什么是等差数列?
等差数列一、等差数列如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:sn=na1+n(n-1)d/2或sn=n(a1+an)/2(2)以上n均属于正整数。从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。在等差数列中,等差中项:一般设为ar,am+an=2ar,所以ar为am,an的等差中项,且为数列的平均数。且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈n*,且m+n=p+q,则有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差数列,等等。和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项末项=首项+(项数-1)×公差等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。若为等差数列,且有an=m,am=n.则a(m+n)=0。3.等差数列的基本性质⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若、为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a1,a2,a3为等差数列中的三项,且a1与a2,a2与a3的项距差之比=d(d≠-1),则2a2=a1+a3.5.等差数列前n项和公式s的基本性质⑴数列为等差数列的充要条件是:数列的前n项和s可以写成s=an+bn的形式(其中a、b为常数).⑵在等差数列中,当项数为2n(nn)时,s-s=nd,=;当项数为(2n-1)(n)时,s-s=a,=.⑶若数列为等差数列,则s,s-s,s-s,…仍然成等差数列,公差为.⑷若两个等差数列、的前n项和分别是s、t(n为奇数),则=.⑸在等差数列中,s=a,s=b(n>m),则s=(a-b).⑹等差数列中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⑺记等差数列的前n项和为s.①若a>0,公差d<0,则当a≥0且a≤0时,s最大;②若a<0,公差d>0,则当a≤0且a≥0时,s最小.苏州马小云2023-05-13 15:33:574
等差数列公式是什么?
1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。2、Sn=na(n+1)/2n为奇数sn=n/2(An/2+An/2+1)n为偶数3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。扩展资料:等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n²+(a1-d/2)*n注:以上n均属于正整数。等差数列公式包括:求和、通项、项数、公差......等大鱼炖火锅2023-05-13 15:33:571
等差数列的公式是什么?
sn的前n项和公式是:Sn =a1(1-q^n)/(1-q)。等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2,等差数列{an}的通项公式为:an=a1+(n-1)d。利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值。等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。项数=(末项-首项来)÷公差+1。末项=首项+(项数-1)×公差。前n项的和Sn=首项×n+项数(项数-1)公差/2。第n项的值an=首项+(项数-1)×公差。等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。tt白2023-05-13 15:33:571
等差数列的概念
等差数列的解释数学用语。从第二项始,以下任一项与前一项的差恒等的数列,如10,14,18,22,26……。它可以用a,a+d,a+2d,a+3d……的形式来表示。 词语分解 等差的解释 ∶等级差别 ∶差数相等详细解释等级次序;等级差别。《礼记·燕义》:“俎豆、牲体、荐羞皆有等差,所以明贵贱也。” 北齐 颜之推 《颜氏 家训 · 归心 》:“星与日月,形色同尔,但以大小为其等差。” 宋 数列的解释 依照 某种 法则排列的一列数。如:、、、……;、、、……等。数列分有限数列和无限数列两种。善士六合2023-05-13 15:33:571
等差数列定义是什么
等差数列定义是什么等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。这个差叫公差,一般用d表示。如:1,2,3,4,5,...公差是110,8,6,4,2,0,-2,...公差是-24,4,4,4,...公差是0,又称常数列再也不做站长了2023-05-13 15:33:572
等差数列是什么意思
这样ardim2023-05-13 15:33:573
等差数列项数公式
等差数列求项数=(末项-首项)/公差+1。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。等差数列是常见数列的一种。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……1+2(n-1)。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:na1+n(n-1)d/2或Sn=n(a1+an)/2。以上n均属于正整数。等差数列中项公式:公差为d的等差数列{an},当n为奇数时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n,将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,等于二倍的总和除以项数n,中项法求和分为两种情况,一是数列为奇数项时:Sn=中间一项×项数,另一种情况是数列为偶数项时:Sn=中间两项和×项数的一半。善士六合2023-05-13 15:33:571
等比等差数列的所有公式是什么?
