汉邦问答 / 问答 / 问答详情

总结偏微分方程的解法

2023-05-22 18:14:18
gitcloud

可分为两大方面:解析解法和数值解法。

其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。

数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。其中,差分法是最普遍最通用的方法。

偏微分方程

扩展资料

偏微分方程示例

二阶线性与非线性偏微分方程始终是重要的研究对象。

这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。

近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。

对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。

另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。

参考资料:百度百科——偏微分方程

阿啵呲嘚

可分为两大分支:解析解法和数值解法。

只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。

数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。

偏微分方程

扩展资料:

导数(Derivative) 是微积分学中重要的基础概念。

对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x 0 的某个邻域△x内,极限定义如下

f ′ (x 0 )= △x→0lim△xf(x 0 +△x)−f(x 0 ) (1.1)若极限存在,则称函数f(x)在点x 0 处可导,f′(x 0 )称为其导数,或导函数,也可以记为 dxdf(x 0 ) 。在几何上,导数可以看做函数曲线上的切线斜率。

给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为

F(x)=∫f(x)dx(1.2)

其中F(x)称为f(x)的原函数。

若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(Differentiable Function)。可微函数一定连续,但连续函数不一定可微。例如函数∣x∣为连续函数,但在点x = 0处不可导。下表是几个常见函数的导数:

参考资料来源:百度百科_微积分

wpBeta

可分为两大分支:解析解法和数值解法。


只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。


数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法。


其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等

扩展资料:

偏微分方程也称为数学方程。是指:

包含未知函数的偏导数(或偏微分)的方程。

方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。

在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。

客观世界的物理量一般是随时间和空间位置而变化的,因而可以表达为时间坐标t和空间坐标   的函数  ,这种物理量的变化规律往表现为它关于时间和空间坐标的各阶变化率之间的关系式,即函数u关于t与  的各阶偏导数之间的等式。

参考资料来源:百度百科-偏微分方程



左迁

可分为两大分支:解析解法和数值解法

只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。

数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法

其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等

LuckySXyd

可分为两大方面:解析解法和数值解法。

其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。

数值解法又可以分为最常见的有三种:差分法、有限体积法、有限元法。其中,差分法是最普遍最通用的方法。

扩展资料

偏微分方程示例

二阶线性与非线性偏微分方程始终是重要的研究对象。

这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。

近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。

对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。

另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。

参考资料:百度百科——偏微分方程

水元素sl

给楼上补充一下,解析解法一般都是针对一定特殊的类型,有特征线法,分离变量法,傅里叶变换,拉普普斯变换,格林函数法等等吧

什么是偏微分 偏微分方程是什么

什么是偏微分 1. 在多元函数中,函数对每个自变量的导数是偏导数。因此,每个自变量的微分称为偏微分。 2. 例如,如果z=f (x, y),那么偏z偏x就是z对x的导数,也就是z对x的偏导数。此时,y被视为常数。z关于y的偏导数也可以用同样的方法求出来。偏导数是偏导数乘以dx或dy,全微分是两个偏微分的和。 3.偏微分方程是含有未知函数偏导数(或偏微分)的方程。方程中未知函数的偏导数的最高阶称为方程的阶。二阶偏微分方程是数学、物理和工程技术中应用最广泛的一类方程。它们通常被称为数学物理方程。
2023-05-22 16:03:571

偏微分方程

偏微分方程是包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。偏微分方程起源:微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。不过这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的。
2023-05-22 16:04:051

什么是偏微分 偏微分方程是什么

1、在多元函数中,函数对每一个自变量求导,就是偏导数。由此,对每个自变量的微分,就是偏微分。 2、如:z=f(x,y),则偏z偏x,就是z对x求导,称为z对x的偏导数,这时y视为常量。z对y的偏导数同理可求。 偏微分,就是偏导数乘一个dx或dy。全微分,就是两个偏微分之和。 3、偏微分方程是包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。
2023-05-22 16:04:221

