有没有高手能推出椭圆周长L≈∏[3/2(a+b)-√ab] 吗?此公式来源是一本高中物理竞赛辅导书上
谢谢你的回答,你能给出过程吗,我对积分有一点了解。我想我应该是看得懂的。再次感谢。
- CarieVinne
-
请看下面文段的第五大点:
学术研究
关孝和著作很多,近20部,但生前只出版过一部《发微算法》(1674),死后又由其弟子对他的遗稿作了整理,出版了《括要算法》,其余均为未出版的稿本.从这些著作的写作时间来看,孝和的数学研究工作可分为两个阶段,他的数学著作基本上是在1685年以前完成的,以后因体弱多病而较少进行新的数学研究,只写了一些天文历法方面的注释书.下面介绍他的主要贡献.
1.引入“傍书法”和代数记号而创立了“演段术”
这是关孝和的最大贡献.主要集录于他的著作《发微算法》(1674)及《三部抄》中的《解见题之法》和《解伏题之法》(1683).在《发微算法》中,孝和运用演段术对日本数学家泽口一之(有资料说泽口一之是孝和的弟子)的《古今算法记》(1671)中的15道“遗题”作了分析和解答.但书中只有结果而把有关演段术的记述略去了,所以当时的日本人对他的解答一般都看不懂,于是就有人指责说《发微算法》可能是关孝和胡编乱造的.1680年,日本数学家佐治一平竟写成《算法入门》指出《发微算法》中解法的“错误”并给予“订正”.作为对此类问题的答复,孝和的弟子建部贤弘写成《发微算法演段谚解》(1685)公诸于世,对孝和的演段术作了详细解说,使之传播开来.
孝和又在《三部抄》中阐述了“傍书法”和演段术.《三部抄》是《解见题之法》、《解隐题之法》(1685)和《解伏题之法》(1683)三部著作的总称.见题是只用加减乘除即可解答的问题,隐题是只用一个方程就可以解答的问题,伏题是必须用两个以上方程组成的方程组才能解答的问题,这也是三部著作各自名称的来历.《解见题之法》中首次出现傍书法表示的式子.所谓傍书法即在一条短竖线旁边写上文字作为记号来表示数量关系的一种方法.如“甲加乙”、“甲减乙”、“甲
乘乙”分别写成“|甲|乙”、“|甲乙”、“|甲乙”;甲2,甲3,甲4,…
将“甲÷乙”记为“乙|甲”.
孝和就用上述一套符号来处理文字方程,比如方程
甲-乙×x+丙×x2+丁×x3=0
表示为
|甲乙|丙|丁.
如果一个方程有两个未知数,如
3y3+5xy2+8x2y+4x3=0,
就用“甲”代替y,整个方程表示为
由于“傍书法”可以表示含有两个或者多个未知数的方程,因而“消元”就有了可能,这使得孝和能够用消元法解方程组,从而得出了他的行列式理论.这些内容集中在《解伏题之法》中.书中介绍了一系列以傍书法为基础的算法,他称之为“天元演段术”,后来又扩展为“归源整法”.这一系列的算法传到孝和的第二代弟子松永良弼时,良弼又受其主君内藤政树(1703—1766,“关流”和算家)之命将“归源整法”更名为“点窜术”.点窜术就是用上述的傍书法系统地研究公式变形、解方程(组)、行列式等问题,内容相当于现在的初等代数学.但由于这种代数学不同于西方代数中用a,b,c,…作为记号而采用汉字加短竖线作为记号,因而不仅是日本的而且是整个汉字文化圈内的文化财富,是具有东方风格的符号代数.
2.提出代数方程变换理论和行列式理论
这一研究集中在《解伏题之法》中.书中介绍的方程变换的方法有:略、省、约、缩、叠、括等.把一个方程乘以某一式后从另一方程中减去,称之为“略”;一个方程各项有公因式的就将此公因式约去,称之为“省”;各项有共同的数字系数(他称之为“段数”)时就约去这个公因数,他称之为“约”;两个方程中都不含未知数x的奇次幂时,就用换元法把x2作为一个未知数从而简化方程,称之为“缩”;“叠”是两个方程分别乘以适当的式子再相减以消去某些项;“括”是把相同次幂的系数合起来,即合并同类项.孝和的演段术在这些方法中得到了明确表示.
他用这些方法解方程组的基本思想是,将两个二元方程经过上述变换消去一个未知数,得到一个一元方程,再解这个一元方程.对于二元高次方程组(设两个方程关于x的次数分别是m和n,m≥n,这时方程中每一项中x的幂的系数都是另一未知数y的多项式),为达到一次消元的目的,他先用叠、括方法从原来的两个方程中导出n个关于x的n-1次方程,这些方程都写成标准形式,即方程右边为0,左边按x的升幂排列,他称这n个方程为“换式”.于是求解原方程组的问题就转化为求解由换式构成的方程组了.将这个方程组的各项中x的幂去掉,得到各项系数(y的多项式或单项式)按原来的位置次序构成的行列式,令这个行列式等于0,得到的这个行列式表示出的关于y的方程即是原方程组消去x后得到的一元方程.这样,解原方程组的问题就转化为解这个一元方程的问题.
为了对这个含有行列式的方程化简、求解,他接着对行列式进行变换.他的行列式理论就是由此引出的.他在书中介绍了两种计算行列式值的方法:逐式交乘法和交式斜乘法.
逐式交乘法的基本思想是,对行列式的各行分别乘以适当的式子,再将各列元素相加,直到除第一列(即x0的系数对应的那一列)外,其余各列元素的和均为零,这时第一列元素的和即为行列式的值.
当行列式阶数较高时,要看出上述各行要乘的因式显然不容易,于是,他在书中又介绍了另一种计算行列式的方法即交式斜乘法.不过他没有说明这种方法的根据,只是对2—5阶行列式的展开给出了规则并用图加以说明.从这些说明看出,他的交式斜乘法大致相当于今天中学里介绍的对角线法或其扩展.
西方对于行列式的研究首次出现在G.W.莱布尼茨(Leibniz)1693年写给G.F.A.洛比达(L"Hospital)的信中,而孝和的《解伏法之法》是1683年完成的,所以孝和的研究比西方的此类研究至少要早10年.西方最早发表的关于行列式研究的著作是G.克莱姆(Cramer)的《代数曲线的分析引论》(Intro-duction àl"analyse des lignes courbes algébriques,1750),这比《解伏题之法》要晚70年.在行列式方面,关孝和的研究是世界领先的.
3.研究了数字系数高次方程,发现了负根、虚根并提出了判别式概念和相当于多项式函数导函数的多项式
关孝和的这些成就主要包含在《解隐题之法》、《开方算式》及著作集《七部书》中.《七部书》是《开方翻变之法》(1685)、《题术辨议之法》(1685)、《病题明致之法》(1685)、《方阵圆攒之法》(1683)、《算脱验符之法》、《求积》、《毬阙变形草解》这七部著作的总称.
《解隐题之法》、《开方翻变之法》和《开方算式》中记述了解数字系数高次方程的两种近似方法,分别相当于“霍纳法”和“牛顿迭代法”.孝和又将这些解法用在字母系数方程f(x)=a0+a1x+a2x2+…+anxn=0上,从形式上求出了f′(x)=a1+2a2x+…+nanxn-1,即从形式上求出了多项式函数f(x)的导函数.另外,他考察了只有虚根的方程(他称其为“无商式”)、只有负根的方程(他称其为“负商式”)和方程正、负根的个数问题,给出了判别式的概念,研究了方程正、负根存在的条件.在《题术辨议之法》和《病题明致之法》中,他将导出方程是“无商式”和“负商式”的问题归入“病题”之列,利用他对数字系数方程的研究介绍了变换“予量”而纠正“病题”的方法.
对于无商式f(x)=0,他主要是变更方程的系数使其判别式取一定的数值,从而使得方程有正根或负根.这样的变换中又得出了f(x)取极大值(或极小值)的条件f′(x)=a1+2a2x+…+nanxn-1=0,由此式求出极值点x0,再代入f(x)可以求出极大值(或极小值).这是今天通用的求极值方法的雏形,孝和称其为“适尽方级法”.这种求极值方法是关孝和独立发现的.
4.将中国的“三差之法”推广为一般的招差法,研究了数论问题并发明“零约术”
这些成果都集中在《括要算法》中.孝和去世之后,其遗稿全部传给了弟子荒木村英(1640—1718).据说,村英与孝和本来同学于高原吉种门下,后来他又拜孝和为师,由于其在同门弟子中学德俱高,所以得到了孝和的全部遗稿.可是当时村英已年高体弱,就把整理孝和遗稿的工作交给自己的弟子大高由昌.大高由昌从遗稿中抽出数篇编辑成《括要算法》,村英为此作序,并于1712年出版.孝和的有关单行本至今尚存,与此比较看出,大高由昌在编辑时并没有作多大改动.只是孝和原稿中的“诸约之法”不包括“翦管术”,而《括要算法》中将“翦管术”列于“诸约之法”中.
(1)招差法 这是由x=x1,x2,…,xn和相应的y=y1,y2,…,yn两组数据确定函数y=a1x+a2x2+…+anxn的系数的方法,相当于西方数学中的有限差分法.孝和的方法如下:
乘积.
若所有平积相等,就有a3=a4=…=0,这时可取a2=δz1,a1=z1-a2x1,这时的招差法称为“一次相乘之法”.若所有的立积都相等,则a4=a5=…=0,可取a3=δ2z1,再计算zi-a3x2i=ui(1≤i≤n),它是u=a1+a2x在x=xi处的值,再对此施行“一次相乘之法”可得a2,a1的值.依此类推.
关孝和称a1,a2,…,an这些系数为“差”,求这些差为“招差”.上述求差的方法就是他的招差法.
对于n=2,3,4的情况,求f(x)=a1x+a2x2+…+anxn系数的问题早在中国数学中已得到解决,孝和的贡献主要在于将这种“三差之法”推广到了n为任意自然数的一般招差法.
(2)约术及垛术 他叙述的“约术”有互约、逐约、齐约、遍约、增约、损约、零约、遍通等.其中“逐约术”是给出n个整数a1,a2,…,an,确定各自的一个约数a′1,a′2,…,a′n,使这n个约数两两互素且其和等于a1,a2,…,an的最小公倍数.n=2时,他把“逐约术”又称为“互约术”.“齐约”是求整数的最小公倍数.“遍约”是用整数的最大公约数分别去除这n个整数.“遍通”是分数通分.“增约”是求级数a+ar+ar2+…的和,“损约”是求级数a-ar-ar2-…的和.“剩一术”是解一次不定方程ax-by=1的方法.除“增约”和“损约”之外,这些都是数论的内容.
“零约术”是孝和的发明.它是一种确定无限不循环小数的近似分数的方法.在书中他用例子对零约术作了说明.比如边长为1尺的正方
取p1=1,q1=1,按下述规则确定后面的pn,qn.若
n,而相应的pn依次是1,3,4,6,7,9,10,11,13,14,16,17,18,20,21,23,24,26,27,28,30,31,33,34,35,37,38,40,41, 43, 44,45, 47,48,50,51,52,54,55,57,58.于是有
它们都出现在上述的近似分数列中.
在《括要算法》最后一卷(贞卷)中,他用自己发明的这种零约术
给出,但他是怎样得到的呢?这一点却没有流传下来.孝和的这一工作给出了一种推导方法.
《括要算法》的第一卷(元卷)中还记述了“垛术”问题,即求
和Sp=1p+2p+3p+… +np(他称其为“方垛积”)与求和
对于方垛积,他用招差法计算出了p=1,2,3,…,11的情况,然后归纳得出了方垛积一般公式:
对于衰垛积,他也给出一般公式:
值得注意的是,方垛积公式中的B1,B2,…,Bn,…与伯努利数一样.而西方第一部导入伯努利数并给出上述公式的书是数学家雅格布·伯努利(Jacob Bernoulli)的《猜度术》(Ars conj-ectandi,1713).可见关孝和与伯努利几乎同时发现了伯努利数.
(3)翦管术 数论方面,他还研究了翦管术,即解同余式组b1x≡a1(mod m1), b2x≡a2(mod m2),…,bnx≡an(mod mn)的方法.《括要算法》第二卷(亨卷)的“翦管术解”部分举出九个问题说明这种方法,前五个是b1=b2=…=bn=1的情况,根据m1,m2,…,mn是否两两互素而分为两种情况给出了解法;后四个问题都是b1,b2,…,bn不全为1的情况,利用逐约术和剩一术给出了解法.