等差数列的通项公式为:an=a1+(n-1)d (1) 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数。 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式。定义: an+1-an=d (d为常数), an= a1+(n-1)d 等差中项: x , A , y成等差数列: 2A=x+y 前n项和: 性质:{an}是等差数列若m+n=p+q,则am+an=ap+aq ; (2)数列{a2n-1},{a2n},{a2n+1}仍为等差数列,Sn,S2n-Sn,S3n-S2n,等仍为等差数列,公差为n2d ; 若三个成等差数列,可设为a-d,a,a+d。 等差数列:an=dan+(a1-d) 当d=0时,an=a1 ;当d≠0时,d>0递增数列,d<0递减数列。 Sn=na1+n(n-1)/2*d=d/2+(a1-d/2)n 等比数列:当q=1时an=a1 Sn=S1 当q≠1时 Sn=(a1-qan)/(1-q)=[a1(1-q^n)]/(1-q)。阿啵呲嘚2023-05-13 15:33:571
什么是等差数列
高中数学就有学的呀小白2023-05-13 15:33:564
等差数列的定义
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,符号表示为an+1-an=d(n∈N*,d为常数)。通项公式:a(n)=a(1)+(n-1)×d , 注意:n是正整数。即:第n项=首项+(n-1)×公差,n是项数。前n项公式和:S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2。注意:n是正整数(相当于n个等差中项之和)。等差数列前N项求和,实际就是梯形公式的妙用:上底为:a1为首项,下底为a1+(n-1)d,高为n。即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2。等差数列求和公式特殊性质:1、在数列中有:若m+n=2q,则am+an=2aq。2、在等差数列中,若Sn为该数列的前n货复项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。西柚不是西游2023-05-13 15:33:561
什么叫等差数列
1 3 5 7 9 。。。。。或0 5 10 15 20.。。。。类似的,前一位数与后一位的差值相等,就是等差数列。ardim2023-05-13 15:33:569
等差数列公式全部高中
等差数列公式全部高中如下:等差数列的通项公式为:a(n)=a(1)+(n-1)*d。前n项和公式为:S(n)=n*a(1)+n*(n-1)*d/2。前n项和公式为:S(n)=n*(a(1)+a(n))/2。等差数列的公式:公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。项数=(末项-首项来)÷公差+1。末项=首项+(项数-1)×公差。前n项的和Sn=首项×n+项数(项数-1)公差/2。第n项的值an=首项+(项数-1)×公差。等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。第n项的值an=首项+(项数-1)×公差。an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an。例如 a10=a4+6d或者a3=a7-4d。前n项的和Sn=首项×n+项数(项数-1)公差/2。公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。项数=(末项-首项)÷公差+1。末项=首项+(项数-1)×公差。当数列为奇数项时,前n项的和=中间项×项数。数列为偶数项,前n项的和=(首尾项相加×项数)÷2。注意:等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2[2]。注意: 以上整数。hi投2023-05-13 15:33:561
等差数列通项公式是什么?
等差数列通项公式是an=a1+(n-1)*d。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。扩展资料:在等差数列中,S = a,S = b (n>m),则S = (a-b)。记等差数列的前n项和为S。若a >0,公差d<0,则当a ≥0且a +1≤0时,S 最大;若a <0 ,公差d>0,则当a ≤0且 +1≥0时,S 最小。若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。bikbok2023-05-13 15:33:561
什么是等差数列 等差数列的解释
1、等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。 2、例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。 3、注意:以上n均属于正整数。LuckySXyd2023-05-13 15:33:561
什么是等差数列
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。例子:1,3,5,7,9……;3,0,-3,-6……等差数列公式:等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列{an}的通项公式为:an=a1+(n-1)d。等差数列常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)d。首项a1=1,公差d=2。前n项和公式为:Sn=a1n+[n(n-1)d]/2或Sn=[n(a1+an)]/2。注意:以上n均属于正整数。豆豆staR2023-05-13 15:33:562
等差数列有哪些公式?
等差数列的所有公式如下:等差数列{an}的通项公式为:an=a1+(n-1)d、an=am+(n-m)d。等差数列前n项和公式:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。对任何m、n,在等差数列中有a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。等差数列:算式中的加数是等差数列,等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。求等差数列时先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列。ardim2023-05-13 15:33:561
等比等差数列前n项和的所有经验公式是什么?
等比数列前n项和公式为:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列:通项公式:an=a1q^(n-1)。求和公式1:sn=a1(1-q^n)/(1-q)(q≠1)。求和公式2:sn=(a1-anq)/(1-q)(q≠1)。中间公式:如果m+n=2k;m,n,k∈n;则对于等比数列有:(ak)²=am*an。相等公式:如果m+n=p+q;m,n,p,q∈n,则对于等差数列:am*an=ap*aq。北营2023-05-13 14:41:131
等差数列求第n项是多少?公式(文字)
三生三世三生三世三生三世三生三世三生三世三生三世是是是黑桃花2023-05-13 14:41:086
等差数列求第n 项的公式
an=a1+(n-1)×dSn=n(a1+an)/2Sn=na1+n(n-1)d/2陶小凡2023-05-13 14:41:086
等差数列与等比数列的复合数列怎样求前n项和
列两个式子,两个式子开始一样,式子起头都是Sn,其中一个乘以等比数列的公比后,与另一个式子错位相减,后得到一个新的等式,该等式的前n项是等比数列,最后一项不是等比数列的项,该等式的前n项用等比数列加起来,然后整理一下就得到Sn的表达式。此后故乡只2023-05-13 14:41:072
告诉我排列组合和等差数列这方面所有的公式?
