复数的乘法

复数的乘法是怎样算的?

设复数z1
u投在线2023-06-21 08:31:472

C语言两个复数的乘法运算

#include<stdio.h>int main(){ int n,i,a,b,c,d,e,f; printf("输入两个复数(分别输入实部和虚部) "); scanf("%d%d%d%d",&a,&b,&c,&d); e=a*c-b*d; f=a*d+b*c; if(f>=0)printf("%d+%di",e,f); else printf("%d%di",e,f); return 0;}
LuckySXyd2023-06-18 16:55:281

复数的乘法如何计算?

复数的乘法,你可以按照两个二项式相乘的方法去计算,要注意讠^2=一1,然后合并同类项,才能是最后结果。(a+b讠)(c+d讠)=a(c+d讠)十b讠(c+d讠)=ac+ad讠+bc讠一bd=(ac一bd)+(ad+bc)讠。
Chen2023-06-18 16:55:091

复数的乘法与除法

1.乘法运算规则:  规定复数的乘法按照以下的法则进行:  设z1=a+bi,z2=c+di(a、b、c、d∈r)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.  其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.  3.复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈r)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者  4.除法运算规则:  ①设复数a+bi(a,b∈r),除以c+di(c,d∈r),其商为x+yi(x,y∈r),  即(a+bi)÷(c+di)=x+yi  ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.  ∴(cx-dy)+(dx+cy)i=a+bi.  由复数相等定义可知  解这个方程组,得  于是有:(a+bi)÷(c+di)=i.  ②利用(c+di)(c-di)=c2+d2.于是将的分母有理化得:  原式=(a+bi)÷(c+di)=.i
黑桃花2023-06-18 16:55:031

复数的乘法法则?

五个数复四个数一共5组。复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数。则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。以上内容参考:百度百科-复数运算法则
韦斯特兰2023-06-18 16:54:571

数学复数的乘法怎么用辅角解释几何意义

搜一下:数学复数的乘法怎么用辅角解释几何意义
再也不做站长了2023-06-16 19:46:242

复数的乘法意义

复数其实是认为定义的一种数,表达形式是x=a+bi,其中i是复数的标志(当然没有也是复数,但也会划入实数),由此就构成了一个复平面。也就是说每一个复数在复平面上有唯一的点与之对应,这就相当于一个向量,起点是原点,终点是复数点,并且有自己的模,即向量线段的长。复数的平方(或乘法)的运算是平时普通代数式的一项项乘开,是将其按照向量看待的。如果按你所说“像一个复数的平方从几何意义上来看就是一个复平面上那个点到原点的这个向量的平方。”只是将模的长度变为原来的平方,但这样的点在复平面上有无数个(以原点为心画圆),但复数是一个向量,有方向。向量相乘时,方向会发生改变。你那种“向量的平方只是实部的平方加虚部实数的平方。”是错的,你可以举一个很简单的例子验证。终归一点,复数运算和向量运算时一样的!哦,我指的是算法一样,但复数最终结果依情况而定,有可能是复数还有可能是实数。附属是一种特殊的向量,只能在复平面中应用,不是一般的空间向量。
再也不做站长了2023-06-16 19:46:182

数学复数的乘法怎么用辅角解释几何意义

①几何形式。复数z=a+bi 用直角坐标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 ②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。 ③三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。 ④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ) 复数三角形式的运算: 设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。 复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序。望采纳。谢谢
u投在线2023-06-16 19:45:571

数学复数的乘法怎么用辅角解释几何意义

1、三角形式。复数z=a+bi化为三角形式z=r(cosθ+isinθ)式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。2、指数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ)复数三角形式的运算:设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。扩展资料复数加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。复数减法法则复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
Chen2023-06-16 19:45:561