- 九万里风9
-
数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。
中文名
数列极限
外文名
The limit of sequence
领域
数学
性质
数列的收敛性
应用
微积分
快速
导航
性质
存在的条件
应用
基本概念
数列
定义 若函数的定义域为全体正整数集合,则称
为数列。因正整数集的元素可按由小到大的顺序排列,故数列也可写作
或可简单地记为,其中称为该数列的通项。
数列极限
定义设为数列,a为定数。若对任给的正数,总存在正整数N,使得当时有
则称数列收敛于a,定数a称为数列的极限,并记作
若数列没有极限,则称不收敛,或称发散。[1]
等价定义任给,若在(a-ε,a+ε)之外数列中的项至多只有有限个,则称数列收敛于极限a
常见的几个数列极限
常见的几个数列极限具体如下:1、极限分为一般极限,还有个数列极限(区别在于数列极限是发散的,是一般极限的一种)。2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。部熟记。(x趋近无穷的时候还原成无穷小)2)洛达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)须是0比0,无穷大比无穷大!当然还要注意分母不能为0。洛达法则分为三种情况1)0比0无穷比无穷时候直接用。2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了。3)0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)。3、泰勒公式(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助。4、面对无穷大比上无穷大形式的解决办法取大头原则大项除分子分母!看上去复杂处理很简单。5、无穷小与有界函数的处理办法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!2023-05-21 08:18:331
怎么证明数列极限存在
1.概念法:存在一个正数ε,当n>N时,|an-M| < ε恒成立2.定理法:(1)单调且有界数列必存在极限;(2)夹逼准则;(3)数学归纳法(有可能和(1)、(2)结合使用)3.函数法:将数列的通项公式构成成函数,利用对函数求极限来判定数列的极限,要和夹逼准则或者概念法一起使用1,证明数列{xn=(n-1)/(n+1)}极限存在并求出其极限证明:∵1 -1/(1+1/n) = 1- n/(n+1)< 1-2/(n+1) = xn < (n-1)/n = 1-1/n即:1 -1/(1+1/n) < xn < (n-1)/n = 1-1/n已知:当n无穷大时:lim 1/n =0∴lim[1 -1/(1+1/n)]=1lim[1-1/n]=1根据夹逼准侧:xn极限存在,且limxn=12023-05-21 08:18:511
数列极限的定义看不懂
这个很简单。其实就是说在数列Xn中,当从某一项(也就是所谓的N)开始以后的每一项的Xn(以后的每一项的序列号n都会大于N,因为是从N开始以后的每一项),都有Xn-a的绝对值小于e(这句话的意思是这以后的每一项Xn都无限接近于a这个常数,所以它们相减的差值e可以无论它有多么小,越小越好,代表它们越接近),这样我们就可以说这个数列Xn的极限值是a。假设一个数列Xn,从第五项开始(也就是说N=5)以后的每一项(也就是n>N,n=6,7,8....)的Xn与一个常数a的差值都小于e(这个e很小,而且越小越好,不论它多么小),那么我们就可以说这个数列Xn的极限值是a.因为Xn从第五项以后的每一项都会十分趋近于a.2023-05-21 08:18:592
求数列极限的步骤
求数列极限的步骤:认识数列极限的定义及性质,了解证明数列极限的基本方法,学习例题,看题干解问题,利用定义来证明数列的极限,检查解答过程。 求数列极限的步骤 1.认识数列极限的定义及性质。即最终数列发展到第无限项的时候,数列的数值是归于一个固定数的。 2.了解证明数列极限的基本方法。主要是通过数列的子数列进行证明。 3.学习例题,看题干解问题。主要看数列的定义和相关关于数列的题设 4.利用定义来证明数列的极限。注意!只能利用定义来进行求取和证明,不可通过性质。 5.检查解答过程,发现解题过程中的问题进行修改。保证问题解决! 数列极限定义 设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并或Xn→a(n→∞) 读作"当n趋于无穷大时,{Xn}的极限等于或趋于a". 若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列. 该定义常称为数列极限的ε-N定义. 对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。 定理1:如果数列{Xn}收敛,则其极限是唯一的。 定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。2023-05-21 08:19:241
怎么判断数列是否有极限!!