翦管术的名称和问题形式在中国宋代杨辉的著作集《杨辉算法》中就有记述,但杨辉解决的同余式组只限于b1=b2=…=bn=1,且m1,m2,…,mn两两互素的情况,而且由于所举的例子涉及的数据都比较简单,往往是只靠心算就可以解决,而不用剩一术.可以说,孝和是从《杨辉算法》中得到了翦管术的名称和问题形式,但他由于发明了剩一术,又引入了逐约、互约概念,因而对m1,m2,…,mn不全两两互素的情况和b1,b2,…,bn不全为1的同余式组问题也完满地解决了.因此可以说是关孝和发展完善了翦管术.
5.给出了一些曲线求长和立体求积的近似方法
这些研究主要集中在《解见题之法》、《求积》及《毬阙变形草解》中.其中创新性的成果在于他给出了椭圆周长、阿基米德螺线长的近似算法,解决了圆环体、弧环体和十字环的近似求积问题.
(1)椭圆周长与阿基米德螺线长 《解隐题之法》中第一次出现椭圆周长的近似算法.他将椭圆看成是从不同角度看圆时得到的图形,得出椭圆周长L的近近似计算公式:
L2=π2(长径×短径)+4×(长径-短径)2.
此书中还解决了“畹背”问题,即求所谓“畹形”长度的问题.如图1,将扇形OAB用半径OC1,OC2,…,OCn-1 n等分,再将半径OA用C′1,C′2,…,C′n-1 n等分,经过OA的各分点以O为圆心分别画弧,得到过C′k点的弧与半径OCk的交点Dk(0≤k≤n,记O点为D0,A点为Dn),Dk点的轨迹即是“畹形”.可见,畹形就是阿基米德螺线.他给出畹形长(背)的计算公式:
至于他是如何得到这个公式的,书中没有说明.
(2)圆环体、弧环体和十字环的体积 所谓圆环体是圆绕其所在平面上与圆没有公共点的一条直线旋转一周所得到的立体;弧环体则是由弓形绕其所在平面上与弓形没有公共点的一条直线旋转一周所得的立体.关孝和设想,把圆环体截断伸直,圆环体就变成圆柱,因此圆环体的体积就等于这个截面(圆面)的面积乘以这个“圆柱”的高(即圆环体的“中心圆”周长).他这样计算是假定了“圆环体经截断伸直成圆柱后体积不变”,以此假定为基础,他用弓形的面积乘以弧环体的中心圆周长作为弧环体的体积.这里所说的中心圆是指在圆(或弓形)旋转过程中,圆(或弓形)面上一个特定点所形成的圆,这个特定点就是圆(或弓形)的重心.可见,孝和已经有了“重心”这一概念.他这样计算圆环体、弧环体的体积的方法相当于帕波斯-古尔丁(Pappus-Guldin) 定理所叙述的方法.
所谓“十字环”是指两个圆柱体与一个圆环体互相截取组成的立体,如图2所示,两个圆柱的轴互相垂直且都通过圆环体的重心,圆柱被圆环体的表面所截,并且两圆柱的底半径与圆环体的截面半径相等.这一问题最早出现在榎并和澄的《参两录》(1653)中,孝和首次用近似方法求出了十字环的体积.
另外,《毬阙变形草解》也是主要研究求积问题的著作.不过此书所涉及的多是阙球(用平面去截球体所得)、阙圆柱(用平面去截圆柱所得)、弧锥(底是弓形的锥体)和弧台(两底都是弓形的台体)等复杂的立体.他通过将这些立体变形而给出这些立体的近似求积方法.他把此书命名为《草解》,可见还有未尽之意,这说明上述一类立体的求积是当时最难的求积问题.
6.创立圆理、角术,解决了有关圆弧长、球体积及正多边形的一些问题
“圆理”一词在后来的和算家中常用来总称求解曲线长、图形(平面图形或曲面图形)的面积及立体的体积的方法.但孝和创立的圆理只限于圆、球的有关计算.他关于圆理的研究主要集中在《括要算法》第4卷(贞卷)中,由“求圆周率术”、“求弧矢弦率术”和“求立圆积率术”(立圆即球)三部分组成.他求圆的正 215,216,217边形的周长a,b,c,并对此施以增约术,用a,b,c的一种平均值
作为圆周长的近似值,由此求得圆周率的小数点后11位数字,接着又用
他的“求弧术”是由弦a,矢c,径d来求弧长s的方法,他给出公式:
其中A0, A1, A2, A3, A4, A5是由 c=c0,c1,c2,c3,c4,c5和相应的s=s0,s1,s2,s3,s4,s5来确定的.
如果上述插值公式中没有分母(d-c)i(i=1,2,…,5),则与牛顿插值公式完全一样.这个公式与牛顿插值公式的原理相同.牛顿插值公式是I.牛顿(Newton)发现的,W.琼斯(Jones)得到牛顿允许后著成《微分法》(Methodus differentilis,1711)将其公布于世,而《括要算法》是1709年写成序、跋,1712年出版的,因此可以说关孝和与牛顿几乎同时各自独立地发现了这个公式.
对于球的体积,他提出了“求立圆积率术”,首先用平行平面把球截成50个薄片,将各薄片先看成以各自的接近球心一侧的底面为底的圆柱,求这50个“圆柱”的体积之和;再将各薄片看成是以各自的另一底面为底的圆柱,求出这50个“圆柱”的体积之和,再求出这两个体积和的平均值a作为这50个薄片的总体积.同样将球截成100个、200个薄片,分别如上求出这100个、200个薄片的总体积b和c,用增约术求出
将其作为球体积.虽然这一过程中用增约术的条件并不充足,但他如此分割—转换—求和的求积方法中,积分思想已开始萌芽.
“角术”是建立正多边形的边长与外接圆半径、边长与内切圆半径之间关系式的方法.他对正3—20边形分别给出了这种关系式,而以前的和算家只是求出了边数不大于15的正多边形的上述关系式.另外,孝和在推导过程中所用的几何学上的定理,有一些是仅凭直觉得到的.
7.研究了幻方问题,又用同余式解决了日本流传的古老的“继子立”即“立后嗣”的问题
《七部书》中的《方阵之法·圆攒之法》给出了幻方(他称为“方阵”)和圆攒的一般构造方法,即按一定规律变化n-2阶幻方的每一个数,将其相应地作为“内核”,再在外圈上按一定规则填上4n-4个数就可以得到n阶幻方.这种方法与16世纪德国数学家M.施蒂费尔(Stiefel)首次在其著作《整数算术》(Arithme-tica Integra,1544)中尝试证阴幻方的思想是一致的.
“继子立”是在日本广泛流传的一个古老问题,它说的是,某贵族家有30个孩子,其中15人是前妻所生,15人为后妻所生.要从这30个孩子中选出一个来继承家业,就让这30个孩子排成一圈,从某一个小孩开始往下数,让第10个孩子从圈中退出,再从下一个继续数,数到20时就让对应20的那个孩子从圈中出去.照此数下去,数到整十的数时就把对应该数的孩子从圈中拉出,直到最后剩下一个孩子,就由这个孩子来继承家业.如果现在只剩下一个前妻之子和14个后妻之子了,那么只要从这个前妻之子开始数,就可以使这个孩子成为“继子”.
孝和在《算脱验符之法》中将这个问题理论化并用同余式进行了推导证明.
除上述著作之外,孝和在数学方面还写下了《角法并演段图》、《阙疑抄一百问答术》、《勿惮改答术》等书.在天文历法方面他也有许多著作,如《授时历经立成》四卷、《授时历经立成立法》(1681)、《授时发明》、《四余算法》(1697)、《星曜算法》、《数学杂著》(又名《天文数学杂著》)等.
先前数学对关孝和的影响
从上面的介绍可以看出,关孝和的数学研究有的起源于在他之前的和算著作中的“遗题”.他最初的数学著作《发微算法》是对泽口一之的《古今算法记》(1671)中遗题的解答.他还解答了礒村吉德的《算法阙疑抄》(1659)的100道遗题和村濑义益的《算法勿惮记》(1673)的遗题,至今尚存有关的抄本.有些遗题成为关孝和研究的起点.例如《算法阙疑抄》第45个问题(“圆台斜截口”)引出了他对椭圆的研究;第 41个问题(“俱利加罗卷”,即在圆锥形棒上緾绳,求绳长)引出了他对畹背问题的研究.他的一些重要的思想方法也是从这些著作中得到的.例如,泽口一之在《古今算法记》中通过变换方程系数避开了有两个正根的情况,关孝和由此受启发变换“无商式”和“负商式”系数使其根达到要求,进而得到了求多项式函数的极大值、极小值的“适尽方级法”.他在《题术辨议之法》中,对“碎术”(即“自远至近数次而求所问”的方法,他认为“其术不定也”,因而不是最恰当的方法)问题采用逐次逼近法解决,这可能是从《算法勿惮改》中受到启发的,因为《算法勿惮改》在日本是首次使用逐次逼近法的著作.
但是,他的最主要的数学成就并不能在他之前的和算著作中找到线索,这就在他的研究与先前和算家的研究之间形成了一个“断层”.一些人认为,弥补这个断层的是中国数学和西方数学对他的影响.据日本武林史著作《武林隐见录》(1738)中“关新助算术秩事”一条记载,孝和估计到南部某寺收藏的“唐本”(指古时由中国传到日本的书籍)中可能有数学书,就去南都搜寻,并将其抄录下来带回江户研究.从此类“秩事”中可知关孝和在研究中参考了中国数学著作.
从孝和的数学成果来看,对他的研究产生较大影响的中国数学著作是《杨辉算法》(1378)和清朝的《天文大成管窥辑要》等.《杨辉算法》是杨辉的《乘除通变本末》(上卷为《算法通变本末》,中卷为《乘除通变算宝》,下卷为《法算取用本末》,与史仲荣合著)、《田亩比类乘除捷法》和《续古摘奇算法》三部著作合刻的,在朝鲜重刻后传入日本并保存下来.孝和从《杨辉算法》中得到了“翦管术”的名称和问题形式,并完善了“翦管术”.另外,《杨辉算法》中已有类似于“霍纳法”的解方程方法,大概是孝和从中受到启发,才提出了分别相当于霍纳法和牛顿逼近法的两种解方程方法.
朝黄鼎的《天文大成管窥辑要》对孝和也有影响.孝和的《授时发明》(或称《天文大成三条图解》)就是对此书第三卷的解释,由此看来孝和曾仔细研究过这部书.书中有对元朝郭守敬《授时历》中“三差法”所作的解说,可能由此引出了孝和对“招差法”的研究.
关于西方数学的影响是进入明治时代之后才开始研究的.17世纪中叶荷兰莱顿大学的F.范·斯霍腾(Schooten)教授有一个学生,名叫P.哈特辛乌斯(Hartsingius),是日本人.这由荷兰阿姆斯特丹大学的D.J.科尔泰韦赫(korteweg)教授给林鹤一博士的信中可知.这个日本人后来是否回到日本已无法证实.但据日本数学史家三上义夫考证,那个时期在日本有一名叫鸠野巴宗的医学家,此人或许就是哈特辛乌斯.如果这个推测正确,则说明当时已经有人将西方数学带回日本了,从而可以认为关孝和的数学研究直接受到西方数学的影响.
从以上的介绍可以看出,关孝和从以往数学家的研究中发现问题,又对这些问题从理论上加以解决或者将其推广为一般性方法.除此之外他还有自己的首创性研究.这些成果奠定了和算的基础,摆脱了日本数学家单纯介绍中国数学的传统束缚,成为后世和算家的典范.
关流数学教育及关流弟子
关孝和作为一个数学家的同时又是一位数学教育家.他一生中亲自授过课的弟子就有几百人,其中最杰出的是荒木村英及建部贤弘、建部贤明两兄弟,村英的弟子中有松永良弼,贤弘的弟子中有中根元圭,元圭弟子中有山路主住等最为著名.孝和与他的弟子们的研究构成了和算的一个最大流派——关流(关流各代数学家系谱如文后图所示).能培养出这许多杰出的弟子,与孝和创立的教育方式有很大关系.他根据学生的情况分成五个等级分别集中指导,每一级都规定有相应的具体数学内容和具体教材.初级的教以珠算,进而筹算,高级的从演段术到点窜术,随着每一级学生学业的完成而分别授以相应的“免许证”,相当于现在的毕业证,有“见题免许”、“隐题免许”、“伏题免许”、“别传免许”和“印可免许”五个等级.后来这种方式不断发展,成为关流严格的教育制度——五段免许制.只有得到五个等级的免许之后,才可以被称为“关流第几传”,而且最后得到“印可”的只限于几名高徒.后来随着数学研究的发展,加入到各等级的学习内容不断增加,五段免许制日益完善和严格.到了山路主住成为关流掌门人时,据说规定一代弟子中只传一子和高徒二人.