偏微分方程

偏微分方程是数学中的一个重要分支,它是描述自然现象和物理现象的数学模型。偏微分方程通常用于描述一些变量随时间、空间等因素的变化规律。它们可以用来解决许多重要的实际问题,如流体力学、电磁学、热传导、量子力学等领域的问题。偏微分方程可以分为几种类型,包括:1. 椭圆型偏微分方程:用于描述稳态问题,如静电场、静磁场等。2. 抛物型偏微分方程:用于描述热传导、扩散、波动等问题。3. 双曲型偏微分方程:用于描述波动、震荡等问题。解决偏微分方程的方法包括分离变量法、变换法、数值方法等。在实际应用中,偏微分方程的求解通常需要结合数值方法和计算机模拟来进行。
2023-05-22 16:04:291

偏微分方程求解

偏微分方程求解:1、核心思想是利用迭加原理求得微分方程足够数目的特解(基本解组),再作这些特解的线性组合,使满足给定的初始条件。2、假定可分离变量的非平凡解的特解u(x,t)=X(x)T(t)并要求它满足齐次边界条件u(x,0)=0,u(x,π)=0。3、分离变量后,得到T"(t)+λa^2T(t)=0  X"(t)+λX(t)=0。4、求解X(x)的通解。5、确定待定系数λ。6、得到Uk(x,t)=Xk(x)*Tk(t)的特解。7、根据初始条件,利用傅里叶级数确定Ak和Bk(即题目中的A1,A2)。8、将Ak和Bk代入u(x,t)中,就得到偏微分方程以级数形式表示的解。偏微分方程是厦门大学建设的慕课、国家精品在线开放课程,该课程于2017年3月1日在中国大学MOOC首次开设,授课教师为谭忠。据2021年7月中国大学MOOC官网显示,该课程已开课9次。该课程共8章,包括引言:从音乐审美到揭秘量子纠缠;典型偏微分方程模型的建立;偏微分方程的基本概念、形成的数学问题与分类;高维波动方程的Cauchy问题;能量方法、极值原理与格林函数法等章目。
2023-05-22 16:04:471

什么是偏微分方程?

简单地说,偏微分方程就是含有多元未知函数及其偏导数的方程.
2023-05-22 16:05:442

偏微分方程的介绍

偏微分方程是微分方程中出现的未知函数只含一个自变量,如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。
2023-05-22 16:05:511

偏微分方程是什么?

根本上来讲,就是为了解偏微分方程。具体方法就是把二阶的偏微分方程化成一阶的常微分方程。
2023-05-22 16:06:073

偏微分方程和常微分方程的区别??

未知数的个数不一样
2023-05-22 16:06:153

如何求解偏微分方程

求解一道偏微分方程ux+2uy-4u=e^(x+y)边值条件:u(x,4x+2)=0解:由于只有一阶偏微分,所以作线性变量代换α=x+y(这是因为等号的右边含有x+y)β=ax+by由链式法则可知∂u/∂x=∂u/∂α+a∂u/∂β∂u/∂y=∂u/∂α+b∂u/∂β代入原方程得3∂u/∂α+(a+2b)∂u/∂β-4u=e^(x+y),这里将u看成关于α,β的函数不妨取a=2,b=-1那么α=x+y,β=2x-y那么有3∂u/∂α-4u=e^α这相当于关于α的一阶线性常微分方程解得u=-e^α+Ce^(4α/3),其中C为关于β=2x-y的函数f(2x-y)即u=-e^(x+y)+e^[4(x+y)/3]f(2x-y)将边值条件代入得f(-2-2x)=e^(-(2/3) - (5 x)/3)因此f(x)=e^(1+(5x)/6)代入u=-e^(x+y)+e^[4(x+y)/3]f(2x-y)得u=e^(3x+y/2+1)-e^(x+y)
2023-05-22 16:06:422