1.概念法:存在一个正数ε,当n>n时,|an-m|<ε恒成立2.定理法:(1)单调且有界数列必存在极限;(2)夹逼准则;(3)数学归纳法(有可能和(1)、(2)结合使用)3.函数法:将数列的通项公式构成成函数,利用对函数求极限来判定数列的极限,要和夹逼准则或者概念法一起使用1,证明数列{xn=罚法窜盒诃谷撮贪郸楷(n-1)/(n+1)}极限存在并求出其极限证明:∵1-1/(1+1/n)=1-n/(n+1)<1-2/(n+1)=xn<(n-1)/n=1-1/n即:1-1/(1+1/n)<xn<(n-1)/n=1-1/n已知:当n无穷大时:lim1/n=0∴lim[1-1/(1+1/n)]=1lim[1-1/n]=1根据夹逼准侧:xn极限存在,且limxn=12.略,方法同12023-05-21 08:19:522
极限和数列有什么关系和区别啊?
关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。区别1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。扩展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料百度百科——海涅定理百度百科——函数极限2023-05-21 08:19:591
函数的极限与数列的极限的关系是什么?
一、二者联系函数的极限和数列的极限都是高等数学的基础概念之一。函数极限的性质和数列极限的性质都包含唯一性。二、二者区别1、取值:数列的N取值是正整数,一般函数的X取值是连续的。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。2、性质:函数极限的性质是局部有界性,而数列极限为有界性。3、因变量趋近方式:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。4、数列具有离散性。而函数有连续型的,也有离散型的。扩展资料:数列极限和函数极限的性质1、常用的数列极限的性质:数列极限具有唯一性、有界性、保号性、保不等式性、迫敛性。2、常用的函数极限的性质:函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等。参考资料来源:百度百科-函数极限百度百科-数列极限2023-05-21 08:20:111
总结求函数(数列)极限的方法
求数列极限可以归纳为以下三种形式: ★抽象数列求极限 这类题一般以选择题的形式出现,因此可以通过举反例来排除。此外,也可以按照定义、基本性质及运算法则直接验证。 ★求具体数列的极限 a.可以参考以下几种方法: 首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程,从而得到数列的极限值.。 b.利用函数极限求数列极限 如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。 ★求n项和或n项积数列的极限,主要有以下几种方法: a.利用特殊级数求和法 如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。 b.利用幂级数求和法 若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。 c.利用定积分定义求极限 若数列每一项都可以提出一个因子,剩余的项可用一个通项表示,则可以考虑用定积分定义求解数列极限。 d.利用夹逼定理求极限 若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。 e.求n项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。2023-05-21 08:20:551
用数列极限的定义证明,过程详细些
|1/n^k-0|=1/n^k对任意ε>0,要1/n^k<ε,只要取N=[(1/ε)^(1/k)]+1>0,当n>N,就有|1/n^k-0|<ε因此,根据定义:lim 1/n^k=0例如:|往证:对于任意小e>0;总存在正整数N>0;使得只要n>N时,|(n^2+1)/(n^2-1)-1|<e证明:对于任意小e>0,令(n^2+1)/(n^2-1)-1<e;化简得n>√(2/e-1);这里取N=[√(2/e-1)]+1;则有只要n>N时,|(n^2+1)/(n^2-1)-1|<e总成立。即(n^2+1)/(n^2-1)关于n趋向无穷大的极限为1。证毕。扩展资料:设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。参考资料来源:百度百科-无穷大2023-05-21 08:21:031
如何判断数列极限是否存在?