等差数列最重要最基本的几个公式就是:an=a1+(n-1)d,an=am+(n-m)dsn=(a1+an)*n/2am+an=ap+aq,(前提是m+n=p+q)排列组合的原理和公式去看http://zhidao.baidu.com/question/33821517.html?fr=qrl3豆豆staR2023-05-13 08:33:401
等差数列基本公式有哪些?
等差数列基本公式: 首项=末项-(项数-1)×公差;末项=首项+(项数-1)×公差 另外:项数=(末项-首项)÷公差+1 ;和=(首项+末项)×项数÷2 ;扩展资料:等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n²+(a1-d/2)*n注:以上n均属于正整数。等差数列公式包括:求和、通项、项数、公差......等参考资料来源:百度百科-等差数列公式CarieVinne 2023-05-12 21:02:141
等差数例与等比数例的公式
一、 等差数列 如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。和=(首项+末项)*项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等差数列的应用:日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。若为等差数列,且有an=m,am=n.则a(m+n)=0。等比数列: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是:An=A1*q^(n-1)(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q) 且任意两项am,an的关系为an=am·q^(n-m)(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每 k项之和仍成等比数列. “G是a、b的等比中项”“G^2=ab(G≠0)”. 在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方。等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式---复利。即把前一期的利息赫本金价在一起算作本金,在计算下一期的利息,也就是人们通常说的利滚利。按照复利计算本利和的公式:本利和=本金*(1+利率)存期左迁2023-05-12 21:02:141
等差数列怎么求公差
公差=(An-Am)/(n-m),An、Am为等差数列中的任意元素,n,m为等差数列中的第几个数,如一组等差数列:1,3,5,7,9中A1=1,A2=3,A3=5,A4=7,A5=9,那么公差可任意求,如(A3-A1)/(3-1)=2,(A2-A5)/(2-5)=-6/-3=2.呵呵,希望能够帮到您。九万里风9 2023-05-12 21:02:142
什么是等差数列
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。即若项数为奇数,和等于中间项的2倍,另见,等差中项。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。苏萦2023-05-12 21:02:141
等差数列的形式
数列{an}中任意n>0,有恒定的d,使得a(n+1)=a(n)+d瑞瑞爱吃桃2023-05-12 21:02:143
等差数列的公式
例:1、3、5、7、9首项:1末项:9公差:2项数:5个等差数列求和:(首项+末项)*项数/2求项数:(末项-首项)/公差+1求首项:末项-公差*(项数-1)求末项:首项+公差*(项数-1)求公差:(末项-首项)/(项数-1)按照这个公式,就可以求出等差数列的答案啦!北有云溪2023-05-12 21:02:142
等差数列的等差公式是什么?
等差公式{an}为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。注意:以上整数。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用。数学:数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。kikcik2023-05-12 21:02:131
等差数列的公式有哪些
1、等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。2、等差数列{an}的通项公式为:an=a1+(n-1)d。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。拌三丝2023-05-12 21:02:131
什么是等差数列?
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均属于正整数。Ntou1232023-05-12 21:02:131
等差数列公式
通项公式 等差数列的通项公式为:an=a1+(n-1)d (1) 前n项和公式 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数. 推论 1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等. 若m+n=2p,则am+an=2ap 4.其他推论 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 推论3证明 若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 如am+an=a1+(m-1)d+a1+(n-1)d =2a1+(m+n-2)d 同理得, ap+aq=2a1+(p+q-2)d 又因为 m+n=p+q ; a1,d均为常数 所以 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 注:1.常数列不一定成立 2.m,p,q,n大于等于自然数 等差中项 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数. 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式.人类地板流精华2023-05-12 21:02:131
等比等差数列的公式是什么?