什么是常微分方程?偏微分方程?举个例子

凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知数是多元函数的微分方程称作偏微分方程.微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.定义式如下: F(x, y, y¢, ., y(n)) = 0   定义2 任何代入微分方程后使其成为恒等式的函数,都叫做该方程的解.若微分方程的解中含有任意常数的个数与方程的阶数相同,且任意常数之间不能合并,则称此解为该方程的通解(或一般解).当通解中的各任意常数都取特定值时所得到的解,称为方程的特解.   一般地说,n 阶微分方程的解含有 n个任意常数.也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解.通解构成一个函数族.   如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解.对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组. 常微分方程 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等.下面就方程解的有关几点简述一下,以了解常微分方程的特点.   求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解.也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究.   后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解.当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来.   一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理.因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定.因此,存在和唯一性定理对于微分方程的求解是十分重要的.   大部分的常微分方程求不出十分精确的解,而只能得到近似解.当然,这个近似解的精确程度是比较高的.另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决. 常微分方程实例   下下列方程都是微分方程 (其中 y, v, q 均为未知函数).   (1) y= kx, k 为常数;   (2) ( y - 2xy) dx + x2 dy = 0;   (3) mv(t) = mg - kv(t); 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程. 偏微分方程分类比较繁琐,解法多样.建议找一本偏微分方程的教材来看看.会对你有很大帮助
2023-05-22 16:06:491

偏微分方数值方法与数理方程有什么区别?

  1、学好数理方程的关键:首先要理解数理方程之后的物理意义。其次就是多写多练。  2、数学物理方程是指在物理学、力学、工程技术等问题中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程(有时也包括积分方程和某些常微分方程) 。具体地说, 有三种常见的数理方程:  ①、反映波动现象的波动方程  ②、反映输运过程的输运方程  ③、反映稳定场的方程
2023-05-22 16:06:583

偏微分方程?

∂f/∂x=-f(x,y)∂f/f(x,y) =-∂xln|f(x,y)| = -x +C"(y)f(x,y) =e^(-x +C"(y)) = C(y).e^(-x)
2023-05-22 16:07:052

偏微分方程的分类

二阶偏微分方程的一般形式为A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0其特征方程为A*(dy)^2-2*B*dx*dy+C*(dx)^2=0若在某域内B^2-A*C<0则在此域内称为椭圆形方程若在某域内B^2-A*C=0则在此域内称为抛物形方程若在某域内B^2-A*C>0则在此域内称为双曲形方程其实主要是按特征方程的曲线类型分的注:Uxx表示U对x求二阶偏导,Uyy表示U对y求二阶偏导,Uxy表示对x求一阶偏导后再对y求一阶偏导,Ux表示U对x求一阶偏导,Uy表示U对y求一阶偏导partial符号实在打不出来
2023-05-22 16:07:192

偏微分方程怎么解

我的高等数学没学到偏微分方程,所以下面只会个很朴素的解法, 你看看行不? 先看这个简单的微分方程:y=A*(dy/dx)+B,A,B是系数;(i) 它的解是y=C*exp(x/A)+B;C是任意常数 同样对于偏微分方程:y=K1(dy/dx)+K2(dy/dt)+K3,K1,K2,K3是系数;(ii) 。
2023-05-22 16:07:271

偏微分方程 请写出详细步骤 谢谢

求偏导数直接把除了未知数以外的数都视为常数例如第一题求关于x1的导数时就把x2视为常数(a)ðy/ðx1=ð(2x1^3)/ðx1-ð(11x1^2x2)/ðx1+ð(3x2^2)/ðx1=6x1^2-22x1x2ðy/ðx2=ð(2x1^3)/ðx2-ð(11x1^2x2)/ðx2+ð(3x2^2)/ðx2=11x1^2-6x2后面同理吧直接写结果了(b)ðy/ðx1=2x2-4 ðy/ðx2=2x1+3(c)ðy/ðx1=7+6x2^2 ðy/ðx2=12x1x2-27x2^2
2023-05-22 16:07:351

常微分方程和偏微分方程有什么区别?

1、常微分方程是含有自变量(一个)、未知函数和它的导数的等式,偏微分方程是含有自变量(两个或两个以上)、多元函数及其导数(偏导数)的等式;2、常微分方程的解是一元函数;偏微分方程的解是多元函数。
2023-05-22 16:07:432

常微分方程,偏微分方程,全微分方程各是什么,有什么区别?