1、数列极限定义中的ε是个任意小的正数【解答】 对。只有可以任意的小,才能说明无限地接近,也就是极限的存在。2、数列极限中的N有无穷多个,但只要找到一个就够了【解答】 对。只要n比N大,不等式就成立,有无数个比N大的数,都可以作为N。3、一个数列如果有极限,那么极限是唯一的【解答】 对。即使是波动的,也不算是极限,而只能说是有界的。4、与|an-A|<ε等价的是an属于(A-ε,A+ε)【解答】 对。这是不等式的基本性质。5、数列极限为A,说明(A-ε,A+ε)内存在有无穷多项,(A-ε,A+ε)外存在无穷多项【解答】 错。(A-ε,A+ε)内存在有无穷多项,(A-ε,A+ε)外存在有限多项。2023-05-21 08:21:161
用数列极限定义证明
注意格式!待续2023-05-21 08:21:264
数列极限的几何意义
数列极限的几何意义是: 1、存在一条水平的直线,这条直线就是渐近线; 2、数列有极限,在几何图形上是无穷多个点; 3、这些点形成了一个趋势,这个趋势就是,这些点向上渐渐趋近于一条水平直线或者向下渐渐趋近于一条水平直线; 4、这条水平线是我们根据趋势自然而然地想象出来的; 5、如果极限值不存在,可能是一条斜渐近线,也可能是竖直渐近线,也可能是无穷个离散的点。2023-05-21 08:21:461
能不能给我解释下数列的极限的定义,最好举例说明下
标准的定义课本上有自己看,在此不再敖述,这里给你举个通俗的例子。通俗地说,数列的极限就是这个数列一直持续下去会是多少。比如,数列1,1,1,……一直持续下去始终是1,那么极限就是1;再如数列1/2,1/3,1/4,1/5,……一直持续下去不就快要小到0了吗?于是极限就是0。2023-05-21 08:21:531
数列极限有哪些?
重要极限有sinx/x当x趋向于无穷时的极限为1;(1+1/t)^t当t趋向于无穷时的极限为e,其他就是一些常数的极限是本身,1/n当n趋向于无穷时的极限为0。设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限。扩展资料:极限函数在区间(a-ε,a+ε)之外至多只有N个(有限个)点;所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。2023-05-21 08:22:121
怎么求数列的极限?
数列极限的求法:1、如果代入后,得到一个具体的数字,就是极限。2、如果代入后,得到的是无穷大,答案就是极限不存在。3、如果代入后,无法确定是具体数或是无穷大,就是不定式类型,4、计算极限,就是计算趋势 tendency。存在条件:单调有界定理 在实数系中,单调有界数列必有极限。致密性定理,任何有界数列必有收敛的子列。计算方法,参考下面图片:拓展资料数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。极限:解题思路:参考资料:百度百科-数列极限2023-05-21 08:22:251
数列极限是什么?怎么求?
在n趋于无穷大的时候,(1+1/n)^n就趋于一个无理数,而且这个数在初等数学中是没有出现的,就将其定义为e,而e约等于2.71828,是一个无限不循环小数,为超越数。lim n→0,(1 + 1/n)^n。=e^lim n→0,nln(1+1/n)。=e^lim n→0,1/n*ln(1+1/n)。=(洛)e^lim n→0,1/1+1/n。=e^0。=1。数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当|x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。2023-05-21 08:22:481
数列极限
?2023-05-21 08:23:054
数列的极限的三大性质
数列的极限的三大性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等;2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列1,-1,1,-1,……,(-1)n+1 ,……3、保号性:若 (或<0),则对任何 m∈(0,a) (a<0时则是 m∈(a,0) ),存在N>0,使n>N时有xn>m (相应的xn<m )。2023-05-21 08:23:211
求数列极限的方法及常见数列的极限
求极限的常用方法:1。函数的连续性2。等价无穷小代换3。“单调有界的数列必有极限”定理4。有界函数与一个无穷小量的积仍为无穷小量5。两个重要极限(sinx/x=1,e)6。级数的收敛性求数列极限7。罗必塔法则8。定积分的定义打字不易,如满意,望采纳。2023-05-21 08:23:271
数列的极限有哪些求法
一:定义法; 二:单调有界法; 三:运用两边夹法; 四:先求和再求极限法; 五:先用放缩法再求极限; 六:用施笃兹公式法。 1、如果代入后,得到一个具体的数字,就是极限; 2、如果代入后,得到的是无穷大,答案就是极限不存在; 3、如果代入后,无法确定是具体数或是无穷大,则是不定式类型。2023-05-21 08:23:341
如何证明此数列的极限?