等比等差数列的公式如下图:等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。韦斯特兰2023-05-12 21:02:131
等差数列公式是什么
公式:奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。 相关公式:扩展资料:等差数列的基本性质:(1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = + 的形式(其中a、b为常数)。(2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶= ;当项数为(2n-1)(n∈正整数)时,S奇-S偶=a(中),S奇-S偶= (中) ,S奇÷S偶 =n÷(n-1)。(3)若数列为等差数列,则 , , ,…仍然成等差数列,公差为 。(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则 = 。(5)在等差数列中,S = a,S = b (n>m),则S = (a-b)。(6)记等差数列的前n项和为S。①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小。(7)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)。参考资料:等差数列百度百科拌三丝2023-05-12 21:02:131
等差数列公式有那些呢
等差数列基本公式: 首项=末项-(项数-1)×公差;末项=首项+(项数-1)×公差 另外:项数=(末项-首项)÷公差+1 ;和=(首项+末项)×项数÷2 ;扩展资料:等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n²+(a1-d/2)*n注:以上n均属于正整数。等差数列公式包括:求和、通项、项数、公差......等参考资料来源:百度百科-等差数列公式康康map2023-05-12 21:02:131
数学中的等差数列是什么
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。本文中,我整理了相关知识,欢迎阅读。 等差数列的基本性质 (1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数) (2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶=an÷a(n+1);当项数为(2n-1)(n∈ N+)时,S奇—S偶=a(中),S奇-S偶=项数*a(中) ,S奇÷S偶 =n÷(n-1) (3)若数列为等差数列,则Sn,S2n -Sn ,S3n -S2n,…仍然成等差数列,公差为k^2d (4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1。 (5)在等差数列中,S = a,S = b (n>m),则S = (a-b) (6)等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上 (7)记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小 (8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q) 等差数列的判定 1、a(n+1)--a(n)=d (d为常数、n ∈N*)[或a(n)--a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。 2、2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。 3、a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。 4、S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。 等差数列和等比数列区别 等差数列是前一项与后一项的差相等,等比数列是前一项与后一项的比相等。 1、等差数列是前一项与后一项的差是常数。如:1,4,7,10,13,16,…… 等差数列的通项公式:an=a1+(n-1)d=dn+a1-d 2、等比数列是前一项除以后一项等于一个固定常数q。如:,3,9,27,…… 等比数列的通项公式:an=a1·q(n-1) 以上是我为大家整理的相关知识,希望对大家有所帮助。水元素sl2023-05-12 21:02:131
等差数列公式大全
an=a1+(n-1)dtt白2023-05-12 21:02:132
等差数列是什么
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。比如数量1、3、5、7、9、......、2n-1。对于数列an,若满足a(n+1)=an+d,则称该数列为等差数列。其中,公差d为一常数,n为正整数。等差数列性质数列为等差数列的重要条件是:数列的前n项和Sn可以写成Sn=(an)^2+bn的形式(其中a、b为常数)。在等差数列中,Sn=a,Sm=b (n>m),则S(n-m)=(a-b)。在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。以上内容参考:百度百科-等差数列康康map2023-05-12 21:02:131
什么是等差数列?请定义 和举例说明。谢谢
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。等差数列的通项公式为:an=a1+(n-1)d(1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均属于正整数。meira2023-05-12 21:02:131
等差数列怎么算
等差数列算法:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示 。例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。注意: 以上整数。等列公式 :an=a1+(n-1)d,(n为正整数)a1为首项,an为第n项的通项公式,d为公差。前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)Sn=n(a1+an)/2 注:n为正整数若n、m、p、q均为正整数,若m+n=p+q时,则:存在am+an=ap+aq若m+n=2p时,则:am+an=2ap若A、B、C均为正整数,B为中项,B=(A+C)/2也可推导得Sn=na1+nd(n-1)/2人类地板流精华2023-05-12 21:02:131
等差数列公式是什么?
等差数列公式为:Sn=a1*n+[n*(n-1)*d]/2。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9…2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。相关信息:①数列必须满足有序性。比如说集合{1,2,3,4},它表示n=1时,an=1;n=2时,an=2,以此类推。所以它与{1,3,2,4}是两个不同的集合,二者虽然定义域值域都相同,但是对应关系不同。而{1,2,3,4}与{1,3,2,4}是同一个集合。②数列不必满足互异性。我们知道集合的元素必须满足互异性,即任意两个元素不能够重复,而数列中的项与项之间可以相等。所以在数列中,摇摆数列,周期数列,常数列都是被允许的。如数列an=sin(nπ/2)就是一个典型的周期数列。因为数列本质上是函数,函数的因变量取值可以相等,所以数列的不同项也可以相等。苏萦2023-05-12 21:02:121
等比等差数列的所有公式是什么?
等差数列:an=dan+(a1-d),当d=0时,an=a1;当d≠0时,d>0递增数列,d<0递减数列,Sn=na1+n(n-1)/2*d=d/2+(a1-d/2)n。等比数列:当q=1时an=a1,Sn=S1,当q≠1时,Sn=(a1-qan)/(1-q)=[a1(1-q^n)]/(1-q)。等比数列的性质:1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。小白2023-05-12 21:02:121
等差数列的各种公式···
等差数列公式等差数列公式an=a1+(n-1)d 前n项和公式为:Sn=na1+n(n-1)d/2 若公差d=1时:Sn=(a1+an)n/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数文字翻译 第n项的值an=首项+(项数-1)×公差 前n项的和Sn=首项×末项+项数(项数-1)公差/2 公差d=(an-a1)÷(n-1) 项数=(末项-首项)÷公差+1 数列为奇数项时,前n项的和=中间项×项数 数列为偶数项,求首尾项相加,用它的和除以2 等差中项公式2an+1=an+an+2其中{an}是等差数列余辉2023-05-12 21:02:128
等差数列公式是什么?
