e=c/a,e>1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0渐近线:x^2/a^2-y^2/b^2=0(焦点在x轴上) -x^2/a^2+y^2/b^2=0(焦点在y轴上)或焦点在x轴:y=±(b/a)x.焦点在y轴:y=±(a/b)x.两条焦半径与焦距所围成的三角形面积:S=b^2cot(α/2)(α为两焦半径夹角) 标准方程:y^2=2px ,x^2=2py; 焦点:F(p/2,0)离心率:e=1准线方程:x=-p/2圆锥曲线二次方程Ax^2+Bxy+Cy^2+Dx+Ey+F=0定义圆锥曲线的 一条直线x=a方/c圆 参数方程:x=X+rcosθ y=Y+rsinθ 圆心坐标(X,Y)椭圆 参数方程:x=acosθ y=bsinθ a>b时焦点在x轴上,反之在 y轴上双曲线 参数方程:x=asecθ y=btanθ 焦点在平行x轴的直线上(就是x2∕a2-y2∕b2=1)焦点在平行y轴的直线上(即y2∕a2-x2∕b2=1),把正切和正割交换
2023-08-12 22:58:181

圆锥曲线的参数方程公式

圆 x-a=rcosA x-b=rsinA 其中(a,b)为圆心 r为半径椭圆 x=acosA y=bsinA 其中a为长半轴 b为短半轴
2023-08-12 22:58:332

圆锥曲线与方程

  圆锥曲线方程一般指圆锥曲线标准方程。圆锥曲线标准方程是轨迹的方程,也是参数方程的一种;圆锥曲线标准方程的定义和性质是把握圆锥曲线标准方程的两把钥匙。圆锥曲线类型圆、椭圆、双曲线、抛物线。    圆   标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r:0[1]   离心率:e=0(注意:圆的方程的离心率为0,但离心率等于0的轨迹不一定是圆,还可能是一个点(c,0))一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)radic;(D^2+E^2-4F)    椭圆   标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a:b:0,在y轴上,b:a:0)   焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)   离心率:e=c/a,0   准线方程:x=plusmn;a^2/c   焦半径|MF1|=a+ex0,|MF2|=a-ex0   两条焦半径与焦距所围三角形的面积:S=b^2*tan(alpha;/2)(alpha;为两焦半径夹角)    双曲线   标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上)-x^2/b^2+y^2/a^2=1(焦点在y轴上)   焦点:F1(-c,0),F2(c,0)(a,b:0,b^2=c^2-a^2)   离心率:e=c/a,e:1   准线方程:x=plusmn;a^2/c   焦半径|MF1|=a+ex0,|MF2|=a-ex0   渐近线:y=xb/a或y=-xb/a   两条焦半径与焦距所围成的三角形面积:S=b^2cot(alpha;/2)(alpha;为两焦半径夹角)    抛物线   标准方程:y^2=2px,x^2=2py;   焦点:F(p/2,0)   离心率:e=1   准线方程:x=-p/2   圆锥曲线二次方程   Ax^2+Bxy+Cy^2+Dx+Ey+F=0
2023-08-12 22:58:421

圆锥曲线的参数方程公式 圆、椭圆等

圆的参数方程 x=a+rcosθ y=b+rsinθ 椭圆的参数方程 x=acosθ y=bsinθ
2023-08-12 22:58:521

圆锥曲面的参数方程

椭圆:x=a*cosθ,y=b*sinθ 双曲线:x=a*secθ,y=b*tanθ(焦点在横轴) x=a*tanθ,y=b*secθ(焦点在纵轴) 以上θ为参数. 抛物线:x=2pt^2,y=2pt(开口向左右) x=2pt,y=2pt^2(开口向上下) t为参数.
2023-08-12 22:59:011

这是椭圆,参数方程为:x=1+√3costy=2+√5sintt的取值为[0,2π)
2023-08-12 22:59:421

高中数学圆锥曲线的所有有用公式

圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率 椭圆 目录·定义 ·标准方程 ·公式 ·相关性质 ·历史 定义 椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义: 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 公式 椭圆的面积公式: S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 椭圆的周长公式: C=2Bπ(圆周率)/A×根号下(2A的平方-2B的平方)(其中A,B分别是椭圆的长半轴和短半轴) 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 历史 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 抛物线 1.什么是抛物线? 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线. 另外,F称为"抛物线的焦点",l称为"抛物线的准线". 定义焦点到抛物线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面 直至与其一边平行,就可以做一条抛物线。 2.抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 3.抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 4.它的解析式求法:三点代入法 5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴. 抛物线:y = ax* + bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)* + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
2023-08-12 23:00:002

选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数

(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=3
2023-08-12 23:00:152

参数是什么意思?

一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。
2023-08-12 23:00:251

圆锥曲线焦点弦的性质有那些?