关于所用的教材,除了关孝和的著作之外,其他关流数学家也写过教科书,如山路主住的《关流算术》45卷作为关流入门者的最初教程;久留岛义太的《广益算梯》25卷也作为数学初学者的教材.
可见,关孝和创立的五段免许制体系,已有班级授课制的萌芽.
附:关流系谱
- 铁血嘟嘟
-
根据积分积出来的,这在大一会讲到,我们刚学
- 墨然殇
-
积分嘛
- 苏州马小云
-
积分啊
杨辉是南宋著名的数学家,他对数学有哪些研究?
写有《详解九章算法》、《日用算法》、《乘除通变本末》、《田亩比类乘除捷法》等书籍。杨辉根据日常需要的运算总结出算法理论,帮助百姓们计算需求。值得一提的是,杨辉是世界上第一个排列纵横图,并且从中总结出构成规律的理论知识,推动了世界算术进程,具有很高的现实意义2023-05-21 01:40:114
杨辉的详写九章算法怎么写下去
杨辉的详写九章算法写法如下:1、将《九章算术》246个题目按解题方法由浅入深的顺序。2、重新分为乘除、分率、合率、互换、二衰分,勾股等九类即可。3、扩展:《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。2023-05-21 01:40:351
杨辉三角 的算法实现
原文 https://www.zhangman523.cn/420.html 下面给出一个5行的杨辉三角: 可以看到,每行的最左边和最右边的数字是基本情况,在这个问题中,它总是等于 1。 因此,我们可以将基本情况定义如下: f(i,j) = 1 where j=1 or j=i 让我们从杨辉三角形内的递推关系开始。 首先,我们定义一个函数 f(i, j) 它将会返回杨辉三角形第 i 行、第 j 列的数字。 我们可以用下面的公式来表示这一递推关系: f(i,j)=f(i−1,j−1)+f(i−1,j) 示例: 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。 示例:2023-05-21 01:40:421
古代数学著作《详解九章算法》作者是谁
2023-05-21 01:41:014
杨辉三角n次方的公式
杨辉三角n次方的公式:n!=n*(n-1)*...*2*1)。杨辉三角,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。2023-05-21 01:41:271
杨辉三角python经典算法
杨辉三角python经典算法可以利用Python中的循环方法,具体操作如下。第一步,循环内的遍历从1开始,即从代码开头定义每行的初始值为1,后续不再改变。第二步为,由第二个元素开始,每行元素为上一行对应位置和一位置元素的和。每行最后一个元素都为1,直接最后添加即可。2023-05-21 01:41:331
在南宋数学家杨辉的《田亩比类乘除算法》有一道题“直田积八百六十四,只云长阔共六十步,,问长与阔各几步
一,两个数相加得10,相乘所得之数的个位数是4,符合这俩个条件的只有4和6. 二,两数之和是60,符合条件的有:6和54,4和56,14和46,16和44,24和36,34和26,很快就能找出只有24x36=8642023-05-21 01:41:401
用C语言数组的金字塔杨辉三角形 算法是什么?
#include<stdio.h>void main() { int a[7][7],i,j; for(i=0;i<7;i++) { for(j=7;j>=i;j--) printf("%2c"," ");/*两个空格*/ for(j=0;j<=i;j++) { if(i==j||j==0) a[i][j]=1; else a[i][j]=a[i-1][j]+a[i-1][j-1]; printf("%3d ",a[i][j]); /*%3d后一个空格*/ if(i==j) printf(" "); } }}2023-05-21 01:41:473
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)^n(n非负整数)
1,4,6,4,12023-05-21 01:42:002
圆的面积是怎么样推算出来的?
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 中国古代数学家——刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作. 《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人. 刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富. 中国古代数学家——祖冲之 祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家. 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元. 祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".2023-05-21 01:42:071
麻烦一下。杨辉三角算法如何与空格联系?
这个输出还是很方便的,因为每行的总输出宽度相同。#include<stdio.h>int main(){int n,i,j,a[30][30]={1}; scanf("%d",&n); for(i=1;i<=n;i++) {a[i][0]=1; for(j=1;j<=i;j++) a[i][j]=a[i-1][j-1]+a[i-1][j]; } for(i=0;i<=n;i++) {for(j=i+1;j<=n;j++) printf(" "); for(j=0;j<=i;j++) printf("%4d",a[i][j]); printf(" "); } return 0;}2023-05-21 01:42:251
怎样用杨辉三角形求(A+B)的20次方第三项的系数
1+2+3+4+5+。。。+18+19=190(A+B)的20次方第三项的系数是:1902023-05-21 01:42:385
我现在有一个两个都是抛物型的微分方程组 有没有模板或是例子、等介绍一个、谢谢
请看下面文段的第五大点:学术研究关孝和著作很多,近20部,但生前只出版过一部《发微算法》(1674),死后又由其弟子对他的遗稿作了整理,出版了《括要算法》,其余均为未出版的稿本.从这些著作的写作时间来看,孝和的数学研究工作可分为两个阶段,他的数学著作基本上是在1685年以前完成的,以后因体弱多病而较少进行新的数学研究,只写了一些天文历法方面的注释书.下面介绍他的主要贡献.1.引入“傍书法”和代数记号而创立了“演段术”这是关孝和的最大贡献.主要集录于他的著作《发微算法》(1674)及《三部抄》中的《解见题之法》和《解伏题之法》(1683).在《发微算法》中,孝和运用演段术对日本数学家泽口一之(有资料说泽口一之是孝和的弟子)的《古今算法记》(1671)中的15道“遗题”作了分析和解答.但书中只有结果而把有关演段术的记述略去了,所以当时的日本人对他的解答一般都看不懂,于是就有人指责说《发微算法》可能是关孝和胡编乱造的.1680年,日本数学家佐治一平竟写成《算法入门》指出《发微算法》中解法的“错误”并给予“订正”.作为对此类问题的答复,孝和的弟子建部贤弘写成《发微算法演段谚解》(1685)公诸于世,对孝和的演段术作了详细解说,使之传播开来.孝和又在《三部抄》中阐述了“傍书法”和演段术.《三部抄》是《解见题之法》、《解隐题之法》(1685)和《解伏题之法》(1683)三部著作的总称.见题是只用加减乘除即可解答的问题,隐题是只用一个方程就可以解答的问题,伏题是必须用两个以上方程组成的方程组才能解答的问题,这也是三部著作各自名称的来历.《解见题之法》中首次出现傍书法表示的式子.所谓傍书法即在一条短竖线旁边写上文字作为记号来表示数量关系的一种方法.如“甲加乙”、“甲减乙”、“甲乘乙”分别写成“|甲|乙”、“|甲乙”、“|甲乙”;甲2,甲3,甲4,…将“甲÷乙”记为“乙|甲”.孝和就用上述一套符号来处理文字方程,比如方程甲-乙×x+丙×x2+丁×x3=0表示为|甲乙|丙|丁.如果一个方程有两个未知数,如3y3+5xy2+8x2y+4x3=0,就用“甲”代替y,整个方程表示为由于“傍书法”可以表示含有两个或者多个未知数的方程,因而“消元”就有了可能,这使得孝和能够用消元法解方程组,从而得出了他的行列式理论.这些内容集中在《解伏题之法》中.书中介绍了一系列以傍书法为基础的算法,他称之为“天元演段术”,后来又扩展为“归源整法”.这一系列的算法传到孝和的第二代弟子松永良弼时,良弼又受其主君内藤政树(1703—1766,“关流”和算家)之命将“归源整法”更名为“点窜术”.点窜术就是用上述的傍书法系统地研究公式变形、解方程(组)、行列式等问题,内容相当于现在的初等代数学.但由于这种代数学不同于西方代数中用a,b,c,…作为记号而采用汉字加短竖线作为记号,因而不仅是日本的而且是整个汉字文化圈内的文化财富,是具有东方风格的符号代数.2.提出代数方程变换理论和行列式理论这一研究集中在《解伏题之法》中.书中介绍的方程变换的方法有:略、省、约、缩、叠、括等.把一个方程乘以某一式后从另一方程中减去,称之为“略”;一个方程各项有公因式的就将此公因式约去,称之为“省”;各项有共同的数字系数(他称之为“段数”)时就约去这个公因数,他称之为“约”;两个方程中都不含未知数x的奇次幂时,就用换元法把x2作为一个未知数从而简化方程,称之为“缩”;“叠”是两个方程分别乘以适当的式子再相减以消去某些项;“括”是把相同次幂的系数合起来,即合并同类项.孝和的演段术在这些方法中得到了明确表示.他用这些方法解方程组的基本思想是,将两个二元方程经过上述变换消去一个未知数,得到一个一元方程,再解这个一元方程.对于二元高次方程组(设两个方程关于x的次数分别是m和n,m≥n,这时方程中每一项中x的幂的系数都是另一未知数y的多项式),为达到一次消元的目的,他先用叠、括方法从原来的两个方程中导出n个关于x的n-1次方程,这些方程都写成标准形式,即方程右边为0,左边按x的升幂排列,他称这n个方程为“换式”.于是求解原方程组的问题就转化为求解由换式构成的方程组了.将这个方程组的各项中x的幂去掉,得到各项系数(y的多项式或单项式)按原来的位置次序构成的行列式,令这个行列式等于0,得到的这个行列式表示出的关于y的方程即是原方程组消去x后得到的一元方程.这样,解原方程组的问题就转化为解这个一元方程的问题.为了对这个含有行列式的方程化简、求解,他接着对行列式进行变换.他的行列式理论就是由此引出的.他在书中介绍了两种计算行列式值的方法:逐式交乘法和交式斜乘法.逐式交乘法的基本思想是,对行列式的各行分别乘以适当的式子,再将各列元素相加,直到除第一列(即x0的系数对应的那一列)外,其余各列元素的和均为零,这时第一列元素的和即为行列式的值.当行列式阶数较高时,要看出上述各行要乘的因式显然不容易,于是,他在书中又介绍了另一种计算行列式的方法即交式斜乘法.不过他没有说明这种方法的根据,只是对2—5阶行列式的展开给出了规则并用图加以说明.从这些说明看出,他的交式斜乘法大致相当于今天中学里介绍的对角线法或其扩展.西方对于行列式的研究首次出现在G.W.莱布尼茨(Leibniz)1693年写给G.F.A.洛比达(L"Hospital)的信中,而孝和的《解伏法之法》是1683年完成的,所以孝和的研究比西方的此类研究至少要早10年.西方最早发表的关于行列式研究的著作是G.克莱姆(Cramer)的《代数曲线的分析引论》(Intro-duction àl"analyse des lignes courbes algébriques,1750),这比《解伏题之法》要晚70年.在行列式方面,关孝和的研究是世界领先的.3.研究了数字系数高次方程,发现了负根、虚根并提出了判别式概念和相当于多项式函数导函数的多项式关孝和的这些成就主要包含在《解隐题之法》、《开方算式》及著作集《七部书》中.《七部书》是《开方翻变之法》(1685)、《题术辨议之法》(1685)、《病题明致之法》(1685)、《方阵圆攒之法》(1683)、《算脱验符之法》、《求积》、《毬阙变形草解》这七部著作的总称.《解隐题之法》、《开方翻变之法》和《开方算式》中记述了解数字系数高次方程的两种近似方法,分别相当于“霍纳法”和“牛顿迭代法”.孝和又将这些解法用在字母系数方程f(x)=a0+a1x+a2x2+…+anxn=0上,从形式上求出了f′(x)=a1+2a2x+…+nanxn-1,即从形式上求出了多项式函数f(x)的导函数.另外,他考察了只有虚根的方程(他称其为“无商式”)、只有负根的方程(他称其为“负商式”)和方程正、负根的个数问题,给出了判别式的概念,研究了方程正、负根存在的条件.在《题术辨议之法》和《病题明致之法》中,他将导出方程是“无商式”和“负商式”的问题归入“病题”之列,利用他对数字系数方程的研究介绍了变换“予量”而纠正“病题”的方法.对于无商式f(x)=0,他主要是变更方程的系数使其判别式取一定的数值,从而使得方程有正根或负根.这样的变换中又得出了f(x)取极大值(或极小值)的条件f′(x)=a1+2a2x+…+nanxn-1=0,由此式求出极值点x0,再代入f(x)可以求出极大值(或极小值).这是今天通用的求极值方法的雏形,孝和称其为“适尽方级法”.这种求极值方法是关孝和独立发现的.4.将中国的“三差之法”推广为一般的招差法,研究了数论问题并发明“零约术”这些成果都集中在《括要算法》中.孝和去世之后,其遗稿全部传给了弟子荒木村英(1640—1718).据说,村英与孝和本来同学于高原吉种门下,后来他又拜孝和为师,由于其在同门弟子中学德俱高,所以得到了孝和的全部遗稿.可是当时村英已年高体弱,就把整理孝和遗稿的工作交给自己的弟子大高由昌.大高由昌从遗稿中抽出数篇编辑成《括要算法》,村英为此作序,并于1712年出版.