等差数列公式:an=a1+(n-1)d,(n为正整数)a1为首项,an为第n项的通项公式,d为公差.前n项和公式为:Sn=na1+n(n-1)d/2,(n为正整数)Sn=n(a1+an)/2,(n为正整数)公差d=(an-a1)/(n-1),(n为正整数)若n、m、p、q均为...u投在线2023-05-12 21:02:121
差等差数列求和公式是什么?
(项首+项尾)×项数÷2u投在线2023-05-12 21:02:123
等差数列是什么?
等差数列通项公式是an=a1+(n-1)*d。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。在等差数列中:S = a,S = b (n>m),则S = (a-b)。记等差数列的前n项和为S。若a >0,公差d<0,则当a ≥0且a +1≤0时,S 最大;若a <0 ,公差d>0,则当a ≤0且 +1≥0时,S 最小。若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。真颛2023-05-12 21:02:111
等差数列的公式
An=Am乘以q的n-m次方(q为公比)meira2023-05-12 21:02:113
等差数列的计算方法有哪些?
1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。2、Sn=na(n+1)/2n为奇数sn=n/2(An/2+An/2+1)n为偶数3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。扩展资料:等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n²+(a1-d/2)*n注:以上n均属于正整数。等差数列公式包括:求和、通项、项数、公差......等九万里风9 2023-05-12 21:02:111
等差数列的公式是什么?
a[n]=n*a[1]+n*(n-1)*d/2其中,d是等差。bikbok2023-05-12 21:02:112
如何判断等差等差数列的公式是什么?
简单分析一下,详情如图所示苏萦2023-05-12 21:02:112
等差数的定义
连续数字中,当每一项与其前一项之差相等时,该数列称为等差数列。等差数列的特点 每一项和其前一项之差相等;每一项和其后一项之差也相等;前后差也是等差数列的一个常数。NerveM 2023-05-12 21:02:112
等比数列和等差数列有什么区别
等差数列是前一项与后一项的差相等,等比数列是前一项与后一项的比相等。1、等差数列是前一项与后一项的差是常数。如:1,4,7,10,13,16,…… 等差数列的通项公式:an=a1+(n-1)d=dn+a1-d2、等比数列是前一项除以后一项等于一个固定常数q。如:,3,9,27,……等比数列的通项公式:an=a1·q(n-1)水元素sl2023-05-12 21:02:111
等差数列错位相减的方法如何运用?
我们都知道,高一课本第一册(上)在推导等比数列前 项和公式 的过程中运用了著名的“错位相减法”,随即在书中的第137页复习参考题三B组中出现了运用该方法来解决的求和问题:6、 …… 。这类数列的主要特征是:已知数列 满足 其中 等差, 等比且公比不等于1,老师们形象地称这类数列 为“等差乘等比型”数列。求这类数列前 项的和时通常在和式的两边都乘以组成这个数列的等比数列的公比,然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法即所谓的“错位相减法”。例题:求 2+2~2+2~3+2~4+2~5+....+2~100 这就是错位相减法的一个例子。 设x=2+2~2+2~3+2~4+2~5+....+2~100 则2x=2~2+2~3+.....+2~100+2~101 两式相减:x=2~101-2阿啵呲嘚2023-05-12 21:02:111
等差数列的和公式是什么
答案如图所示陶小凡2023-05-12 21:02:103
等差数列定义
最简便算法是,把n分别设为123。算出的结果看看第三个减第二个等不等于第二个减第一个,等于就是不等于就不是墨然殇2023-05-12 21:02:107
什么是等差数列
等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个差,公差常用字母d表示。例如:1,3,通项公式推导:a2-a1=d;a3-a2=d;a4-a3=d……an-an-1=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2Sn=[n*(a1+an)]/2Sn=d/2*n2+(a1-d/2)*n注:以上n均属于正整数。等差数列公式包括:求和、通项、项数、公差......等mlhxueli 2023-05-12 21:02:102
等差数列公差公式是什么?
公式:第n项=首项+(项数-1)*公差项数=(末项-首项)/公差+1公差=(末项-首项)/(项数-1)简介等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示,这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1,通项公式为:an=a1+(n-1)*d,首项a1=1,公差d=2,前n项和公式为:Sn=a1*n+/2或Sn=/2,注意:以上n均属于正整数。可桃可挑2023-05-12 21:02:101
等差数列 计算公式是怎样的?