常微分方程:解得的未知函数是一元函数的微分方程。偏微分方程:解得的未知函数是多元函数的微分方程。全微分方程:一个一阶微分方程写成P(x,y)dx+Q(x,y)dy=0的形式后,它的左端恰好是某个函数u=u(x,y)的全微分,则该微分方程叫全微分方程。
2023-05-22 16:07:501

偏微分方程问题

2023-05-22 16:07:582

求解这题偏微分方程

非齐次边界条件处理:设u(x,t)=v(x,t)+w(x,t)由边界条件得w(x,t)=(b-a)x/L-a即得v(x,t)的边界条件为v(0,t)=0v(L,t)=0v(x,0)=f(x)-(b-a)x/L-a求出v(x,t)即可得出u(x,t)的解
2023-05-22 16:08:211

求解一个偏微分方程

这是典型的抛物型偏微分方程。我只会数值解。解析解我不会求。数值解的话,可以找我
2023-05-22 16:08:302

如何判断偏微分方程是线性还是非线性的

如果P和Q都是方程的两个解,如果对于任意常数,a,baP+bQ也是方程的解,那么这个偏微分方程就是线性的,否则就是非线性的。当然,还有一种拟线性方程,就是对于任意0<s<1sP+(1-s)Q是方程的解,那么这个方程叫拟线性方程。
2023-05-22 16:08:382

偏微分方程,求解

直接积分。就可以了。u=1/6 x³y²+f(x)+g(y)f(x)+g(0)=x²1/6 y²+f(1)+g(y)=cos yf(x)=x²-g(0)f(1)=1-g(0)g(y)=cos y-1/6 y²-1+g(0)u=1/6 x³y²+x²+cos y-1/6 y²-1
2023-05-22 16:08:461

想学偏微分方程,但是不太清楚方向

偏微
2023-05-22 16:08:534

什么是偏微分方程

凡是联系自变量x与这个自变量的未知函数和它的导数以及直到n阶导数在内的方程都叫做常微分方程.如果未知函数是多元函数,那么在微分方程中将出现偏导数,这种方程叫偏微分方程.
2023-05-22 16:09:011

偏微分方程,怎么解,求步骤,

s C+v C_x=-kCC=A e^(-(s+k)/v x)A=c1/sC=c1 e^(-kv/x), (t+x/v≥0)
2023-05-22 16:09:181

简单的偏微分方程求解

我在想用类似于特征线的办法。先留个脚印,想出来了再回来。似乎u(x,y,z) = (x-y)/(x-z) 是一个解,而且所有形如 f( (x-y)/(x-z) ) (其中f是任意可微函数)自然也就都是解。不过这个似乎不够。我再想想。
2023-05-22 16:09:271

偏微分方程的发展

我有关于这方面的很多书籍,包括国内外的
2023-05-22 16:09:363

偏微分方程初边值问题的求解。

2023-05-22 16:09:541

偏微分方程是啥?

不知道
2023-05-22 16:11:393

偏微分方程数值解

偏微分方程数值解通过数值计算方法,在计算机上对偏微分方程的近似求解。科学和工程中的大多数实际问题都归结为偏微分方程的定解问题,由于很难求得这些定解问题的解析解(在经典意义下甚至没有解),人们转向求解它们的数值近似解。偏微分方程通过数值计算方法,在计算机上对偏微分方程的近似求解。科学和工程中的大多数实际问题都归结为偏微分方程的定解问题,由于很难求得这些定解问题的解析解(在经典意义下甚至没有解),人们转向求解它们的数值近似解。偏微分方程应用数值近似求解的研究由来已久,但只是在20 世纪后期电子计算机产生后,才得到广泛的发展和应用(如有限元理论始于60年代)。目前数值求解的规模也变得更大,例如在航天器设计、湍流模拟、气候预测、油田开发等。各种实际问题中,经常过到大规模(网格数至少在百万以上)的运算量问题。偏微分方程的数值求解已渗透到物理、化学、生物等现代科学与工程的各领域,对科技和国民经济的发展有重要作用。偏微分方程是构建科学、工程学和其他领域的数学模型的主要手段。借助抛物线型、双曲线型和椭圆型方程常用的有有限差分方法、有限元方法、有限体方法、修正方程分析、辛积分格式等方法。利用极大值原理、能量法和离散傅里叶分析清晰严格地处理了稳定性问题。
2023-05-22 16:11:451