左边=lim{n->无穷大}e^{ln[n(n+1)]/n}=e^【lim{n->无穷大}{ln[n(n+1)]/n}】=e^【lim{n->无穷大}{lnn/n+ln(n+1)/n}】 (洛必达法则)=e^【lim{n->无穷大}{1/n+1/(n+1)}】=e^0=1=右边2023-05-21 08:23:402
证明一个数列存在极限有几种方法?
(1)通项公式法:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示。有些数列的通项公式可以有不同形式,即不唯一;有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。an=a1+(n-1)d其中,n=1时 a1=S1;n≥2时 an=Sn-Sn-1。an=kn+b(k,b为常数) 推导过程:an=dn+a1-d 令d=k,a1-d=b 则得到an=kn+b。(2)递推公式法:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,有些数列的递推公式可以有不同形式,即不唯一。有些数列没有递推公式,即有递推公式不一定有通项公式。扩展资料性质:(1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。(2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=?=ak+an-k+1,k∈N*。(3)若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。(4)对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,?,Snk-S(n-1)k?成等差数列。2023-05-21 08:23:491
数列极限怎么求?
数列极限的求法:1、如果代入后,得到一个具体的数字,就是极限。2、如果代入后,得到的是无穷大,答案就是极限不存在。3、如果代入后,无法确定是具体数或是无穷大,就是不定式类型,4、计算极限,就是计算趋势 tendency。存在条件:单调有界定理 在实数系中,单调有界数列必有极限。致密性定理,任何有界数列必有收敛的子列。计算方法,参考下面图片:拓展资料数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。极限:解题思路:参考资料:百度百科-数列极限2023-05-21 08:23:551
怎样判断一个数列的极限是否存在?
方法为:当|q|<1时,limSn=a1/(1-q)。当|q|>=1时,极限不存在。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。设 {Xn} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于a,定数 a 称为数列 {Xn} 的极限。扩展资料:等比数列的性质1、若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。2、在等比数列中,依次每k项之和仍成等比数列。3、若“G是a、b的等比中项”则“G^2=ab(G≠0)”。4、若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。5、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。2023-05-21 08:24:311
如何理解数列极限的定义?
设 {Xn} 为实数数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣Xn-a∣<ε 则称数列{Xn} 收敛于a,定数 a 称为数列 {Xn} 的极限。ε的双重性:1、任意性:不等式|X n-a|<ε刻划了X n与a的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明X n与a可以接近到任何程度。然而,尽管ε有其任意性,但一经给出正整数N,ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的 正数,那么ε/2,ε的平方等等同样也是任意小的正数,因此定义中 不等式|X n-a|<ε中的 ε可用ε/2,ε的平方等来代替。同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数.另外,定义1中的|X n-a|<ε也可改写成|X n-a|≦ε。2、相应性:一般说,N随ε的变小而变大,由此常把N写作N(ε),来强调N是依赖于ε的;但这并不意味着N是由ε所唯一确定的,因为对给定的 ,比如当N=100时,能使得当n>N时有|xn-a|<ε,则N=101或更大时此不等式自然也成立.这里重要的是N的存在性,而不在于它的值的大小.另外,定义1中的,n>N也可改写成n≧N。2023-05-21 08:24:561
用数列极限的定义证明
先说明函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。这个是高等数学里的证明。证:对于任意ε,要证存在N>0,当|x|>N时,不等式|1/x-0|<ε成立。因为这个不等式相当于|1/x|<ε或|x|>1/ε由此可知,如果取N=1/ε,那么当x>N=1/ε时,不等式|1/x-0|<ε成立,这就证明了limx→∞(1/x)=02023-05-21 08:25:031
高等数学中,求无限数列极限,具体有哪几种
高等数学中,求无限数列极限,具体有哪几种方法? 例如:1:n趋近于无穷大时,[1/n^2+1/(n+1)^2+1/(n+2)^2+.....+1/(n+n)^2]的极限.2:n趋近于无穷大时,[1/(n^2+派)+1/(n^2+2派)+....+1/(n^2+n派)的极限.3:lim sinx (n趋近于0)的极限,最好列出这个极限的计算步骤.以上这三道题都知道答案,却不懂其计算过程,不知道答案是怎么来的?问题3:(x趋近于0时)sinx的极限.最佳答案1、0 < 1/n^2 < 1/n * 1/(n+1)=1/n-1/(n+1)2、n(1/n^2)=1/n > 1/(n^2+派)+1/(n^2+2派)+....+1/(n^2+n派)>0夹逼定理(夹挤定理)3、????你的问题是什么3.x=0时sinx=0,再由sinx的连续性可得参考:网页链接2023-05-21 08:25:101
怎么判断数列是否有极限!!