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数.九万里风9 2023-05-12 21:02:101
等差数列公式都有哪些
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。等差数列基本公式: 末项=首项+(项数-1)×公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)×公差 和=(首项+末项)×项数÷2 通项公式等差数列的通项公式为:an=a1+(n-1)d (1) 前n项和公式 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2) 以上n均属于正整数. 推论 1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n} 3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等. 若m+n=2p,则am+an=2ap 4.其他推论 和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 末项=首项+(项数-1)×公差 推论3证明 若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 如am+an=a1+(m-1)d+a1+(n-1)d =2a1+(m+n-2)d 同理得, ap+aq=2a1+(p+q-2)d 又因为 m+n=p+q ; a1,d均为常数 所以 若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq 注:1.常数列不一定成立 2.m,p,q,n大于等于自然数 等差中项 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数. 且任意两项am,an的关系为:an=am+(n-m)d 它可以看作等差数列广义的通项公式.u投在线2023-05-12 21:02:101
等差数列公式是什么?
等差公式是:前n项和公式为:Sn=na1+n(n-1)d/2若公差d=1时:Sn=(a1+an)n/2若m+n=p+q则:存在am+an=ap+aq若m+n=2p则:am+an=2ap等差数列的判定:(1)a(n+1)--a(n)=d (d为常数、n∈N*)[或a(n)--a(n-1)=d,n∈N*,n≥2,d是常数]等价于{a(n)}成等差数列。(2)2a(n+1)=a(n)+a(n+2)等价于{a(n)}成等差数列。(3)a(n)=kn+b等价于{a(n)}成等差数列。(4)S(n)=A(n)^2 +B(n)等价于{a(n)}为等差数列。余辉2023-05-12 21:02:101
等差数列的公式是什么?
公式:奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。 相关公式:扩展资料:等差数列的基本性质:(1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = + 的形式(其中a、b为常数)。(2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶= ;当项数为(2n-1)(n∈正整数)时,S奇-S偶=a(中),S奇-S偶= (中) ,S奇÷S偶 =n÷(n-1)。(3)若数列为等差数列,则 , , ,…仍然成等差数列,公差为 。(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则 = 。(5)在等差数列中,S = a,S = b (n>m),则S = (a-b)。(6)记等差数列的前n项和为S。①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小。(7)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)。参考资料:等差数列百度百科铁血嘟嘟2023-05-12 21:02:101
等差数列相关公式
等差数列公式如下:第n项的值an=首项+(项数-1)×公差。an=am+(n-m)d ,若已知某一项am,可列出与d有关的式子求解an。例如 a10=a4+6d或者a3=a7-4d。前n项的和Sn=首项×n+项数(项数-1)公差/2。公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。项数=(末项-首项)÷公差+1。末项=首项+(项数-1)×公差。当数列为奇数项时,前n项的和=中间项×项数。数列为偶数项,前n项的和=(首尾项相加×项数)÷2。等差数列中项公式2an+1=an+an+2其中{an}是等差数列。等差数列的和=(首项+末项)×项数÷2。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。黑桃花2023-05-12 21:02:101
等差数列的公式是什么?
公式:奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。 相关公式:扩展资料:等差数列的基本性质:(1)数列为等差数列的重要条件是:数列的前n项和S 可以写成S = + 的形式(其中a、b为常数)。(2)在等差数列中,当项数为2n (n∈ N+)时,S偶-S奇 = nd,S奇÷S偶= ;当项数为(2n-1)(n∈正整数)时,S奇-S偶=a(中),S奇-S偶= (中) ,S奇÷S偶 =n÷(n-1)。(3)若数列为等差数列,则 , , ,…仍然成等差数列,公差为 。(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则 = 。(5)在等差数列中,S = a,S = b (n>m),则S = (a-b)。(6)记等差数列的前n项和为S。①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小。(7)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)。参考资料:等差数列百度百科gitcloud2023-05-12 21:02:091
什么叫等差数列
所谓的等差,是指后面一个数减去前面一个数他,它们的差都是相等的Ntou1232023-05-12 21:02:094
什么是等差数列?
等差数列基本的5个公式如下:1、an=a1+(n-1)*d;2、an=a1+(n-1)*d;3、Sn=a1*n+【n*(n-1)*d】/2;4、Sn=【n*(a1+an)】/2;5、Sn=d/2*n+(a1-d/2)*n。等差数列的常用性质1、数列是{an}等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列。2、在等差数列中,等距离取出若干项也构成一个等差数列。3、公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。4、若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。5、公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)。6、当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。大鱼炖火锅2023-05-12 21:02:091
等比数列和等差数列有什么区别?