孝和的有关单行本至今尚存,与此比较看出,大高由昌在编辑时并没有作多大改动.只是孝和原稿中的“诸约之法”不包括“翦管术”,而《括要算法》中将“翦管术”列于“诸约之法”中.(1)招差法 这是由x=x1,x2,…,xn和相应的y=y1,y2,…,yn两组数据确定函数y=a1x+a2x2+…+anxn的系数的方法,相当于西方数学中的有限差分法.孝和的方法如下:乘积.若所有平积相等,就有a3=a4=…=0,这时可取a2=δz1,a1=z1-a2x1,这时的招差法称为“一次相乘之法”.若所有的立积都相等,则a4=a5=…=0,可取a3=δ2z1,再计算zi-a3x2i=ui(1≤i≤n),它是u=a1+a2x在x=xi处的值,再对此施行“一次相乘之法”可得a2,a1的值.依此类推.关孝和称a1,a2,…,an这些系数为“差”,求这些差为“招差”.上述求差的方法就是他的招差法.对于n=2,3,4的情况,求f(x)=a1x+a2x2+…+anxn系数的问题早在中国数学中已得到解决,孝和的贡献主要在于将这种“三差之法”推广到了n为任意自然数的一般招差法.(2)约术及垛术 他叙述的“约术”有互约、逐约、齐约、遍约、增约、损约、零约、遍通等.其中“逐约术”是给出n个整数a1,a2,…,an,确定各自的一个约数a′1,a′2,…,a′n,使这n个约数两两互素且其和等于a1,a2,…,an的最小公倍数.n=2时,他把“逐约术”又称为“互约术”.“齐约”是求整数的最小公倍数.“遍约”是用整数的最大公约数分别去除这n个整数.“遍通”是分数通分.“增约”是求级数a+ar+ar2+…的和,“损约”是求级数a-ar-ar2-…的和.“剩一术”是解一次不定方程ax-by=1的方法.除“增约”和“损约”之外,这些都是数论的内容.“零约术”是孝和的发明.它是一种确定无限不循环小数的近似分数的方法.在书中他用例子对零约术作了说明.比如边长为1尺的正方取p1=1,q1=1,按下述规则确定后面的pn,qn.若n,而相应的pn依次是1,3,4,6,7,9,10,11,13,14,16,17,18,20,21,23,24,26,27,28,30,31,33,34,35,37,38,40,41, 43, 44,45, 47,48,50,51,52,54,55,57,58.于是有它们都出现在上述的近似分数列中.在《括要算法》最后一卷(贞卷)中,他用自己发明的这种零约术给出,但他是怎样得到的呢?这一点却没有流传下来.孝和的这一工作给出了一种推导方法.《括要算法》的第一卷(元卷)中还记述了“垛术”问题,即求和Sp=1p+2p+3p+… +np(他称其为“方垛积”)与求和对于方垛积,他用招差法计算出了p=1,2,3,…,11的情况,然后归纳得出了方垛积一般公式:对于衰垛积,他也给出一般公式:值得注意的是,方垛积公式中的B1,B2,…,Bn,…与伯努利数一样.而西方第一部导入伯努利数并给出上述公式的书是数学家雅格布·伯努利(Jacob Bernoulli)的《猜度术》(Ars conj-ectandi,1713).可见关孝和与伯努利几乎同时发现了伯努利数.(3)翦管术 数论方面,他还研究了翦管术,即解同余式组b1x≡a1(mod m1), b2x≡a2(mod m2),…,bnx≡an(mod mn)的方法.《括要算法》第二卷(亨卷)的“翦管术解”部分举出九个问题说明这种方法,前五个是b1=b2=…=bn=1的情况,根据m1,m2,…,mn是否两两互素而分为两种情况给出了解法;后四个问题都是b1,b2,…,bn不全为1的情况,利用逐约术和剩一术给出了解法.翦管术的名称和问题形式在中国宋代杨辉的著作集《杨辉算法》中就有记述,但杨辉解决的同余式组只限于b1=b2=…=bn=1,且m1,m2,…,mn两两互素的情况,而且由于所举的例子涉及的数据都比较简单,往往是只靠心算就可以解决,而不用剩一术.可以说,孝和是从《杨辉算法》中得到了翦管术的名称和问题形式,但他由于发明了剩一术,又引入了逐约、互约概念,因而对m1,m2,…,mn不全两两互素的情况和b1,b2,…,bn不全为1的同余式组问题也完满地解决了.因此可以说是关孝和发展完善了翦管术.5.给出了一些曲线求长和立体求积的近似方法这些研究主要集中在《解见题之法》、《求积》及《毬阙变形草解》中.其中创新性的成果在于他给出了椭圆周长、阿基米德螺线长的近似算法,解决了圆环体、弧环体和十字环的近似求积问题.(1)椭圆周长与阿基米德螺线长 《解隐题之法》中第一次出现椭圆周长的近似算法.他将椭圆看成是从不同角度看圆时得到的图形,得出椭圆周长L的近近似计算公式:L2=π2(长径×短径)+4×(长径-短径)2.此书中还解决了“畹背”问题,即求所谓“畹形”长度的问题.如图1,将扇形OAB用半径OC1,OC2,…,OCn-1 n等分,再将半径OA用C′1,C′2,…,C′n-1 n等分,经过OA的各分点以O为圆心分别画弧,得到过C′k点的弧与半径OCk的交点Dk(0≤k≤n,记O点为D0,A点为Dn),Dk点的轨迹即是“畹形”.可见,畹形就是阿基米德螺线.他给出畹形长(背)的计算公式:至于他是如何得到这个公式的,书中没有说明.(2)圆环体、弧环体和十字环的体积 所谓圆环体是圆绕其所在平面上与圆没有公共点的一条直线旋转一周所得到的立体;弧环体则是由弓形绕其所在平面上与弓形没有公共点的一条直线旋转一周所得的立体.关孝和设想,把圆环体截断伸直,圆环体就变成圆柱,因此圆环体的体积就等于这个截面(圆面)的面积乘以这个“圆柱”的高(即圆环体的“中心圆”周长).他这样计算是假定了“圆环体经截断伸直成圆柱后体积不变”,以此假定为基础,他用弓形的面积乘以弧环体的中心圆周长作为弧环体的体积.这里所说的中心圆是指在圆(或弓形)旋转过程中,圆(或弓形)面上一个特定点所形成的圆,这个特定点就是圆(或弓形)的重心.可见,孝和已经有了“重心”这一概念.他这样计算圆环体、弧环体的体积的方法相当于帕波斯-古尔丁(Pappus-Guldin) 定理所叙述的方法.所谓“十字环”是指两个圆柱体与一个圆环体互相截取组成的立体,如图2所示,两个圆柱的轴互相垂直且都通过圆环体的重心,圆柱被圆环体的表面所截,并且两圆柱的底半径与圆环体的截面半径相等.这一问题最早出现在槻⒑统蔚摹恫瘟铰肌?1653)中,孝和首次用近似方法求出了十字环的体积.另外,《毬阙变形草解》也是主要研究求积问题的著作.不过此书所涉及的多是阙球(用平面去截球体所得)、阙圆柱(用平面去截圆柱所得)、弧锥(底是弓形的锥体)和弧台(两底都是弓形的台体)等复杂的立体.他通过将这些立体变形而给出这些立体的近似求积方法.他把此书命名为《草解》,可见还有未尽之意,这说明上述一类立体的求积是当时最难的求积问题.6.创立圆理、角术,解决了有关圆弧长、球体积及正多边形的一些问题“圆理”一词在后来的和算家中常用来总称求解曲线长、图形(平面图形或曲面图形)的面积及立体的体积的方法.但孝和创立的圆理只限于圆、球的有关计算.他关于圆理的研究主要集中在《括要算法》第4卷(贞卷)中,由“求圆周率术”、“求弧矢弦率术”和“求立圆积率术”(立圆即球)三部分组成.他求圆的正 215,216,217边形的周长a,b,c,并对此施以增约术,用a,b,c的一种平均值作为圆周长的近似值,由此求得圆周率的小数点后11位数字,接着又用他的“求弧术”是由弦a,矢c,径d来求弧长s的方法,他给出公式:其中A0, A1, A2, A3, A4, A5是由 c=c0,c1,c2,c3,c4,c5和相应的s=s0,s1,s2,s3,s4,s5来确定的.如果上述插值公式中没有分母(d-c)i(i=1,2,…,5),则与牛顿插值公式完全一样.这个公式与牛顿插值公式的原理相同.牛顿插值公式是I.牛顿(Newton)发现的,W.琼斯(Jones)得到牛顿允许后著成《微分法》(Methodus differentilis,1711)将其公布于世,而《括要算法》是1709年写成序、跋,1712年出版的,因此可以说关孝和与牛顿几乎同时各自独立地发现了这个公式.对于球的体积,他提出了“求立圆积率术”,首先用平行平面把球截成50个薄片,将各薄片先看成以各自的接近球心一侧的底面为底的圆柱,求这50个“圆柱”的体积之和;再将各薄片看成是以各自的另一底面为底的圆柱,求出这50个“圆柱”的体积之和,再求出这两个体积和的平均值a作为这50个薄片的总体积.同样将球截成100个、200个薄片,分别如上求出这100个、200个薄片的总体积b和c,用增约术求出将其作为球体积.虽然这一过程中用增约术的条件并不充足,但他如此分割—转换—求和的求积方法中,积分思想已开始萌芽.“角术”是建立正多边形的边长与外接圆半径、边长与内切圆半径之间关系式的方法.他对正3—20边形分别给出了这种关系式,而以前的和算家只是求出了边数不大于15的正多边形的上述关系式.另外,孝和在推导过程中所用的几何学上的定理,有一些是仅凭直觉得到的.7.研究了幻方问题,又用同余式解决了日本流传的古老的“继子立”即“立后嗣”的问题《七部书》中的《方阵之法·圆攒之法》给出了幻方(他称为“方阵”)和圆攒的一般构造方法,即按一定规律变化n-2阶幻方的每一个数,将其相应地作为“内核”,再在外圈上按一定规则填上4n-4个数就可以得到n阶幻方.这种方法与16世纪德国数学家M.施蒂费尔(Stiefel)首次在其著作《整数算术》(Arithme-tica Integra,1544)中尝试证阴幻方的思想是一致的.“继子立”是在日本广泛流传的一个古老问题,它说的是,某贵族家有30个孩子,其中15人是前妻所生,15人为后妻所生.要从这30个孩子中选出一个来继承家业,就让这30个孩子排成一圈,从某一个小孩开始往下数,让第10个孩子从圈中退出,再从下一个继续数,数到20时就让对应20的那个孩子从圈中出去.照此数下去,数到整十的数时就把对应该数的孩子从圈中拉出,直到最后剩下一个孩子,就由这个孩子来继承家业.如果现在只剩下一个前妻之子和14个后妻之子了,那么只要从这个前妻之子开始数,就可以使这个孩子成为“继子”.孝和在《算脱验符之法》中将这个问题理论化并用同余式进行了推导证明.除上述著作之外,孝和在数学方面还写下了《角法并演段图》、《阙疑抄一百问答术》、《勿惮改答术》等书.在天文历法方面他也有许多著作,如《授时历经立成》四卷、《授时历经立成立法》(1681)、《授时发明》、《四余算法》(1697)、《星曜算法》、《数学杂著》(又名《天文数学杂著》)等.先前数学对关孝和的影响从上面的介绍可以看出,关孝和的数学研究有的起源于在他之前的和算著作中的“遗题”.他最初的数学著作《发微算法》是对泽口一之的《古今算法记》(1671)中遗题的解答.他还解答了礒村吉德的《算法阙疑抄》(1659)的100道遗题和村濑义益的《算法勿惮记》(1673)的遗题,至今尚存有关的抄本.有些遗题成为关孝和研究的起点.例如《算法阙疑抄》第45个问题(“圆台斜截口”)引出了他对椭圆的研究;第 41个问题(“俱利加罗卷”,即在圆锥形棒上緾绳,求绳长)引出了他对畹背问题的研究.他的一些重要的思想方法也是从这些著作中得到的.例如,泽口一之在《古今算法记》中通过变换方程系数避开了有两个正根的情况,关孝和由此受启发变换“无商式”和“负商式”系数使其根达到要求,进而得到了求多项式函数的极大值、极小值的“适尽方级法”.他在《题术辨议之法》中,对“碎术”(即“自远至近数次而求所问”的方法,他认为“其术不定也”,因而不是最恰当的方法)问题采用逐次逼近法解决,这可能是从《算法勿惮改》中受到启发的,因为《算法勿惮改》在日本是首次使用逐次逼近法的著作.但是,他的最主要的数学成就并不能在他之前的和算著作中找到线索,这就在他的研究与先前和算家的研究之间形成了一个“断层”.一些人认为,弥补这个断层的是中国数学和西方数学对他的影响.据日本武林史著作《武林隐见录》(1738)中“关新助算术秩事”一条记载,孝和估计到南部某寺收藏的“唐本”(指古时由中国传到日本的书籍)中可能有数学书,就去南都搜寻,并将其抄录下来带回江户研究.从此类“秩事”中可知关孝和在研究中参考了中国数学著作.从孝和的数学成果来看,对他的研究产生较大影响的中国数学著作是《杨辉算法》(1378)和清朝的《天文大成管窥辑要》等.《杨辉算法》是杨辉的《乘除通变本末》(上卷为《算法通变本末》,中卷为《乘除通变算宝》,下卷为《法算取用本末》,与史仲荣合著)、《田亩比类乘除捷法》和《续古摘奇算法》三部著作合刻的,在朝鲜重刻后传入日本并保存下来.孝和从《杨辉算法》中得到了“翦管术”的名称和问题形式,并完善了“翦管术”.另外,《杨辉算法》中已有类似于“霍纳法”的解方程方法,大概是孝和从中受到启发,才提出了分别相当于霍纳法和牛顿逼近法的两种解方程方法.朝黄鼎的《天文大成管窥辑要》对孝和也有影响.孝和的《授时发明》(或称《天文大成三条图解》)就是对此书第三卷的解释,由此看来孝和曾仔细研究过这部书.书中有对元朝郭守敬《授时历》中“三差法”所作的解说,可能由此引出了孝和对“招差法”的研究.关于西方数学的影响是进入明治时代之后才开始研究的.17世纪中叶荷兰莱顿大学的F.范·斯霍腾(Schooten)教授有一个学生,名叫P.哈特辛乌斯(Hartsingius),是日本人.这由荷兰阿姆斯特丹大学的D.J.科尔泰韦赫(korteweg)教授给林鹤一博士的信中可知.这个日本人后来是否回到日本已无法证实.但据日本数学史家三上义夫考证,那个时期在日本有一名叫鸠野巴宗的医学家,此人或许就是哈特辛乌斯.如果这个推测正确,则说明当时已经有人将西方数学带回日本了,从而可以认为关孝和的数学研究直接受到西方数学的影响.从以上的介绍可以看出,关孝和从以往数学家的研究中发现问题,又对这些问题从理论上加以解决或者将其推广为一般性方法.除此之外他还有自己的首创性研究.这些成果奠定了和算的基础,摆脱了日本数学家单纯介绍中国数学的传统束缚,成为后世和算家的典范.关流数学教育及关流弟子关孝和作为一个数学家的同时又是一位数学教育家.他一生中亲自授过课的弟子就有几百人,其中最杰出的是荒木村英及建部贤弘、建部贤明两兄弟,村英的弟子中有松永良弼,贤弘的弟子中有中根元圭,元圭弟子中有山路主住等最为著名.孝和与他的弟子们的研究构成了和算的一个最大流派——关流(关流各代数学家系谱如文后图所示).能培养出这许多杰出的弟子,与孝和创立的教育方式有很大关系.他根据学生的情况分成五个等级分别集中指导,每一级都规定有相应的具体数学内容和具体教材.初级的教以珠算,进而筹算,高级的从演段术到点窜术,随着每一级学生学业的完成而分别授以相应的“免许证”,相当于现在的毕业证,有“见题免许”、“隐题免许”、“伏题免许”、“别传免许”和“印可免许”五个等级.后来这种方式不断发展,成为关流严格的教育制度——五段免许制.只有得到五个等级的免许之后,才可以被称为“关流第几传”,而且最后得到“印可”的只限于几名高徒.后来随着数学研究的发展,加入到各等级的学习内容不断增加,五段免许制日益完善和严格.到了山路主住成为关流掌门人时,据说规定一代弟子中只传一子和高徒二人.关于所用的教材,除了关孝和的著作之外,其他关流数学家也写过教科书,如山路主住的《关流算术》45卷作为关流入门者的最初教程;久留岛义太的《广益算梯》25卷也作为数学初学者的教材.可见,关孝和创立的五段免许制体系,已有班级授课制的萌芽.附:关流系谱参考资料:2023-05-21 01:43:481