1.概念法:存在一个正数ε,当n>n时,|an-m|<ε恒成立2.定理法:(1)单调且有界数列必存在极限;(2)夹逼准则;(3)数学归纳法(有可能和(1)、(2)结合使用)3.函数法:将数列的通项公式构成成函数,利用对函数求极限来判定数列的极限,要和夹逼准则或者概念法一起使用1,证明数列{xn=罚法窜盒诃谷撮贪郸楷(n-1)/(n+1)}极限存在并求出其极限证明:∵1-1/(1+1/n)=1-n/(n+1)<1-2/(n+1)=xn<(n-1)/n=1-1/n即:1-1/(1+1/n)<xn<(n-1)/n=1-1/n已知:当n无穷大时:lim1/n=0∴lim[1-1/(1+1/n)]=1lim[1-1/n]=1根据夹逼准侧:xn极限存在,且limxn=12.略,方法同12023-05-21 08:25:161
如何区分函数极限与数列极限?
关系虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。它指出函数极限可化为数列极限,反之亦然。在极限论中海涅定理处于重要地位。有了海涅定理之后,有关函数极限的定理都可借助已知相应的数列极限的定理予以证明。区别1、从研究的对象看区别:数列是离散型函数。 而函数极限研究的对象主要是具有(哪怕局部具有)连续性的函数。2、取值方面的区别:数列中的下标n仅取正整数,而对函数而言其自变量x取值为实数。函数极限f(X)与X的取值有关,而数列极限Xn则只是n趋向于无穷是Xn的值。3、从因变量趋近方式看区别:数列趋近于常数的方式有三种:左趋近,右趋近,跳跃趋近;而函数没有跳跃趋近。扩展资料函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。参考资料百度百科——海涅定理百度百科——函数极限2023-05-21 08:25:231
什么是数列极限?