微分方程公式

微分方程公式如下:1、非齐次一阶常系数线性微分方程:2、齐次二阶线性微分方程:3、描述谐振子的齐次二阶常系数线性微分方程:4、非齐次一阶非线性微分方程:5、描述长度为L的单摆的二阶非线性微分方程:以下是偏微分方程的一些例子,其中u为未知的函数,自变数为x及t或者是x及y。6、齐次一阶线性偏微分方程:7、拉普拉斯方程,是椭圆型的齐次二阶常系数线性偏微分方程:8、KdV方程,是三阶的非线性偏微分方程:约束条件微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
2023-05-22 16:12:042

离散数学与偏微分方程哪个难

我大四,感觉偏微分稍难,特别是公式,刚学时,几下就把我弄晕了!哭………
2023-05-22 16:13:468

微分方程y的二阶求导+y等于0的通解

2023-05-22 16:14:033

微分方程(数学分支)详细资料大全

微分方程 指含有未知函式及其导数的关系式。解微分方程就是找出未知函式。 微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的套用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函式的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有套用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。 基本介绍 中文名 :微分方程 外文名 :differential equation 发明人 :艾萨克·牛顿 所属学科 :高等数学 理论基础 :极限理论 介绍,定义式,来源及发展,特点,数学描述,其他学科关系,分类,偏微分方程,线性及非线性,举例,微分方程的解,约束条件,唯一性, 介绍 含有未知函式的导数,如 的方程是微分方程。 一般的凡是表示未知函式、未知函式的导数与自变数之间的关系的方程,叫做微分方程。未知函式是一元函式的,叫常微分方程;未知函式是多元函式的叫做偏微分方程。微分方程有时也简称方程。 定义式 来源及发展 微分方程研究的来源:它的研究来源极广,历史久远。牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程 y" = f ( x )的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函式的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函式的两个二阶微分方程组。用叫做“首次积分”的办法,完全解决了它的求解问题。 17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。 微分方程 在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。从“求通解”到“求解定解问题”  数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函式,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函式)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。 第一,能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变数方程和用特殊方法变成这两种方程的方程之外,为数是很小的。如果把求通解看作求微商及消去法的某一类逆运算,那么,也和熟知的逆运算一样,它是带试探性而没有一定的规则的,甚至有时是不可能的(J.刘维尔首先证明黎卡提方程不可能求出通解),何况这种通解也是随着其自由度的增多而增加其求解的难度的。 第二,当人们要明确通解的意义的时候(在19世纪初叶分析奠基时期显然会考虑到此问题)就会碰到严重的含糊不清之处,达布在他的教学中经常提醒大家注意这些困难。这主要发生在偏微分方程的研究中。 第三,微分方程在物理学、力学中的重要套用,不在于求方程的任一解,而是求得满足某些补充条件的解。A.-L.柯西认为这是放弃“求通解”的最重要的和决定性的原因。这些补充条件即定解条件。求方程满足定解条件的解,称之为求解定解问题。 特点 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。 求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 后来的发展表明,能够求出通解的情况不多,在实际套用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。 一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。 大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。 通常微分方程在很多学科领域内有着重要的套用,自动控制、各种电子学装置的设计、弹道的计算、飞机和飞弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,套用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 数学描述 许多物理或是化学的基本定律都可以写成微分方程的形式。在生物学及经济学中,微分方程用来作为复杂系统的数学模型。微分方程的数学理论最早是和方程对应的科学领域一起出现,而微分方程的解就可以用在该领域中。不过有时二个截然不同的科学领域会形成相同的微分方程,此时微分方程对应的数学理论可以看到不同现象后面一致的原则。 例如考虑光和声音在空气中的传播,以及池塘水面上的波动,这些都可以用同一个二阶的偏微分方程来描述,此方程即为波动方程,因此可以将光和声音视为一种波,和水面上的水波有些类似之处。约瑟夫·傅立叶所发展的热传导理论,其统御方程是另一个二阶偏微分方程-热传导方程式,扩散作用看似和热传导不同,但也适用同一个统御方程,而经济学中的布莱克-休斯方程也和热传导方程有关。 其他学科关系 早期由于外弹道学的需要,以及40年代由于高速气动力学研究激波的需要,拟线性一阶双曲组的间断解的研究更得到了重大发展,苏联和美国学者作出了贡献。泛函分析和偏微分方程间的相互联系,相互促进发展,首先应归功于法、波、苏等国学者的努力。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的套用及理论研究提供了非常有力的工具。 分类 微分方程可分为以下几类,而随着微分方程种类的不同,其相关研究的方式也会随之不同。 偏微分方程 常微分方程(ODE)是指微分方程的自变数只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函式,但未知数也可能是一个向量函式或是矩阵函式,后者可对应一个由常微分方程组成的系统。 一般的n阶常微分方程具有形式: 其中 是 的已知函式,并且必含有 。 偏微分方程(PDE)是指微分方程的自变数有两个或以上,且方程式中有未知数对自变数的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变数的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。 最常见的二阶椭圆方程为调和方程: 。 线性及非线性 常微分方程及偏微分方程都可以分为线性微分方程及非线性微分方程二类。 若 是 的一次有理式,则称方程 为n阶线性方程,否则即为非线性微分方程。 一般的,n阶线性方程具有形式: 其中, 均为x的已知函式。 若线性微分方程的系数均为常数,则为常系数线性微分方程。 举例 以下是常微分方程的一些例子,其中u为未知的函式,自变数为x,c及ω均为常数。 非齐次一阶常系数线性微分方程: 齐次二阶线性微分方程: 非齐次一阶非线性微分方程: 以下是偏微分方程的一些例子,其中u为未知的函式,自变数为x及t或者是x及y。 齐次一阶线性偏微分方程: 拉普拉斯方程,是椭圆型的齐次二阶常系数线性偏微分方程: KdV方程,是三阶的非线性偏微分方程: 微分方程的解 微分方程的解通常是一个函式表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。 例如: ,其解为: ,其中C是待定常数; 如果知道 ,则可推出C=1,而可知 y=-cos x+1, 一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法: 对于方程:y"+p(x)y+q(x)=0,可知其通解: ,然后将这个通解代回到原式中,即可求出C(x)的值。 二阶常系数齐次常微分方程 对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解 对于方程: 可知其通解: 其特征方程: 根据其特征方程,判断根的分布情况,然后得到方程的通解 一般的通解形式为: 若 ,则有 若 ,则有 在共轭复数根的情况下: 。 约束条件 微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。 常微分方程常见的约束条件是函式在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。 若是二阶的常微分方程,也可能会指定函式在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。 偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。 唯一性 存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。 针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。 针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
2023-05-22 16:14:221

