复数知识点
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。加法法则复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律,即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。减法法则复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。wpBeta2023-06-18 16:59:131
复数知识点英语
一般方法(1)元音字母和大多数除s,z,x,sh,ch之外的辅音字母(或字母组合)直接加-s,清辅音后的s读作/s/ ,元音和浊辅音后的s读作/z/。如:bag-bags,biscuit-biscuits,egg-eggs.当单数名词结尾为se,ze,ge,ce时(其词尾辅音为/s,z,u0283,u0292/等),加s后读作/iz/如vase-vases,fridge-fridges(2)当单数名词结尾为s,z,x,sh,软音ch时(其词尾辅音为/s,z,u0283,u0292/等)加-es(读/iz/), 如:box-boxes, peach-peaches. (o有时也是,但es读音为/z/如hero-heroes)例外:stomach-stomachs(因ch读作/k/)(3)不规则变化,如:ox-oxen, child-children, man-men,mouse-mice,louse-lice(4)不变化,如:deer-deer, sheep-sheep以及集体名词people-people,Chinese-Chinese。(5) 在中间加s,用于连词,如:hanger_on-hangers_on,maid_of_honor-maids_of_honor.(6)可数名词以辅音字母+y结尾,把y去掉再加ies,如:hobby-hobbies,factory-factories.(7)含有oo的可数名词,把oo变成ee,如:foot- feet,tooth-teeth.(8) 以f或fe结尾的单词,将f或fe去掉,加上ves,如:scarf-scarves,knife-knives另外,英语有不少词汇借自其它语言,欧洲语言祖先之一的拉丁词汇有不少被完整地引入其中,复数变化规则也没改。(9)词尾um或on,复数变为a,如album-alba,minimum-minima,phenomenon-phenomena(10)词尾为us,复数变为i,如radius-radii,narcissus-narcissi(11)词尾为a,复数加e,如alga-algae,larva-larvaeNerveM 2023-06-18 16:59:131
高中数学复数知识点有哪些?
将数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围, 并建立了与实数轴垂直的数轴来表示复数。规定形如z=a+bi(a,b均为任意实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位,且i^2=i×i=-1。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数的加法法则:复数的加法法则:设zu2081=a+bi,zu2082=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数;复数的运算律:加法交换律:zu2081+zu2082=zu2082+zu2081;乘法交换律:zu2081×zu2082=zu2082×zu2081;加法结合律:(zu2081+zu2082)+zu2083=zu2081+(zu2082+zu2083);乘法结合律:(zu2081×zu2082)×zu2083=zu2081×(zu2082×zu2083);分配律:zu2081×(zu2082+zu2083)=zu2081×zu2082+zu2081×zu2083;再也不做站长了2023-06-18 16:59:111
高中数学共轭复数知识点
u投在线2023-06-18 08:24:383
复数知识点总结
复数知识点总结:一、实数、虚数与复数虚部的关系复数包含实数和虚数,我们把实数和虚数统称为复数。1、实数和复数虚部的关系实数是虚部为0的复数。即,若复数“z=a+bi,a∈R,b∈R”的虚部b=0,则z=a∈R,此时复数z是实数。2、虚数和复数虚部的关系虚数是虚部不为0的复数。即,若复数“z=a+bi,a∈R,b∈R”的虚部b≠0,则z=a+bi是复数中的虚数。二、共轭复数的实部、虚部关系设复数z=a+bi,a∈R,b∈R,则把“a-bi,a∈R,b∈R”和复数z(注:“z=a+bi,a∈R,b∈R”)互称为共轭复数(注:虚部b≠0时,又互称为共轭虚数)。由此可知:1、两个共轭复数的实部相等,虚部互为相反数。2、因为实数是虚部为0的复数,所以实数与其共轭相等。即实数的共轭是其本身。3、两个共轭复数的和为一个实数。如:(a+bi)+(a-bi)=2a∈R。(注:其中a∈R,b∈R)4、两个共轭虚数的差是一个纯虚数。如:(a+bi)-(a-bi)=2bi。(注:其中a∈R,b∈R,b≠0)【注】纯虚数是实部为0并且虚部不为0的复数(或“纯虚数是实部为0的虚数”)。5、复数的“模”等于实部与虚部平方和的算术平方根,所以,两个共轭复数的模相等。三、两相等复数的实部、虚部关系两个复数相等的充要条件是它们的实部和虚部分别对应相等。即:若a、b、c、d∈R,则复数a+bi=c+di的充要条件是“a=c且b=d”。瑞瑞爱吃桃2023-06-18 08:24:361
高二年级复数知识点总结
【 #高二# 导语】高二本身的知识体系而言,它主要是对高一知识的深入和新知识模块的补充。以数学为例,除去不同学校教学进度的不同,我们会在高二接触到更为深入的函数,也将开始学习从未接触过的复数、圆锥曲线等题型。 无 高二频道为你整理了《高二年级复数知识点总结》希望对你有所帮助! 【篇一】高二年级复数知识点总结 复数定义 我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数表达式 虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为: a=a+ia为实部,i为虚部 复数运算法则 加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i; 减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i; 乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i; 除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i. 例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。 复数与几何 ①几何形式 复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 ②向量形式 复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。 ③三角形式 复数z=a+bi化为三角形式 【篇二】高二年级复数知识点总结 复数的概念: 形如a+bi(a,b∈r)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母c表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈r),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: 复平面、实轴、虚轴: 点z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈r)可用点z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 复数的几何意义:复数集c和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈r)在复平面上对应的点z(a,b)到原点的距离叫复数的模,记为|z|,即|z|= 虚数单位i: 它的平方等于-1,即i2=-1; 实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈r),当且仅当b=0时,复数a+bi(a、b∈r)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 【篇三】高二年级复数知识点总结 复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难,对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会. 复数中的重点 (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点. (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容. (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容. (4)复数集中一元二次方程和二项方程的解法.西柚不是西游2023-06-18 08:00:421
高中数学复数知识点
高中数学复数 复数是为了扩充数系和解类似x^2+1=0这样的无实数解方程而引入的,引入之后自然要看他有哪些用途,如可简化问题,圆的方程|z|=R,形式简单,证明多项式基本定理即证明像一元二次方程有两个复数解,若是关于x的n次的式子就是n个复数解,引入复数证明了长达几百年的n次一元方程根的个数问题。 现在高中的内容复数实用性不大,主要是估计为了考察知识的全面性才学的,起码知道有复数这回事,别人说起来能了解一点。由于只要求基本运算,内容不是很多,有联系的是方程,曲线轨迹,解析几何,如果学好的话,用复数法解题和向量法一样能简化计算过程。 高中数学知识点总结 复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强. 在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究. 1.知识网络图 2.复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会. 3.复数中的重点 (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点. (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容. (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容. (4)复数集中一元二次方程和二项方程的解法。 .。高中虚数题 LZ,这题怎么搞的,主要思路倒还是不难判断的,但就是很繁琐,用了很多夸张的东西,实在做得我好苦啊!!! 答案是根号2么? 我尝试过多种方法,想过直接以三角形是通分化简,实在太繁琐;想过复数模的不等式,也做不下去;想来想去只能以这个公式做下去了: |f(z)|^2=f(z)·f(z)拔 不过后面用的东西实在是超过高中内容的,你确认没有打错或者说题目出错么? 那么我是这么解的: 依照上述公式代入化简······,得: |f(z)|=大根号下{5+2(z^2+z拔^2)+[2(z^2+z拔^2)+3(z+z拔)+9]/(5+2(z+z拔))} 化简过程中要用到共轭复数的性质,这你应该晓得吧, 那么,因为 |z|=1 所以设 z=cosx+isinx,x为任意实数(复数的三角形式) 由利莫夫定理, z拔=cosx-isinx z^2=cos2x+isin2x z拔^2=cos2x-isin2x 代入,化简······ 又令cosx=t,则 |f(z)|=大根号下{8t^2+1+(8t^2+6t+5)/(4t+5)},t在闭区间[-1,1] 接下来的工作就化为函数求极值了,但鉴于初等数学的方法不好做(什么换元啥的,至少我做不下去,次数较高),虽然高等数学的方法也不见得方便,但我还是这么解下去的: 对关于t的这个函数求导,令导数为零,的关于t的一元三次方程: 128t^3+336t^2+240t+5=0 我参考了网上一元三次方程的求根公式,用计算器大致得到 cosx=t=-0.02147361495 把它再代回|f(z)|,得到 (|f(z)|^2)min约=1.995700028 所以大致等于 根号2 辛苦啊···,但搞了半天还不是正解,唉···再次建议LZ看下题目有没有问题 5分太少啦!!! 我建议你追加悬赏,请其他高手来解,说不定他们有正确的解法。 希望对你有帮助,加油! 高中数学知识点及公式大全 这个不知道行不行啊?1、 函数 函数是历年高考命题的重点, *** 、函数的定义域、值域、图象、奇偶性、单调性、周 期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1) *** 是近代数学中最基本的概念之一, *** 观点渗透于中学数学内容的各个方面,所以我们应弄懂 *** 的概念,掌握 *** 元素的性质,熟练地进行 *** 的交、并、补运算.同时,应准确地理解以 *** 形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“ ”法,当然有一部分可以转化为函数 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、 三角 三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如: ( )类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但 与 的符合是一致的.(4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如: = ; ; ; .(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相 *** ,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、 不等式 有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法.(2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:① 在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.② 在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进 行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、 数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;计算 时,应分为 时, , 时, ;求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、 复数 高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复。ardim2023-06-16 19:46:221