1、按照本题问环境来看,应该讨论的是数列极限2、数列极限有以下特征,变量x按正常情况下视为常数,n视为自变量。3、数列极限中n为正整数,∞一般是指代+∞4、答案如下图所示拓展资料数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。2023-05-21 08:25:351
如何求数列极限
求数列极限的方式如下:1.认识数列极限的定义及性质。即最终数列发展到第无限项的时候,数列的数值是归于一个固定数的。2.了解证明数列极限的基本方法。主要是通过数列的子数列进行证明。3.学习例题,看题干解问题。主要看数列的定义和相关关于数列的题设4.利用定义来证明数列的极限。注意!只能利用定义来进行求取和证明,不可通过性质。5.检查解答过程,发现解题过程中的问题进行修改。保证问题解决!数列极限定义设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并或Xn→a(n→∞)。读作"当n趋于无穷大时,{Xn}的极限等于或趋于a"。若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列。该定义常称为数列极限的ε-N定义。对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。定理1:如果数列{Xn}收敛,则其极限是唯一的。定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。2023-05-21 08:25:471
高数数列极限定义怎么理解
极限是无限迫近的意思。数列 {Xn} 的极限的极限是a,代表数列xn无限迫近a。从直观上理解,就是数列Xn能无限的靠近a。从数学上讲,怎么才能算无限迫近呢? 于是就出现了ε的概念,ε 其实代表距离,ε 无限的小,就表示Xn可以无限的靠近aXn是一个追求者,a是目标,1 - n,是步伐, N是追求的过程中的某一个步伐。Xn不停的往前走,走到N的时候,Xn与a的距离已经很小了,甚至比 ε 还小。现在假定ε 无穷的小,那么Xn就无穷的接近a了。2023-05-21 08:26:032
总结求函数(数列)极限的方法
利用递推数列求通项有下面几种方法:累加法、迭乘法、取对数法、取倒数、平方或开方、构造特殊数列法、Sn与An胡化、猜想归纳2023-05-21 08:26:173
列举一下所有关于数列极限的公式
x(n+1)-1=-(xn)²+2xn-1=-(xn-1)²,所以数列{xn-1}的通项公式是(xn)-1=-(x(n-1)-1)²=-(x(n-2)-1)^4……=-(x0-1)^(2n)由此得到:xn=1-(x0-1)^(2n)lim(x趋于无穷)xn=lim[1-(x0-1)^(2n)]=1-lim(x0-1)^(2n)因为n=0时,0<x0<1,所以,-1<x0-1<0故有lim(x0-1)^(2n)=0,所以limxn=1-0=12023-05-21 08:26:251
数列极限的定义怎么理解
限极的解释犹极限。 《后汉书·李固传》 :“而中常侍在日月之侧,声埶振 天下 ,子弟禄仕,曾无限极。” 晋 张华 《博物志》 卷一:“按北 太行山 而北去, 不知 山所限极处。亦如东海不知所 穷尽 也。” 宋 苏辙 《上神宗皇帝书》 :“近世以来,取人不由其官,士之来者无穷,而官有限极。” 词语分解 限的解释 限 à 指定的范围:期限。界限。权限。局限。限额。 指定范围: 限制 。限于。限期。限价(官方指定最高或最低价格,不得超越)。无限。 门槛:门限。 险阻:关限。 部首 :阝; 极的解释 极 (极) í 顶端,最高点, 尽头 :登极(帝王即位)。 登峰造极 。 指地球的南北两端或电路、磁体的正负两端: 极地 (极圈以内的地区)。极圈。北极。阴极。 尽,达到顶点:极力。极目四望。物极必反。 最高的,2023-05-21 08:26:431
关于数列极限的定义
数列极限用通俗的语言来说就是:对于数列an,如果它的极限是a,那么,不管给出多小的正数ε,总能找到正整数N,只要数列的下标n>N,就能保证|an-a|<ε。比如对于这样一个数列an=n(当n《100时) 或an=1/n (当n>100时)这个数列的极限是0。当对于任意给定的正数比如1/3,数列下标在1~100时,|an|>ε=1/3,但只要n>N=100,后面的所有项都满足|an|<1/3从这个意义来说,数列有没有极限,前面的有限项(不管这有限项有多大)不起决定作用。2023-05-21 08:26:522
数列极限的四则运算法则
数列极限的四则运算法则如下:当数列{an},{bn}分别以a,b为极限时,数列{an±bn}的极限是a±b,数列{anbn}的极限是ab;当bbn不等于0时,{an/bn}的极限是a/b;当函数f,g分别以a,b为极限时,函数f±b的极限是a±b,函数fg的极限是ab;当bg不等于0时,{f/g}的极限是a/b。数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。数列极限的四则运算法则证明方法如下:定理:设{an}与{bn}为收敛数列,则(1)lim(n->∞)(an±bn)=lim(n->∞)an±lim(n->∞)bn;(2)lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.若bn≠0且lim(n->∞)bn≠0,则lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.证:设lim(n->∞)an=a,lim(n->∞)bn=b,则ε>0,正整数N,使当n>N时,有|an-a|<ε; |bn-b|<ε.(1)则|(an+bn)-(a+b)|≤|an-a|+|bn-b|<2ε.所以lim(n->∞)(an+bn)=lim(n->∞)an+lim(n->∞)bn;∵an-bn=an+(-bn),所以lim(n->∞)(an-bn)=a-b=lim(n->∞)an-lim(n->∞)bn.(2)由有界性定理,存在正数M,对一切n有|bn|<M.∴|an·bn-ab|=|bn(an-a)+a(bn-b)|≤|bn||an-a|+|a||bn-b|<(|bn|+|a|)ε<(M+|a|)ε.∴lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.∵an/bn=an·1/bn,所以lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.2023-05-21 08:27:071
高数八个重要极限公式是什么?