求救偏微分方程

1. 假定u在B内部的某点x0取到最小值,那么u(x)在x0处的一阶偏导为0,Hesse矩阵半正定。注意到Δu是Hesse矩阵的迹,一定非负,所以u^7=Δu>=0,即u(x0)>=0,说明最小值一定不是负的。同理正的最大值也取不到。2. 注意max|u(x)|一定是在u(x)正的最大值或者负的最小值处取到,除非u恒为0(此时结论显然)。利用前面的结论,max|u(x)|一定在B的边界上取到。比如说max|u(x)|=u(x1),x1在B的边界上,那么该点处的外法向导数(简记为u")非负,所以0<=u=(g-u")/f<=g/f<=g/p,所以max|u(x)|=u(x1)<=g(x1)/p<=max|g(x)|/p。同理可证max|u(x)|=-u(x1)的情形。
2023-05-22 16:14:301

二阶偏微分方程

二阶偏微分方程是:F(x,y,y",y"")=0,其中,x是自变量,y是未知函数,y"是y的一阶导数,y""是y的二阶导数。对于一元函数来说,如果在该方程中出现因变量的二阶导数,就称为二阶(常)微分方程。在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。如:y""=f(x)型;y""=f(x,y")型;y""=f(y,y")型。
2023-05-22 16:14:371

偏微分方程是什么

1、在多元函数中,函数对每一个自变量求导,就是偏导数。由此,对每个自变量的微分,就是偏微分。2、如:z=f(x,y),则偏z偏x,就是z对x求导,称为z对x的偏导数,这时y视为常量。z对y的偏导数同理可求。偏微分,就是偏导数乘一个dx或dy。全微分,就是两个偏微分之和。3、偏微分方程是包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。
2023-05-22 16:14:571