6.杨辉三角是中国南宋数学家杨辉1261年所著的详解九章算法一书中出现的一种几
本题示例及答案解析如下:答案解析:一、杨辉三角最大值公式如下:n为奇数时,C(n-1,(n-1)/2),n为偶数时,C(n-1,n/2)。其中,C(M, N)表示从M个元素中任取N个的组合数。由于不好输入组合数公式,所以用C(M, N)替代。杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。二、杨辉三角特点:前两列倒没什么特别的地方,第一列均为 1,第二列则为自然数。而第三列就是三角形数(Triangular number)。你可以想到,三角数就是能够组成大大小小等边三角形的点的数目。杨辉三角的美妙之处在于:它是如此足够简单,但本身在数学上却拥有丰富的魅力。这是数学中的最令人称奇的事物之一,随便取诸多数学性质中的某个,就能表明它是多么的精彩绝伦。2023-05-21 01:43:541
求杨辉三角问题算法
这样输出的?应该不符合要求吧?——用命令行参数再说看提问者的意思是想看到输出的结果呈等腰三角形,而不是直角三角形,对吗?我再考虑考虑!2023-05-21 01:44:213
Problem G: 深入浅出学算法014-杨辉三角
#include using namespace std;int main() { int a[30][30],i,j,n; while(cin>>n) { for(i=0;i<n;i++) for(j=0;j<n;j++) { if(j==0||i==j) a[i][j]=1; else a[i][j]=a[i-1][j]+a[i-1][j-1]; } for(i=0;i<n;i++) for(j=0;j<=i;j++) { if(j==i) cout<<a[i][j]<<endl; else cout<<a[i][j]<<" "; } cout<<endl; } return 0; }2023-05-21 01:44:271
中国数学名人有哪些?
杨辉。杨辉(生卒年不详),字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家、数学教育家。生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。著有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)(其中《详解》和《日用算法》已非完书)。后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。2023-05-21 01:44:342
中国数学发展史结题报告
中国数学发展史【摘要】数学发展史就是数学这门学科的发展历程。数学发展的历史同样也是,人们的思想发生变化的历程,数学中的很多思想也是人类发展的思想。本文就围绕中国数学的发展历程和思想进行了论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响,总结了从数学发展史中得到的启示。【关键词】中国数学;数学发展史;数学思想一、中国数学的发展历程1.1中国数学的起源与早期发展据《易·系辞》记载:上古结绳而治,后世圣人易之以书契。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:圆,一中同长也;平,同高也等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如:“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。1.2 中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年﹝公元前一世纪﹞。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即3.1416);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到3.1415926 <π< 3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹(a.anthonisz)才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。 1.3中国数学教育制度的建立隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》﹝包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》﹞,作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。1.4中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。1.5中国数学的衰落与日用数学的发展这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》﹝1592﹞问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。1.6西方初等数学的传入与中西合璧十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷﹝1607﹞,其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》﹝2卷,1631﹞、《割圆八线表》﹝6卷﹞和罗雅谷的《测量全义》﹝10卷,1631﹞。在徐光启主持编译的《崇祯历书》﹝137卷,1629-1633﹞中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。清康熙帝爱好科学研究,他「御定」的《数理精蕴》﹝53卷,1723﹞,是一部比较全面的初等数学书,对当时的数学研究有一定影响。1.7传统数学的整理与复兴乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》﹝约1859﹞中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷﹝1795-1810﹞,开数学史研究之先河。 1.8西方数学再次东进1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷﹝1857﹞,使中国有了完整的《几何原本》中译本;《代数学》13卷﹝1859﹞;《代微积拾级》18卷﹝1859﹞。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷﹝1872﹞,《微积溯源》8卷﹝1874﹞,《决疑数学》10卷﹝1880﹞等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。 1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。 回答人的补充 2010-08-19 19:41 1.9中国现代数学的建立这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来﹝1915年转留法﹞,1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学﹝今南京大学﹞和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵﹝1927﹞、陈省身﹝1934﹞、华罗庚﹝1936﹞、许宝騤﹝1936﹞等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素﹝1920﹞,美国的伯克霍夫﹝1934﹞、奥斯古德﹝1934﹞、维纳﹝1935﹞,法国的阿达马﹝1936﹞等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊﹝1952年改为《数学学报》﹞,1951年10月《中国数学杂志》复刊﹝1953年改为《数学通报》﹞。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》﹝1953﹞、苏步青的《射影曲线概论》﹝1954﹞、陈建功的《直角函数级数的和》﹝1954﹞和李俨的《中算史论丛》5集﹝1954-1955﹞等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。二、中国数学思想的特点及对世界的影响2.1中国数学思想的特点(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。2.2中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。三、从数学发展史中得到的启示谈论了这么多数学的发展史。数学这门学科,到底从哪来?著名的数学家冯诺依曼给出了我们答案:“数学的概念来源于经验。”但他作为伟大的数学家,同时对数学的本质做了深刻的剖析,他指出,数学是人类智能的中心领域,不是一门经验学科,但与自然科学与生活世纪的特有联系,是数学的特点之一,例如几何学,我们已经看到,他起源于自然和经验;古巴比伦人,古希腊人,古中国人和古印度人等,他们都看见圆圆的月亮和平静的水面,在生活中他们把石头打磨成各种形状的工具,手里拿的或许是某一种多面体,尼罗河泛滥过要重新丈量和划分土地等。于是人们有了多边形,多面体,圆和球等经验,但这还不是数学,只有欧几里得把这些经验进行了“数学的加工”。欧几里得搞出来的这个定义来源于自然,但与自然界的圆形物有本质区别,因为欧几里得的“数学圆”是抽象的,严格的,高度概括的,欧几里得定义的“数学圆”与现实的圆东西是不一样的,难道自然界真的存在严格准确的圆吗?所以,我们可以得出这样的一个结论。数学之源是经验与自然科学,但必须经过数学家严格的精细加工。这种加工是高度抽象的思维加工,使之概念明确,推理严格,整体内容无矛盾才能称得上是数学。数学发展史还告诉了我们另一个道理,数学也是一种文化。美国数学史家克莱因说过:“数学一直是形成现代文化的主要力量,是文化极其重要的因素。”实际上,数学不仅仅是对科学家,工程师或经济学家才有用的一种技术与工具,它在形成现代思想和文化生活当中起着越来越大的作用,由于人们在学校里受过科班的数学教育,使得人们的思维习惯与语言表达趋于严密的精炼,在辩论与法律活动中,推理无懈可击。数学家超脱的性格和丰富的想象力,使数学概念充满着史诗般的艺术性。美学原则是成果优劣的准则之一。罗素说:“数学,如果正确地看待它,则发现它具有至高无上的美,一种冷色而严肃的美,这种美没有音乐或绘画那般华丽的装饰,它可以纯净到崇高的地步,能够达到只有最伟大的艺术才能显示的那种完美的境地;一种真实的喜悦的精神,一种精神上的亢奋,一种高于普通人的意识,这种至善至美的标准,能在诗里得到,也能在数学里得到。”实用的、科学的、美学的和哲学的因素,共同促进着数学的发展。数学的另一个文化气质是它的语言之极端简洁和绝对准确,而语言是否简洁与准确是一种文化质量高低的体现。数学是一种理性的精神,它并不排斥异己,欧氏几何与非欧几里得同时存在,双方都视对方为科学,这种互相包容的精神是现代文明的特征之一。一个时代的总的文化特征在很大程度上与这个时代的数学活动密切相关。数学的黄金时代不是欧几里得时代,而是我们这个时代,我们会看到现在这个时代的科学与文化是如何受惠于数学。【参考文献】1. 王树禾著《数学思想史》国防工业出版社2. 王青建著《数学史科学简编》科学出版社3. 斯科特著《数学史》〔英〕广西师范大学出版社4. 李文林著《数学史概论》高等教育出版社5. 钱宝琼著《中国数学史》科学出版社6. 李继阂著《九章算术》陕西科学技术出版社7. 吴文俊,李迪著《中国数学史大系:第一卷》北京师范大学出版社8. 郭书春著《古代世界数学泰斗刘徽》山东科学技术出版社9. 吴文俊,郭书春著《汇校本(九章算术)序》辽宁教育出版社10.克莱因著《古今数学思想(三)》上海科学技术出版社.2023-05-21 01:45:321
中国古代有哪些数学家,有著名的数学著作分别是什么
最著名的就是《九章算术》,比这还早的有《周髀算经》。此外,这两本和《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》合称著名的《算经十书》。2023-05-21 01:45:544
谁是中国古代有名的数学家?