高二数学复数知识点总结
【 #高二# 导语】高二年级有两大特点:一、教学进度快。一年要完成二年的课程。二、高一的新鲜过了,距离高考尚远,最容易玩的疯、走的远的时候。导致:心理上的迷茫期,学业上进的缓慢期,自我约束的松散期,易误入歧路,大浪淘沙的筛选期。因此,直面高二的挑战,认清高二,认清高二的自己,认清高二的任务,显得意义十分重大而迫切。 无 高二频道为你整理了《高二数学复数知识点总结》,希望对你的学习有所帮助! 【一】 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 【二】 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。墨然殇2023-06-16 19:46:201
高三数学复数知识点
高三数学复数知识点1 1.复数及其相关概念: (1)虚数单位i,它的平方等于-1,即i2=-1。 (2)复数的代数形式:z=a+bi,(其中a,bR) ①实数当b=0时的复数a+bi,即a; ②虚数当b0时的复数a+ ③纯虚数当a=0且b0时的复数a+bi,即bi。 ④复数a+bi的实部与虚部a叫做复数的实部,b叫做虚部(注意a,b都是实数) ⑤复数集C全体复数的集合,一般用字母C表示。 ⑥特别注意:a=0仅是复数a+bi为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 2.复数的四则运算 若两个复数z1=a1+b1i,z2=a2+b2i, (1)加法:z1+z2=(a1+a2)+(b1+b2)i; (2)减法:z1-z2=(a1-a2)+(b1-b2)i; (3)乘法:z1z2=(a1a2-b1b2)+(a1b2+a2 (4)除法 (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 注意:复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i2=-1结合到实际运算过程中去。 如(a+bi)(a-bi)=a2+b2 3.共轭复数:两个实部相等,虚部互为相反数的复数互为共轭复数 4.复数的模 根据两个复数相等的定义,设a,b,c,dR,两个复数a+bi和c+di相等规定为a+bi=c+dia=c且b=d,特别地a+bi=0a=b=0。 两个复数不能比较大小,只能由定义判断它们相等或不相等。 高三数学复数知识点2 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0。 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。 复数相等特别提醒: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)根据复数相等的充要条件解之。 学好初中数学的方法 1、重视课本的内容 书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。 2、通过联系对比进行辨析 在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。 3、多做练习题 要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。 4、课后总结和反思 在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。 数学加法心算技巧 1、分裂再凑整数加法; 比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10; 2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85; 3、变整数再减去 比如,26+18=44,把“18”变成“20-2”,那么就是26+20-2=44; 4、比如;387+983=1370,把“983”变成“1000-17”,那么就是387+1000-17=1370; 5、错位数相加 比如,个位加十位得数是个位的; 51+15=66;这样算:5+1得6;1+5得6;两6合拼 72+27=99;这样算:7+2得9;2+7得9;两9合拼 63+36=99;这样算:6+3得9;3+6得9;两9合拼 52+25=77;这样算:5+2得7;2+5得7;两7合拼 6、比如,个位加十位得数是十位的; 78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”; 67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”; 高三数学复数知识点3 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(real part)记作Rez=a 实数b称为复数z的`虚部(imaginary part)记作 Imz=b。已知:当b=0时,z=a,这时复数成为实数 当a=0且b0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即 (a+bi)+(c+di)=(a+c)+(b+d)i。 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = 1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i。 除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,yR)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即 (a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2)。 开方法则 若z^n=r(cos+isin),则 z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1) 高三数学复数知识点5 1、知识网络图 2、复数中的难点 (1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。 (2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。 (3)复数的辐角主值的求法。 (4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。 3、复数中的重点 (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。 (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。 (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。 (4)复数集中一元二次方程和二项方程的解法。mlhxueli 2023-06-16 19:46:181