高数没有八个重要极限公式,只有两个。1、第一个重要极限的公式:lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1;特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。2、第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。相关性质:1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。2023-05-21 08:27:461
求函数极限的方法有几种?具体怎么求?
还得记住两个重要极限2023-05-21 08:28:0510
数列的极限的概念
数列的极限的概念是若数列无限地趋向于某一实数,则该确定的实数称为此数列的极限。数列,是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。著名的数列有斐波那契数列,卡特兰数,杨辉三角等。“等和数列”指在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。对一个数列,如果其任意的连续k项的和都相等,我们就把此数列叫做等和数列,它的性质是:必定是循环数列。等比数列在生活中也是常常运用的。极限内涵:“极限”是数学中的分支微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大或者变小的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”,“永远不能够等于A,但是取等于A,已经足够取得高精度计算结果的过程中。此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”,当然也可以用其他符号表示。极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的影响,趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值或极小值)以及定积分等等都是借助于极限来定义的。2023-05-21 08:29:441
求数列极限的步骤过程
求数列极限的步骤1.认识数列极限的定义及性质。即最终数列发展到第无限项的时候,数列的数值是归于一个固定数的。2.了解证明数列极限的基本方法。主要是通过数列的子数列进行证明。3.学习例题,看题干解问题。主要看数列的定义和相关关于数列的题设4.利用定义来证明数列的极限。注意!只能利用定义来进行求取和证明,不可通过性质。5.检查解答过程,发现解题过程中的问题进行修改。保证问题解决!数列极限定义设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并或Xn→a(n→∞)读作"当n趋于无穷大时,{Xn}的极限等于或趋于a".若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列.该定义常称为数列极限的ε-N定义.对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。定理1:如果数列{Xn}收敛,则其极限是唯一的。定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。2023-05-21 08:31:061
怎样判断一个数列的极限是否存在?
1.概念法:存在一个正数ε,当n>N时,|an-M| < ε恒成立 2.定理法: (1)单调且有界数列必存在极限; (2)夹逼准则; (3)数学归纳法(有可能和(1)、(2)结合使用) 3.函数法:将数列的通项公式构成成函数,利用对函数求极限来判定数列的极限,要和夹逼准则或者概念法一起使用 1,证明数列{xn=(n-1)/(n+1)}极限存在并求出其极限 证明: ∵1 -1/(1+1/n) = 1- n/(n+1)< 1-2/(n+1) = xn < (n-1)/n = 1-1/n 即:1 -1/(1+1/n) < xn < (n-1)/n = 1-1/n 已知:当n无穷大时:lim 1/n =0 ∴lim[1 -1/(1+1/n)]=1 lim[1-1/n]=1 根据夹逼准侧:xn极限存在,且limxn=1 2.略,方法同12023-05-21 08:31:461