张衡张爽华罗庚梅兰芳我2023-05-21 01:46:215
中国著名数学家有哪些
华罗庚 祖冲之 冯祖荀 熊庆来 陈景润等2023-05-21 01:46:384
“二项式定理”到底有多重要?可能你想不到
“二项式定理”到底有多重要?可能你想不到 二项式定理在现代数学中,具有非常重要的地位,也是高考的一个重要考点,每年的高考都会重点考察这一类题。 二项式定理的定义可以这样简单的描述:将“两数之和”的“任意实数次幂”展开成“和”的形式。 这个重要的定理是牛顿于1664年在前人的研究成果上创立的。从其雏形的提出到被正式创立,前后历经了1500多年。无数的数学家为此付出了艰辛的努力。 向那些为人类文明作出卓越贡献的伟大数学家们致敬! 公元263年,二项式定理的雏形已经出现在我国古代的数学巨著《九章算术》里面。 “二项式定理”到底有多重要?可能你想不到 我们的祖先在遥远的古代就已经有了“多位正整数”的“开平方”与“开立方”的记载,远远早于西方。 1050年,我国北宋数学家贾宪完成了数学著作《黄帝九章内经细草》,可惜己经遗失,只有部分的内容流传于后世。 200年后的1261年,书中的部分内容“贾宪三角”和“增乘开方法”等内容被南宋的著名数学家抄录入著名的《杨辉算法》,得以流传于世,数学界又称之为“杨辉三角”,为人类数学的发展作出了重要的贡献。 “二项式定理”到底有多重要?可能你想不到 可惜我国古代的数学研究没有形成系统的理论,虽然有了二项式系数的雏形,却没有进一步归纳出“二项式系数”的一般公式。 可见我国古代的数学着重于“问题的独立应用”,没有形成“公理系统”的数学思维。 到了16世纪的西方,“二项式系数表”已经深入人心,在众多数学家的著作里面已经出现。 1654年,数学家帕斯卡,建立了“一般正整数次幂”的二项式定理。 经过无数数学家的努力,“二项式定理”穿过岁月的长河,历经风雨,终于完美出炉。 1665年,牛顿在前人的研究成果上创立了现代的“二项式定理”。 “二项式定理”到底有多重要?可能你想不到 再经历100年之后,最终由数学家“欧拉”和“卡斯蒂隆”用“数学归纳法”进行了严格的证明。 至此,伟大的“二项式定理”诞生了! “二项式定理”与“杨辉三角形”是数学史上令人叹为观止的“数形结合”。 “二项式展开式”系数的问题,实际上是“组合数”的计算问题,用“杨辉三角数”可以快速的求出“组合数”。 “二项式展开式”和“杨辉三角数”的关系非常紧密。用“系数通项公式”来计算,称为“式算”;用“杨辉三角形”来计算,称作“图算”。 “二项式定理”到底有多重要?可能你想不到 异曲同工,殊路同归,数学之美,令人惊艳! 二项式定理在”组合理论”、“开高次方”、“高阶等差数列求和”和“差分法”中有着常重要的作用。 最为重要的是,“二项式定理”的不断完善,为“微积分”的创立奠定了坚实的基础,为人类科技的发展起到了至关重要的推动作用。 小伙伴们,您对此有什么看法呢?欢迎留言讨论。2023-05-21 01:47:421
宋朝时期都有哪些著名科学家
宋朝科学家有毕生,燕肃,苏颂,沈括,钱乙等。毕升——活字印刷鼻祖雕版印刷的形成和演变亲历雕版印刷实际工作从生活中得到灵感发明活字印刷字活人死的结局活字印刷术的远播英山毕升森林公园燕肃——中国的达·芬奇四十岁为官勤政爱民精通音律,能诗善画十年观潮著成海潮论制成具有划时代意义的莲花漏达·芬奇式的科学家苏颂——闻名世界的博物学家和科学家书香门弟塑博学少年为官五十载政绩斐然编撰我国最早最完整的医药专著——《图经本草》发明制作世界上最古老的天文钟——水运仪象台编撰我国现存最早的古代科技专著——《新仪象法要》苏颂精神贯彻古今沈括——中国科学史上的坐标自幼善观察,从诗画中探索科学用科学的精确态度兴修水利造福百姓考察山河形成其地理学说力排众议提倡科学的十二气历在中国古代数学史上开辟高阶等差级数研究的方向在军事医学方面皆有建树不朽之作《梦溪笔谈》为人处事不走寻常路沈括故居梦溪园钱乙——妙手仁心奠定中医儿科之圣孤儿寻父尽孝道一贴“黄土汤”救了皇太子编写《小儿药证直诀》青史留名妙手仁心博爱四方李诫——中国古建筑界所供奉的祖师完成中国古代建筑史上的瑰宝《营造法式》建筑技术律令——《营造法式》《营造法式》对后世建筑的影响被《宋史》埋没的博才科学家文物界建筑界发起整修李诫墓园唐慎微——中华中医领域的药学始祖寡言的传奇民医一生行医了志愿荐官不就著本草唐慎微对后世中医药发展的影响宋慈——世界法医学鼻祖格物穷理的治学思想惠爱子民听讼清明完成世界上最早的法医专著——《洗冤集录》名垂青史的大宋提刑官杨辉——杰出的数学教育家从实践出发的数学教育思想伟大经典的数学著述杨辉数学的历史地位及影响秦九韶——中世纪数学泰斗好学通才遍访名师守孝三年完成世界数学巨著《数学九章》《数学九章》——划时代的巨著秦九韶的哲学思想毁誉参半的后世评价秦九韶纪念馆2023-05-21 01:47:503
Java算法实现杨辉三角等腰三角形
杨辉三角的java 算法实现 有多种实现方法 1.迭代。2.递归。3递归+记忆化网页链接2023-05-21 01:48:193
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右下表,此表揭示了(n为非负整数)展开式的各项系
1、5、10、10、5、12023-05-21 01:48:551
请问:杨辉三角除了上两个相加等于下面一个,还有什么规律?
简单的说一下就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 这就是杨辉三角,也叫贾宪三角 他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去 杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 ...................................................... 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用 杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。 时间上:杨辉(一二六一)朱世杰(一三○三)也明显就可以知道是杨辉发现的 朱世杰只是扩充了其中的内容 同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . ... ... ... ... ... 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形". S1:这些数排列的形状像等腰三角形,两腰上的数都是1 S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。 从左往右斜着看,第一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。 S3:上面两个数之和就是下面的一行的数。 S4:这行数是第几行,就是第二个数加一。…… 幻方,在我国也称纵横图,它的神奇特点吸引了无数人对它的痴迷。从我国古代的“河出图,洛出书,圣人则之”的传说起,系统研究幻方的第一人,当数我国古代数学家——杨辉。 杨辉,字谦光,钱塘(今杭州)人,我国南宋时期杰出的数学家,与秦九韶、李冶、朱世杰并称宋元四大数学家,他在我国古代数学史和数学教育史上占有十分重要的地位。 杨辉对幻方的研究源于一个小故事。当时杨辉是台州的地方官,一次外出巡游,碰到一孩童挡道,杨辉问明原因方知是一孩童在地I 做一道数学算题,杨辉一听来了兴趣,下轿来到孩童旁问是什么算题。原来,这个孩童在算一位老先生出的一道趣题:把1到9的数字分行排列,不论竖着加、横着加,还是斜着加,结果都等于15。 杨辉看到这个算题, 时想起来他在西汉学者戴德编纂的《大戴礼》一书中也 见过。杨辉想到这儿,和孩童一起算了起来,直到午后,两人终于将算式摆出来了。 后来,杨辉随孩童来到老先生家里,与老先生谈论起数学问题来。老先生说:“北周的甄弯注《数术记遗》一书中写过‘九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”"杨辉听了,这与自己与孩童摆出来的完全一样。便问老先生:“你可知这个九宫图是如何造出来的?”老先生说不知 道。 杨辉回到家中,反复琢磨。一天,他终于发现一条规律,并总结成四句话:“九子斜排,上下对易,左右相更,四维挺出”。就是说:先把l~9九个数依次斜排,再把上l下9两数对调,左7右3两数对调,最后把四面的2、4、6、8向外面挺出,这样三阶幻方就填好了。 杨辉研究出三阶幻方(也叫络书或九宫图)的构造方法后,又系统的研究了四阶幻方至十阶幻方。在这几种幻方中,杨辉只给出了三阶、四阶幻方构造方法的说明,四阶以上幻方,杨辉只画出图形而未留下作法。但他所画的五阶、六阶乃至十阶幻方全都准确无误,可见他已经掌握了高阶幻方的构成规律。在信息领域杨辉三角也起着重要作用。2023-05-21 01:49:011
Java实现杨辉给出的任意阶幻方的算法
不懂的话可以继续追问哈-----代码实现如下:public class Test { public static void init(int n){ int[][]yh = new int[n][2*n-1]; for(int i=0;i<yh.length;i++){ //设置第一行的值 yh[0][n-1] = 1; //设置最后一行两边的两个值 yh[n-1][0] = yh[n-1][2*n-2] = 1; for(int j=0;j<i;j++){ try{ //利用杨辉三角的性质进行逐行值的设置 //碰到下标溢出的情况不设置 yh[i][n-i-1+2*j]=yh[i][n+i-1-2*j]=yh[i-1][n-i-2+2*j]+yh[i-1][n-i+2*j]; }catch(Exception e){} } } print(yh); } //进行数组的打印 public static void print(int[][]k){ for(int i=0;i<k.length;i++){ for(int j=0;j<k[i].length;j++){ if(k[i][j]!=0){ System.out.print(k[i][j]); }else{ System.out.print(" "); } } System.out.println(); } } public static void main(String[]args){ init(5); }}2023-05-21 01:49:081
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右表,此表揭示了(a+b)n(n为非负数)展开式的各项
二项式定理,百度百科查看。2023-05-21 01:49:273
古代数学著作《详解九章算法》作者是谁
《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后).也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年. 《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就.该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补.全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章. 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世. 》、《海岛算经》等10部数学著作.所以当时的数学教育制度对继承古代数学经典是有积极意义的. 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式. 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的.遗憾的是贾宪的《黄帝九章算法细草》书稿已佚. 秦九韶是南宋时期杰出的数学家.1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程).16世纪意大利人菲尔洛才提出三次方程的解法.另外,秦九韶还对一次同余式理论进行过研究. 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义.尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论. 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和.公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法.公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式.郭守敬还运用几何方法求出相当于现在球面三角的两个公式. 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法.朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式. 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势. 明代珠算开始普及于中国.1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作.但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一. 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国.数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成).徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作.邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作2023-05-21 01:49:342
用数据求杨辉三角的算法
杨辉三角对应二项式的展开式。直接用组合数就可以求出的。2023-05-21 01:49:411
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b) n (n
(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为2 n .故答案为:(1)5;1,4,6,4,1;(2)n+1,2 n .2023-05-21 01:49:471
我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了 (a+b) n (n为
(1)5;1,4,6,4,1;(2) , . 经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为 .2023-05-21 01:49:541
数学的历史
中国古代数学的成就与衰落 数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。 算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。 但是,真正意义上的中国古代数学体系形成于自西汉至南北朝的三、四百年期间。《算数书》成书于西汉初年,是传世的中国最早的数学专著,它是1984年由考古学家在湖北江陵张家山出土的汉代竹简中发现的。《周髀算经》编纂于西汉末年,它虽然是一本关于“盖天说”的天文学著作,但是包括两项数学成就——(1)勾股定理的特例或普遍形式(“若求邪至日者,以日下为句,日高为股,句股各自乘,并而开方除之,得邪至日。”——这是中国最早关于勾股定理的书面记载);(2)测太阳高或远的“陈子测日法”。 《九章算术》在中国古代数学发展过程中占有非常重要的地位。它经过许多人整理而成,大约成书于东汉时期。全书共收集了246个数学问题并且提供其解法,主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。 中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。 赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的一大贡献。三国时期魏人刘徽则注释了《九章算术》,其著作《九章算术注》不仅对《九章算术》的方法、公式和定理进行一般的解释和推导,而且系统地阐述了中国传统数学的理论体系与数学原理,并且多有创造。其发明的“割圆术”(圆内接正多边形面积无限逼近圆面积),为圆周率的计算奠定了基础,同时刘徽还算出圆周率的近似值——“3927/1250(3.1416)”。他设计的“牟合方盖”的几何模型为后人寻求球体积公式打下重要基础。在研究多面体体积过程中,刘徽运用极限方法证明了“阳马术”。另外,《海岛算经》也是刘徽编撰的一部数学论著。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 祖冲之、祖暅父子的工作在这一时期最具代表性。他们着重进行数学思维和数学推理,在前人刘徽《九章算术注》的基础上前进了一步。根据史料记载,其著作《缀术》(已失传)取得如下成就:①圆周率精确到小数点后第六位,得到3.1415926<π<3.1415927,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值;欧洲直到16世纪德国人鄂图(Otto)和荷兰人安托尼兹(Anthonisz)才得出同样结果。②祖暅在刘徽工作的基础上推导出球体体积公式,并提出二立体等高处截面积相等则二体体积相等(“幂势既同则积不容异”)定理;欧洲17世纪意大利数学家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同时在天文学上也有一定贡献。 隋唐时期的主要成就在于建立中国数学教育制度,这大概主要与国子监设立算学馆及科举制度有关。在当时的算学馆《算经十书》成为专用教材对学生讲授。《算经十书》收集了《周髀算经》、《九章算术》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。 公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。 从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。 14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。 由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。 此外在数学方面鲜有较大成就取得,中国古代数学自此便衰落了。2023-05-21 01:50:383
跟数学有关的书有哪些??