圆锥曲线 开放分类: 数学、几何、椭圆、双曲线、抛物线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。
2023-08-12 23:00:411

为什么在椭圆里有时x=rcos,有时候=acos

圆锥曲线的参数方程和直角坐标方程:   1)直线   参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)   直角坐标:y=ax+b   2)圆   参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )   直角坐标:x^2+y^2=r^2 (r 为半径)   3)椭圆   参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )   直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1   4)双曲线   参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )   直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)   5)抛物线   参数方程:x=2pt^2 y=2pt (t为参数)   直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )   圆锥曲线(二次非圆曲线)的统一极坐标方程为   ρ=ep/(1-e×cosθ)   其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)   椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。   |PF1|=a+ex |PF2|=a-ex   双曲线:   P在左支,|PF1|=-a-ex |PF2|=a-ex   P在右支,|PF1|=a+ex |PF2|=-a+ex   P在下支,|PF1|= -a-ey |PF2|=a-ey   P在上支,|PF1|= a+ey |PF2|=-a+ey   圆锥曲线的光学性质:   1)椭圆:点光源在一个焦点上,光线通过另一个焦点。   2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。   3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。
2023-08-12 23:01:031

参数是什么意思?

一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。
2023-08-12 23:01:121

圆锥上定点到定直线公式

圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率
2023-08-12 23:01:431

求高中数学书4-4目录!

选修4-4坐标系与参数方程第一讲:坐标系第1节平面直角坐标系第2节极坐标第3节简单曲线的极坐标方程第4节柱坐标系与球坐标系简介第二讲参数方程第1节曲线的参数方程第2节圆锥曲线的参数方程第3节直线的参数方程第4节渐开线与摆线
2023-08-12 23:02:051

参数是什么意思呀?

一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。
2023-08-12 23:02:111

参数是什么?

一个变量。参数,也叫参变量,是一个变量。参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。它可以是一种变量,用来控制随其变化而变化的其它的量,简单来说,参数是可提供给我们参考的。适用于数学、计算机、物理等应用领域上。参数方程的用途主要有以下几个方面:1、求动点的轨迹,如果的关系不好找,我们引入参变量后,很容易找到与和与的等量关系式,消去参变量后即得动点轨迹方程。此时参数方程在求动点轨迹方程中起桥梁作用.2、可以用曲线的参数方程表示曲线上一点的坐标,这样把二元问题化为一元问题来解决,这也是圆锥曲线的参数方程的主要功能.3、有些曲线参数方程的参变量有几何意义.若能利用参变量的几何意义解题,常会取得意想不到的效果.如利用直线标准参数方程中的几何意义解题,会使难题化易、繁题化简。
2023-08-12 23:02:251

一道圆锥曲线题,椭圆,要求用参数方程解!!!

这题是有个结论很好用1/|OM|^2+1/|ON|^2=1/a^2+1/b^2设M(|OM|cost,|OM|sint) N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)代入方程得到:|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|所以|OM|*|ON|>=72/13最大值取得就是|OM|=|ON|严格说来这并不是椭圆方程的标准参数方程,但是却有奇效望采纳~~~
2023-08-12 23:02:371

高中数学 《圆锥曲线》解题技巧归纳

1、数列问题(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于02、圆锥曲线问题(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。(4)由于平面解析几何解决的是平面内的问题,如果在求解立体几何中的问题中,我们能确证点到面的距离或二面角可以在某个平面内解决,但从纯几何角度不容易记计算,这时候我们可以在立体图的某个面建立坐标系,把立体几何中的问题转化成平面解析几何的问题(点到线的距离,线的夹角)来求解,有时候这样效果很好。顺便说一下,下面几个“数学思想”在平时考试和高考中尤为重要:(1)方程的思想:从形式上变未知为已知,然后找出关系,求出这个形式上的已知得解;(2)不等式的思想:利用不等式进行放大和缩小来判断变量或表达式的极限,求解最大、最小值;(3)函数的思想:把现实问题抽象成代数问题,根据变量的范围动态考察函数规律的变化规律;(4)数形结合的思想:充分利用图像的直观、形象性辅助分析和计算;(5)分类讨论的思想:体现理性思维的严密性,具体情况具体分析。(6)反证法的思想:逆向思维,从相反的角度看问题;(7)数学归纳思想:根据有限的数据试图探寻总体的规律,然后用归纳法验证猜测的正确性。
2023-08-12 23:02:442

圆锥曲线和直线的参数方程问题,请帮忙解答,过程与答案都挺重要的,与自己的比较因为我没答案,也不确定

2023-08-12 23:02:522

圆锥曲线为什么这么神奇?

圆锥曲线包括椭圆,双曲线,抛物线  1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。   2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。   3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。  4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。   ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。  ·圆锥曲线的参数方程和直角坐标方程:  1)直线   参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)  直角坐标:y=ax+b   2)圆  参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )  直角坐标:x^2+y^2=r^2 (r 为半径)  3)椭圆  参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1  4)双曲线  参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)  5)抛物线  参数方程:x=2pt^2 y=2pt (t为参数)  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )  圆锥曲线(二次非圆曲线)的统一极坐标方程为  ρ=ep/(1-e×cosθ)  其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。  |PF1|=a+ex |PF2|=a-ex  双曲线:  P在左支,|PF1|=-a-ex |PF2|=a-ex  P在右支,|PF1|=a+ex |PF2|=-a+ex  P在下支,|PF1|= -a-ey |PF2|=a-ey  P在上支,|PF1|= a+ey |PF2|=-a+ey  圆锥曲线的光学性质:  1)椭圆:点光源在一个焦点上,光线通过另一个焦点。  2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。  3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。
2023-08-12 23:03:141