偏微分方程

包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。不过这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。数学应用在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。
2023-05-22 16:15:041

偏微分方程

包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。不过这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。数学应用在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。
2023-05-22 16:15:191

偏微分方程是什么?

http://www.ikepu.com/maths/maths_branch/partial_equation_total.htmhttp://baike.baidu.com/view/44690.html
2023-05-22 16:15:342

偏微分方程的示例

偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍。弦振动是一种机械运动,当然机械运动的基本定律是质点力学的 F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只有其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。在解决任何数学物理方程的时候,总会有类似的附加条件。就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。边界条件也叫做边值问题。当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。解法:1,首先变为标准型,看是哪种类型,如椭圆型,双曲型。抛物型。2,归结为四大基本方程:波动,热传导,传输,3。按其解法解决
2023-05-22 16:15:461

什么是偏微分方程?

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
2023-05-22 16:16:021

偏微分和微分有什么区别?

1、对象不同偏微分是对函数方程中的一个未知数求导。微分是对函数方程中的所有未知数求导。2、符号不同在求偏微分时求导符号须变成∂。而在求微分时符号为d。扩展资料:偏微分方程中二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度,至今为止,一直是重要的研究课题。对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。参考资料来源:百度百科-微分参考资料来源:百度百科-偏微分方程
2023-05-22 16:16:111

分离变量法求解偏微分方程

爱神@爱佛费克斯。
2023-05-22 16:16:262

偏微分方程与常微分方程的本质区别是?

常微分方程,描述的是一个量随一个自变量变化的规律,如位置随时间的变化规律。偏微分方程组,描述的是一个量随着2个或更多自变量变化的规律。比如温度随着时间位置的变化。这样就需要4个(分别是时间,和三个空间维度)偏微分方程来描述。偏微分方程一般比常微分方程复杂,不仅在于它自变量多,而且各个自变量之间会有耦合,比如温度随时间的变化和位置有关,同时温度随位置的变化又和时间有关,所以很复杂。一般用数值法求解。比如天气预报,就是用计算机求解偏微分方程得到的。
2023-05-22 16:19:482

什么是偏微分 偏微分方程是什么

1、在多元函数中,函数对每一个自变量求导,就是偏导数。由此,对每个自变量的微分,就是偏微分。 2、如:z=f(x,y),则偏z偏x,就是z对x求导,称为z对x的偏导数,这时y视为常量。z对y的偏导数同理可求。 偏微分,就是偏导数乘一个dx或dy。全微分,就是两个偏微分之和。 3、偏微分方程是包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。
2023-05-22 16:19:561

什么叫偏微分方程?

偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍。   弦振动是一种机械运动,当然机械运动的基本定律是质点力学的 F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。   弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。   用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。   偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。   拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。   天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。在解决任何数学物理方程的时候,总会有类似的附加条件。   就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。边界条件也叫做边值问题。   当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。   在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。   求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。   偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。   应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。   常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。   随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。   解法:1,首先变为标准型,看是哪种类型,如椭圆型,双曲型。抛物型。   2,归结为四大基本方程:波动,热传导,传输,   3。按其解法解决
2023-05-22 16:20:181

请问什么是偏微分方程

偏微分方程是含有多元未知函数及其偏导数的方程。(可以不含多元未知函数,但必须含有它的偏导数。)
2023-05-22 16:20:263

偏微分方程求解

其中只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。扩展资料偏微分方程示例二阶线性与非线性偏微分方程始终是重要的研究对象。这类方程通常划分成椭圆型、双曲型与抛物型三类,围绕这三类方程所建立和讨论的基本问题是各种边值问题、初值问题与混合问题之解的存在性、唯一性、稳定性及渐近性等性质以及求解方法。近代物理学、力学及工程技术的发展产生出许多新的非线性问题,它们常常导引出除上述方程之外的称为混合型方程、退化型方程及高阶偏微分方程等有关问题,这些问题通常十分复杂具有较大的难度。对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。另一方面,由于电子计算机的迅速发展,使得各种方程均可数值求解,并且揭示了许多重要事实,因此,数值解法的研究,在已取得许多重要成果的基础上,将会有更快地发展。
2023-05-22 16:20:341