时间简史2023-05-21 01:50:483
阅读下面一段材料,回答问题.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出下表,此表揭示了(a+
解:根据题意知,(a+b) 4 的各项系数分别为1、(1+3)、(3+3)、(3+1)、1,即:1、4、6、4、1;∴(a+b) 4 =a 4 +4a 3 b+6a 2 b 2 +4ab 3 +b 4 .2023-05-21 01:50:561
简述中国数学发展史上三个高峰时期,并谈谈中国古代数学的特色与局限。数学史
中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪﹝宋、元两代﹞,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》﹝11世纪中叶﹞,刘益的《议古根源》﹝12世纪中叶﹞,秦九韶的《数书九章》﹝1247﹞,李冶的《测圆海镜》﹝1248﹞和《益古演段》﹝1259﹞,杨辉的《详解九章算法》﹝1261﹞、《日用算法》﹝1262﹞和《杨辉算法》﹝1274-1275﹞,朱世杰的《算学启蒙》﹝1299﹞和《四元玉鉴》﹝1303﹞等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。中国数学的特点与局限(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。2023-05-21 01:51:162
我国哪位数学家说数学是有用的数学是好玩的
中国著名数学家简介:工作到最后一天的华罗庚(1910—1985)华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明。一天老师出了一道数学题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学。18岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾——右腿瘸了。1930年,19岁的华罗庚写了一篇《苏家驹之代数的五次方程不成立的理由》,发表在上海《科学》杂志上。清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,“他是哪国留学的?在哪个大学任教?”当他知道华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗庚请到清华大学。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了20多篇论文和厚厚的一本书《堆垒素数论》。他特别注意理论联系实际,1958年以后,他走遍了20多个省市自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作到最后一天,实现了自己的诺言。轰动日本列岛的中国数学家——陈建功中国著名数学家陈建功(1893—1971),1929年获得日本理学博士学位时,他的指导老师藤原教授在庆祝会上说:“我一生以教书为业,没有多少成就。不过,我有一个中国学生,名叫陈建功,这是我一生的最大光荣。”获沃尔夫奖唯一华人数学家——陈省身(1911~2004)在数学领域,沃尔夫奖与菲尔兹奖是公认的能与诺贝尔奖相媲美的数学大奖。菲尔兹奖主要奖励在现代数学中做出突出贡献的年轻数学家,而沃尔夫奖主要奖励在数学上做出开创性工作、具有世界声誉的数学家。到1990年为止,世界上仅有24位数学家获得过沃尔夫奖,而陈省身教授就是其中之一。他由于在整体微分几何上的杰出工作获得1984年度沃尔夫奖,成为唯一获此殊荣的华人数学家。刘徽刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.秦九韶(公元1202~1261年)南宋,数学家。他在1247年(淳佑七年)著成『数书九章』十八卷.全书共81道题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨着,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对「大衍求一术」﹝一次同余组解法)和「正负开方术」﹝高次方程的数值解法)等有十分深入的研究。其中的”大衍求一术”﹝一次同余组解法),在世界数学史上占有崇高的地位。在古代<孙子算经>中载有”物不知数”这个问题,举例说明:有一数,三三数之余二,五五数之余二,七七数之余二,问此数为何?这一类问题的解法可以推广成解一次同余式组的一般方法.奏九韶给出了理论上的证明,并将它定名为”大衍求一术”。杨辉——宋代著名的数学教育家杨辉,字谦光,中国南宋(1127~1279)末年钱塘(今杭州市)人。其生卒年月及生平事迹均无从详考。据有关著述中的字句推测,杨辉大约于13世纪中叶至末叶生活在现今浙江杭州一带,曾当过地方官,到过苏州、台州等地。是当时有名的数学家和数学教育家,他每到一处都会有人慕名前来请教数学问题。杨辉一生编写的数学书很多,但散佚也很严重。据史料记载,他至少有以下书,曾在国内或国外刊行:《详解九章算法》12卷(1261)《详解算法》若干卷《日用算法》(1262)《乘除通变算宝》3卷(1274)《续古摘奇算法如卷(1275)《田亩比类乘除捷法如卷(1275)其中《详解九章算法》残缺不全,《详解算法》、《日用算法》迄今未见传本。而后3种共7卷合刊在一起,被称为《杨辉算法》。杨辉继承中国古代数学传统,他广征博引数学典籍,引用了现已失传的宋代的许多算书,使我们才得知其部分内容。其中,刘益的“正负开方术”,贾宪的“增乘开方法”与“开方作法本源”图(即误传为“杨辉三角”),就是极其宝贵的数学史料。杨辉继沈括研究“隙积术”之后,研究了“垛积术”,即关于高阶等差数列的研究。他首次将所谓“幻方”问题作为数学问题研究,并创“纵横图”之名。他给出了三阶至十阶幻方的实例,对某些构成原理也有所研究。杨辉之前在中国尚无这方面的研究成果,杨辉之后,明、清两代中国数学家关于纵横图的研究相继不绝,因此杨耀的著述也是研究关于幻方乃至组合数学历史的珍贵资料。杨辉还非常关心日常计算技巧,改进算法程序。摘取数学皇冠上的明珠——陈景润(1933~1996)在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。中国数学界的伯乐——熊庆来人们在赞美千里马时,总会记起识马的伯乐。中国科学界在赞美华罗庚时,也不会忘记他的老师、中国近代数学的先驱——熊庆来。熊庆来(1893—1969),字迪之,云南弥勒人,18岁考入云南省高等学堂,20岁赴比利时学采矿,后到法国留学,并获博士学位。他主要从事函数论方面的研究,定义了一个“无穷级函数”,国际上称为熊氏无穷数。祖冲之(公元429-500年)祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算. 祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".2023-05-21 01:51:231
请问一个方阵的子方阵的个数有什么规律啊?谢谢!