一个差相等,一个比相等ardim2023-05-12 21:02:096
等差数列所有公式大全
等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列公式大全 等差数列公式 等列公式:an=a1+(n-1)d(n为正整数) S1为首项,an为第n项的通项公式,d为公差。 前n项和公式为:Sn=na1+n(n-1)d/2(n为正整数) Sn=n(a1+an)/2 注:n为正整数 若n、m、p、q均为正整数, 若m+n=p+q时,则:存在am+an=ap+aq 若m+n=2p时,则:am+an=2ap 若A、B、C均为正整数,B为中项,B=(A+C)/2 也可推导得Sn=na1+nd(n-1)/2人类地板流精华2023-05-12 21:02:091
如何求等差数列
1.概念性质,系统掌握。 {an}是等差数列 an-an-1=d(n≥2,n∈N+d为同一常数)。从逻辑的角度看上述命题是一个“且”命题,即:a2-a1 = a3-a2=…=an-an-1=d(n个等号同时成立),如:1,3,a,b,c是等差数列,则a=5且b=7且c=9;1,3,a,7,c不是等差数列则a≠5或c≠9。 此外{an }是等差数列 an=pn+q(p、q为常数,n∈N+ 以下脚马同) 2an+1=an+an+2 Sn=An2+Bn(A、B为常数);{an},{bn}为等差数列 {pan+q bn}为等差数列(p、q为常数) 通项公式:an=a1+(n-1)d以及求和公式:Sn=(a1+an)n/2 、Sn=n a1+n(n-1)d/2=dn2/2+(a1-d/2)n=A n2+Bn,不仅要理解公式的内涵、能熟练运用,而且要从公式的推导过程中获取规律性的思维方法。 2.通法通则,烂熟于胸 通项、求和公式中涉及五个量(a1 、d、an、n 、Sn)通过解方程“知三可以求二” ,事实上很多问题通过转化为a1 、d便迎刃而解。a1 、d是等差数列的两个基本量。 例1:在等差数列{an}中, ap=q , aq=p , 求 a(p+q)? 解:依题意得:a1+(p-1)d=q d=-1 a1+(q-1)d=p ∴ a1=p+q-1 ∴a(p+q)=0 3.交汇函数,认清本质 (1)an=f(n)=pn+q图象是直线上的离散点集,两条件(如 a5,a10)等差数列即可确定。(2)Sn=dn2/2+(a1-d/2)n的图象(d≠0时)是过原点的抛物线上的离散点集,由于过(0,0),只要给出两个条件(如 S5、, S10)就可确定等差数列。 例2:等差数列{an}中,3 a5=7 a10 且a1<0,则前n项和Sn最小的是( )? (A)S7或S8(B)S13 (C)S12 (D)S15 解:3(a1+4d)=7(an+9d) ∴d=(-4 a1)/51>0 Sn=(-2 a1)n2/51+(53 a1n)/51 对称轴=53/4=13.25∵|13-13.25| <|14-13.25| ∴ S13 最小 4.技巧方法,广泛迁移 优良的思维品质表现为能用最明确最简单的方式,了解和解决问题。首先,减少运算量,掌握下列公式十分有益: (1)an=am+(n-m)d (2)若m+n=p+q 则 an+am=ap+aq (3)2 am =a1+a2m-1 (4)Sm ,S2m -Sm ,S3m -S2m 成等差数列 例3:{an}是等差数列,S11=33,则a6=?若a6=3,则S11=? 解:S11=33 11(a11+a1)/2 =33 a11+a1=6 2 a6=6 a6=3 此外,还有思想方法的迁移,在公式的推导过程中隐含着下列思维方法: 累差法 倒序相加法 迭代法 a2-a1=d a3-a2=d ……+ )an-an-1=d an-a1=(n-1)d Sn= a1+a2+…+an-1+anSn= an+an-1+…+a2+a12 Sn=n〔(a1+an)+…+ (an+a1)〕Sn= n(a1+an)/2 an =an-1+d =an-2+2d =an-3+3d …… =a1+(n-1)d 例4:已知数列{an}的首项a1=0,an+1=an+(2n+1)求{an}的通项公式。 解: ∵a2-a1 =2×1+1=3,a3-a2 =2×2+1=5, a4-a3 =2×3+1=7,… , an-an-1 =2×(n-1)+1=2n-1 ∴ an-a1 =n2-1 又∵a1 =0 ∴an =n2-1 此数列虽不是等差数列,但相邻两项的差却是等差数列(奇数列),类比等差数列求和时使用的累差法便可求出通项公式瑞瑞爱吃桃2023-05-12 21:02:091
等比等差数列的所有公式有哪些?