求数列极限方法
求数列极限方法如下:1、用夹逼准则求解数列极限夹逼定理是数列极限中非常重要的一种方法, 也是容易出综合题的点, 夹逼定理的核心就是如何对数列进行合理的放缩, 这个点也是夹逼定理使用过程中的难点。适用情形:夹逼定理一般使用在 n 项和式极限中, 函数不易于连续化。夹逼定理的适用情形和用定积分的定义十分相似,需要注意区分,它们的区别是夹逼定理适用的情形是一个分子分母齐次的形式。放缩基本公式:2.、用单调有界准则求极限定理: 单调有界数列必有极限.具体来说,若数列 {xn} 单调增加 (减少)且有上(下) 界M(m) , 则 limn→∞xn 存在,且 limn→∞xn⩽M (或 limn→∞xn⩾m ). 定理同样适用于函数.这个定理是证明数列 (或函数) 极限存在的唯一依据, 一般分为两个步骤, 第一 步证明单调性, 第二步证明有界。3、用数列定义求解数列极限主要运用数列的 ε−N 定义: 对 ∀ε>0,∃N>0 , 使得当 n>N 时, 有 |an−a|<ε , 则称数列 {an} 收敛, 定数a 称为 {an} 的极限。从定义上来看,我们的 ε 是可以任意小的正数, 那 ε/2,3ε 也可以任意小, 这一 点大家要明确。其次, 我们的 N 具有相应性, 一般地, N 随着 ε 的变小而增 大, 也就是 N 依赖于 ε0从几何意义上来讲, 当我的 n 逐渐趋近于无穷时, 我的数列总围绕着 a 在波动, 也就是 对 ∀ε>0, 在我们的 U(a;ε) 领域内有无穷个数。这样就得到了一个 关于数列极限的一 个等价定义: 对 ∀ε>0 , 若在 U(a;ε) 之外数列 an 至多有有限项,那么数列 an 必定收敛于 a 。2023-05-21 08:31:581
数列极限和函数极限的概念?
我是高数的菜鸟。请问函数的极限和数列的极限有什么区别,清大家说清楚点。函数极限的一般概念:在自变量的某个变化过程中,如果对应的函数值无限接近于2023-05-21 08:32:212
数列极限的概念是怎么理解
这波必顶你,高数理解挺到位的。2023-05-21 08:32:473
为什么数列有极限
2023-05-21 08:33:111
关于数列求极限的问题?考研数学
N=2K时是前提,带入到n=2k-1中求得。2023-05-21 08:33:183
lim(x→e)(lnx-1)/(x-e)
此为0/0型极限 运用罗比塔法则分子分母同时求导得I=lim(x→e) 1/x=1/e2023-05-21 08:33:263
求数列极限方法
求数列极限的方式如下:1.认识数列极限的定义及性质。即最终数列发展到第无限项的时候,数列的数值是归于一个固定数的。2.了解证明数列极限的基本方法。主要是通过数列的子数列进行证明。3.学习例题,看题干解问题。主要看数列的定义和相关关于数列的题设4.利用定义来证明数列的极限。注意!只能利用定义来进行求取和证明,不可通过性质。5.检查解答过程,发现解题过程中的问题进行修改。保证问题解决!数列极限定义设{Xn}为实数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时有∣Xn-a∣<ε则称数列{Xn}收敛于a,定数a称为数列{Xn}的极限,并或Xn→a(n→∞)。读作"当n趋于无穷大时,{Xn}的极限等于或趋于a"。若数列{Xn}没有极限,则称{Xn}不收敛,或称{Xn}为发散数列。该定义常称为数列极限的ε-N定义。对于收敛数列有以下两个基本性质,即收敛数列的唯一性和有界性。定理1:如果数列{Xn}收敛,则其极限是唯一的。定理2:如果数列{Xn}收敛,则其一定是有界的。即对于一切n(n=1,2……),总可以找到一个正数M,使|Xn|≤M。2023-05-21 08:33:431
数列的极限有哪些求法
1、下面的10中计算极限的方法,可以应付从高中到研究生的所有考试类型;2、其中有关 x 的极限,是适合于函数的极限计算方法; 其中有关 n 的极限,是适合于数列的极限计算方法;3、若有疑问,欢迎追问,有问必答;4、若看不清楚,请点击放大。2023-05-21 08:33:572