等比数列公式有数列通式an=a1*q^(n-1),前n项和公式Sn=na1+n(n-1)d/2,其中a1为数列首项,d为等差公差。等差的所有公式有数列通式an=a1+(n-1)*d,前n项和公式Sn=a1*(1-q^n)/(1-q),其中a1为数列首项,q为数列公比。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。以上内容参考:百度百科-等比数列善士六合2023-05-12 21:02:091
什么是等差数列?(解释最好简单点)
相邻两项之间的差为常数的一类数列或者任意相邻两项的差相等的数列。等差数列的递推公式an=a(n-1)+d d为公差 an为第n项 a(n-1)为第n-1项 通项公式an=a1+(n-1)d 前n项和S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2 等差数列前n项和公式S 的基本性质 ⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数). ⑵在等差数列中,当项数为2n (n∈ N+)时, S偶-S奇 = nd, S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1) . ⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d . ⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = . ⑸在等差数列中,S = a,S = b (n>m),则S = (a-b). ⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上. ⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小. [8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q) 等差数列在高中数学人教版必修5 是高考的一个知识点,数列要好好学啊。高考之中会有一题是关于数列的。黑桃花2023-05-12 21:02:094
等差数列定义
等差数列定义:等差数列是常见数列的一种。如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。数字推理中常规等差数列的特征通常有两个:一是变化幅度较小,通常前后项变化不超过两倍,二是数列整体存在单调性,呈现单调递增或者单调递减。等差数列性质1.公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。2.公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。3.若为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列。4.对任何m、n,在等差数列中有a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。5.一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当为等差数列时,有a+a+a+…=a+a+a+…。人类地板流精华2023-05-12 21:02:082
怎么求等差数列的通项公式?
1、等差数列求和公式:(字母描述)其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。2、等差数列的通项公式:其中等差数列的首项为a1,末项为an,项数为n,公差为d,前n项和为Sn。扩展资料:知识点:等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和LuckySXyd2023-05-12 10:29:341
等差数列的详细公式
等差数列公式:(其中a1表示第1项,an表示第n项,n表示项数,d表示公差,Sn表示前n项之和) 求末项:an=a1+(n-1)d(a1>an) 求首项a1=an-(n-1)d(a1>an) 求项数:n=[(an-a1)/d]+1 求公差:d=(an-a1)/(d-1) 求和:Sn=n(a1+an)/2 或Sn=na1+n(n-1)d/2墨然殇2023-05-12 10:29:342
等差数列的求和公式
Sn=(a1+an)n/2mlhxueli 2023-05-12 10:29:342
等差数列的表达式
等差数列公式:(其中a1表示第1项,an表示第n项,n表示项数,d表示公差,Sn表示前n项之和) 求末项:an=a1+(n-1)d(a1>an) 求首项a1=an-(n-1)d(a1>an) 求项数:n=[(an-a1)/d]+1 求公差:d=(an-a1)/(d-1) 求和:Sn=(a1+an)*n/2NerveM 2023-05-12 10:29:341
如何求等差数列的和与差?
设原等差数列首项为a,公差为d。原等差数列依次为a,a+d,a+2d,a+3d,……,a+2nd奇数项为:a,a+2d,a+4d,……,a+2nd奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)偶数项为:a+d,a+3d,a+5d,……,a+(2n-1)d偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n拓展资料等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。FinCloud2023-05-12 10:29:341
求等差数列计算公式
1、定义.若数列{an}从第二项起,都有:[an]-[a(n-1)]=常数,则称数列{an}是等差数列,这个常数称为公差,用d表示; 2、an=a1+(n-1)d; 3、前n项和,Sn=[n(a1+an)]/2=na1+(1/2)n(n-1)d 4、性质: ①若自然数m、n、p、q满足:m+n=p+q,则:am+an=ap+aq; ②若am=n,an=m,则a(m+n)=0; ③若Sn=m,Sm=n,则S(m+n)=-(m+n) ④S(3n)-S(2n)、S(2n)-Sn、Sn也成等差数列黑桃花2023-05-12 10:29:341
等差数列,求过程
设数列为{an}a2-a1=a3-a2=a4-a3=3,数列{an}是以1为首项,3为公差的等差数列S100=100×1+100×99×3/2=14950拌三丝2023-05-12 10:29:341
等差数列求项数公式
项数=(末项-首项)÷公差+1。等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。 等差数列公式 第n项的值,an=首项+(项数-1)×公差 前n项的和,Sn=首项×n+项数(项数-1)公差/2 公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数) 项数=(末项-首项)÷公差+1 末项=首项+(项数-1)×公差 当数列为奇数项时,前n项的和=中间项×项数 数列为偶数项,前n项的和=(首尾项相加×项数)÷2 等差数列中项公式2an+1=an+an+2其中{an}是等差数列 等差数列的和=(首项+末项)×项数÷2再也不做站长了2023-05-12 10:29:341
等差数列的公差怎么求
1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。2、Sn=na(n+1)/2n为奇数sn=n/2(An/2+An/2+1)n为偶数3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。知识点:等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和陶小凡2023-05-12 10:29:341
等差数列乘积 公式
没听说过@!拌三丝2023-05-12 10:29:345