请看下面文段的第五大点:学术研究关孝和著作很多,近20部,但生前只出版过一部《发微算法》(1674),死后又由其弟子对他的遗稿作了整理,出版了《括要算法》,其余均为未出版的稿本.从这些著作的写作时间来看,孝和的数学研究工作可分为两个阶段,他的数学著作基本上是在1685年以前完成的,以后因体弱多病而较少进行新的数学研究,只写了一些天文历法方面的注释书.下面介绍他的主要贡献.1.引入“傍书法”和代数记号而创立了“演段术”这是关孝和的最大贡献.主要集录于他的著作《发微算法》(1674)及《三部抄》中的《解见题之法》和《解伏题之法》(1683).在《发微算法》中,孝和运用演段术对日本数学家泽口一之(有资料说泽口一之是孝和的弟子)的《古今算法记》(1671)中的15道“遗题”作了分析和解答.但书中只有结果而把有关演段术的记述略去了,所以当时的日本人对他的解答一般都看不懂,于是就有人指责说《发微算法》可能是关孝和胡编乱造的.1680年,日本数学家佐治一平竟写成《算法入门》指出《发微算法》中解法的“错误”并给予“订正”.作为对此类问题的答复,孝和的弟子建部贤弘写成《发微算法演段谚解》(1685)公诸于世,对孝和的演段术作了详细解说,使之传播开来.孝和又在《三部抄》中阐述了“傍书法”和演段术.《三部抄》是《解见题之法》、《解隐题之法》(1685)和《解伏题之法》(1683)三部著作的总称.见题是只用加减乘除即可解答的问题,隐题是只用一个方程就可以解答的问题,伏题是必须用两个以上方程组成的方程组才能解答的问题,这也是三部著作各自名称的来历.《解见题之法》中首次出现傍书法表示的式子.所谓傍书法即在一条短竖线旁边写上文字作为记号来表示数量关系的一种方法.如“甲加乙”、“甲减乙”、“甲乘乙”分别写成“|甲|乙”、“|甲乙”、“|甲乙”;甲2,甲3,甲4,…将“甲÷乙”记为“乙|甲”.孝和就用上述一套符号来处理文字方程,比如方程甲-乙×x+丙×x2+丁×x3=0表示为|甲乙|丙|丁.如果一个方程有两个未知数,如3y3+5xy2+8x2y+4x3=0,就用“甲”代替y,整个方程表示为由于“傍书法”可以表示含有两个或者多个未知数的方程,因而“消元”就有了可能,这使得孝和能够用消元法解方程组,从而得出了他的行列式理论.这些内容集中在《解伏题之法》中.书中介绍了一系列以傍书法为基础的算法,他称之为“天元演段术”,后来又扩展为“归源整法”.这一系列的算法传到孝和的第二代弟子松永良弼时,良弼又受其主君内藤政树(1703—1766,“关流”和算家)之命将“归源整法”更名为“点窜术”.点窜术就是用上述的傍书法系统地研究公式变形、解方程(组)、行列式等问题,内容相当于现在的初等代数学.但由于这种代数学不同于西方代数中用a,b,c,…作为记号而采用汉字加短竖线作为记号,因而不仅是日本的而且是整个汉字文化圈内的文化财富,是具有东方风格的符号代数.2.提出代数方程变换理论和行列式理论这一研究集中在《解伏题之法》中.书中介绍的方程变换的方法有:略、省、约、缩、叠、括等.把一个方程乘以某一式后从另一方程中减去,称之为“略”;一个方程各项有公因式的就将此公因式约去,称之为“省”;各项有共同的数字系数(他称之为“段数”)时就约去这个公因数,他称之为“约”;两个方程中都不含未知数x的奇次幂时,就用换元法把x2作为一个未知数从而简化方程,称之为“缩”;“叠”是两个方程分别乘以适当的式子再相减以消去某些项;“括”是把相同次幂的系数合起来,即合并同类项.孝和的演段术在这些方法中得到了明确表示.他用这些方法解方程组的基本思想是,将两个二元方程经过上述变换消去一个未知数,得到一个一元方程,再解这个一元方程.对于二元高次方程组(设两个方程关于x的次数分别是m和n,m≥n,这时方程中每一项中x的幂的系数都是另一未知数y的多项式),为达到一次消元的目的,他先用叠、括方法从原来的两个方程中导出n个关于x的n-1次方程,这些方程都写成标准形式,即方程右边为0,左边按x的升幂排列,他称这n个方程为“换式”.于是求解原方程组的问题就转化为求解由换式构成的方程组了.将这个方程组的各项中x的幂去掉,得到各项系数(y的多项式或单项式)按原来的位置次序构成的行列式,令这个行列式等于0,得到的这个行列式表示出的关于y的方程即是原方程组消去x后得到的一元方程.这样,解原方程组的问题就转化为解这个一元方程的问题.为了对这个含有行列式的方程化简、求解,他接着对行列式进行变换.他的行列式理论就是由此引出的.他在书中介绍了两种计算行列式值的方法:逐式交乘法和交式斜乘法.逐式交乘法的基本思想是,对行列式的各行分别乘以适当的式子,再将各列元素相加,直到除第一列(即x0的系数对应的那一列)外,其余各列元素的和均为零,这时第一列元素的和即为行列式的值.当行列式阶数较高时,要看出上述各行要乘的因式显然不容易,于是,他在书中又介绍了另一种计算行列式的方法即交式斜乘法.不过他没有说明这种方法的根据,只是对2—5阶行列式的展开给出了规则并用图加以说明.从这些说明看出,他的交式斜乘法大致相当于今天中学里介绍的对角线法或其扩展.西方对于行列式的研究首次出现在G.W.莱布尼茨(Leibniz)1693年写给G.F.A.洛比达(L"Hospital)的信中,而孝和的《解伏法之法》是1683年完成的,所以孝和的研究比西方的此类研究至少要早10年.西方最早发表的关于行列式研究的著作是G.克莱姆(Cramer)的《代数曲线的分析引论》(Intro-duction àl"analyse des lignes courbes algébriques,1750),这比《解伏题之法》要晚70年.在行列式方面,关孝和的研究是世界领先的.3.研究了数字系数高次方程,发现了负根、虚根并提出了判别式概念和相当于多项式函数导函数的多项式关孝和的这些成就主要包含在《解隐题之法》、《开方算式》及著作集《七部书》中.《七部书》是《开方翻变之法》(1685)、《题术辨议之法》(1685)、《病题明致之法》(1685)、《方阵圆攒之法》(1683)、《算脱验符之法》、《求积》、《毬阙变形草解》这七部著作的总称.《解隐题之法》、《开方翻变之法》和《开方算式》中记述了解数字系数高次方程的两种近似方法,分别相当于“霍纳法”和“牛顿迭代法”.孝和又将这些解法用在字母系数方程f(x)=a0+a1x+a2x2+…+anxn=0上,从形式上求出了f′(x)=a1+2a2x+…+nanxn-1,即从形式上求出了多项式函数f(x)的导函数.另外,他考察了只有虚根的方程(他称其为“无商式”)、只有负根的方程(他称其为“负商式”)和方程正、负根的个数问题,给出了判别式的概念,研究了方程正、负根存在的条件.在《题术辨议之法》和《病题明致之法》中,他将导出方程是“无商式”和“负商式”的问题归入“病题”之列,利用他对数字系数方程的研究介绍了变换“予量”而纠正“病题”的方法.对于无商式f(x)=0,他主要是变更方程的系数使其判别式取一定的数值,从而使得方程有正根或负根.这样的变换中又得出了f(x)取极大值(或极小值)的条件f′(x)=a1+2a2x+…+nanxn-1=0,由此式求出极值点x0,再代入f(x)可以求出极大值(或极小值).这是今天通用的求极值方法的雏形,孝和称其为“适尽方级法”.这种求极值方法是关孝和独立发现的.4.将中国的“三差之法”推广为一般的招差法,研究了数论问题并发明“零约术”这些成果都集中在《括要算法》中.孝和去世之后,其遗稿全部传给了弟子荒木村英(1640—1718).据说,村英与孝和本来同学于高原吉种门下,后来他又拜孝和为师,由于其在同门弟子中学德俱高,所以得到了孝和的全部遗稿.可是当时村英已年高体弱,就把整理孝和遗稿的工作交给自己的弟子大高由昌.大高由昌从遗稿中抽出数篇编辑成《括要算法》,村英为此作序,并于1712年出版.孝和的有关单行本至今尚存,与此比较看出,大高由昌在编辑时并没有作多大改动.只是孝和原稿中的“诸约之法”不包括“翦管术”,而《括要算法》中将“翦管术”列于“诸约之法”中.(1)招差法 这是由x=x1,x2,…,xn和相应的y=y1,y2,…,yn两组数据确定函数y=a1x+a2x2+…+anxn的系数的方法,相当于西方数学中的有限差分法.孝和的方法如下:乘积.若所有平积相等,就有a3=a4=…=0,这时可取a2=δz1,a1=z1-a2x1,这时的招差法称为“一次相乘之法”.若所有的立积都相等,则a4=a5=…=0,可取a3=δ2z1,再计算zi-a3x2i=ui(1≤i≤n),它是u=a1+a2x在x=xi处的值,再对此施行“一次相乘之法”可得a2,a1的值.依此类推.关孝和称a1,a2,…,an这些系数为“差”,求这些差为“招差”.上述求差的方法就是他的招差法.对于n=2,3,4的情况,求f(x)=a1x+a2x2+…+anxn系数的问题早在中国数学中已得到解决,孝和的贡献主要在于将这种“三差之法”推广到了n为任意自然数的一般招差法.(2)约术及垛术 他叙述的“约术”有互约、逐约、齐约、遍约、增约、损约、零约、遍通等.其中“逐约术”是给出n个整数a1,a2,…,an,确定各自的一个约数a′1,a′2,…,a′n,使这n个约数两两互素且其和等于a1,a2,…,an的最小公倍数.n=2时,他把“逐约术”又称为“互约术”.“齐约”是求整数的最小公倍数.“遍约”是用整数的最大公约数分别去除这n个整数.“遍通”是分数通分.“增约”是求级数a+ar+ar2+…的和,“损约”是求级数a-ar-ar2-…的和.“剩一术”是解一次不定方程ax-by=1的方法.除“增约”和“损约”之外,这些都是数论的内容.“零约术”是孝和的发明.它是一种确定无限不循环小数的近似分数的方法.在书中他用例子对零约术作了说明.比如边长为1尺的正方取p1=1,q1=1,按下述规则确定后面的pn,qn.若n,而相应的pn依次是1,3,4,6,7,9,10,11,13,14,16,17,18,20,21,23,24,26,27,28,30,31,33,34,35,37,38,40,41, 43, 44,45, 47,48,50,51,52,54,55,57,58.于是有它们都出现在上述的近似分数列中.在《括要算法》最后一卷(贞卷)中,他用自己发明的这种零约术给出,但他是怎样得到的呢?这一点却没有流传下来.孝和的这一工作给出了一种推导方法.《括要算法》的第一卷(元卷)中还记述了“垛术”问题,即求和Sp=1p+2p+3p+… +np(他称其为“方垛积”)与求和对于方垛积,他用招差法计算出了p=1,2,3,…,11的情况,然后归纳得出了方垛积一般公式:对于衰垛积,他也给出一般公式:值得注意的是,方垛积公式中的B1,B2,…,Bn,…与伯努利数一样.而西方第一部导入伯努利数并给出上述公式的书是数学家雅格布·伯努利(Jacob Bernoulli)的《猜度术》(Ars conj-ectandi,1713).可见关孝和与伯努利几乎同时发现了伯努利数.(3)翦管术 数论方面,他还研究了翦管术,即解同余式组b1x≡a1(mod m1), b2x≡a2(mod m2),…,bnx≡an(mod mn)的方法.《括要算法》第二卷(亨卷)的“翦管术解”部分举出九个问题说明这种方法,前五个是b1=b2=…=bn=1的情况,根据m1,m2,…,mn是否两两互素而分为两种情况给出了解法;后四个问题都是b1,b2,…,bn不全为1的情况,利用逐约术和剩一术给出了解法.翦管术的名称和问题形式在中国宋代杨辉的著作集《杨辉算法》中就有记述,但杨辉解决的同余式组只限于b1=b2=…=bn=1,且m1,m2,…,mn两两互素的情况,而且由于所举的例子涉及的数据都比较简单,往往是只靠心算就可以解决,而不用剩一术.可以说,孝和是从《杨辉算法》中得到了翦管术的名称和问题形式,但他由于发明了剩一术,又引入了逐约、互约概念,因而对m1,m2,…,mn不全两两互素的情况和b1,b2,…,bn不全为1的同余式组问题也完满地解决了.因此可以说是关孝和发展完善了翦管术.5.给出了一些曲线求长和立体求积的近似方法这些研究主要集中在《解见题之法》、《求积》及《毬阙变形草解》中.其中创新性的成果在于他给出了椭圆周长、阿基米德螺线长的近似算法,解决了圆环体、弧环体和十字环的近似求积问题.(1)椭圆周长与阿基米德螺线长 《解隐题之法》中第一次出现椭圆周长的近似算法.他将椭圆看成是从不同角度看圆时得到的图形,得出椭圆周长L的近近似计算公式:L2=π2(长径×短径)+4×(长径-短径)2.此书中还解决了“畹背”问题,即求所谓“畹形”长度的问题.如图1,将扇形OAB用半径OC1,OC2,…,OCn-1 n等分,再将半径OA用C′1,C′2,…,C′n-1 n等分,经过OA的各分点以O为圆心分别画弧,得到过C′k点的弧与半径OCk的交点Dk(0≤k≤n,记O点为D0,A点为Dn),Dk点的轨迹即是“畹形”.可见,畹形就是阿基米德螺线.他给出畹形长(背)的计算公式:至于他是如何得到这个公式的,书中没有说明.(2)圆环体、弧环体和十字环的体积 所谓圆环体是圆绕其所在平面上与圆没有公共点的一条直线旋转一周所得到的立体;弧环体则是由弓形绕其所在平面上与弓形没有公共点的一条直线旋转一周所得的立体.关孝和设想,把圆环体截断伸直,圆环体就变成圆柱,因此圆环体的体积就等于这个截面(圆面)的面积乘以这个“圆柱”的高(即圆环体的“中心圆”周长).他这样计算是假定了“圆环体经截断伸直成圆柱后体积不变”,以此假定为基础,他用弓形的面积乘以弧环体的中心圆周长作为弧环体的体积.这里所说的中心圆是指在圆(或弓形)旋转过程中,圆(或弓形)面上一个特定点所形成的圆,这个特定点就是圆(或弓形)的重心.可见,孝和已经有了“重心”这一概念.他这样计算圆环体、弧环体的体积的方法相当于帕波斯-古尔丁(Pappus-Guldin) 定理所叙述的方法.所谓“十字环”是指两个圆柱体与一个圆环体互相截取组成的立体,如图2所示,两个圆柱的轴互相垂直且都通过圆环体的重心,圆柱被圆环体的表面所截,并且两圆柱的底半径与圆环体的截面半径相等.这一问题最早出现在槻⒑统蔚摹恫瘟铰肌?1653)中,孝和首次用近似方法求出了十字环的体积.另外,《毬阙变形草解》也是主要研究求积问题的著作.不过此书所涉及的多是阙球(用平面去截球体所得)、阙圆柱(用平面去截圆柱所得)、弧锥(底是弓形的锥体)和弧台(两底都是弓形的台体)等复杂的立体.他通过将这些立体变形而给出这些立体的近似求积方法.他把此书命名为《草解》,可见还有未尽之意,这说明上述一类立体的求积是当时最难的求积问题.6.创立圆理、角术,解决了有关圆弧长、球体积及正多边形的一些问题“圆理”一词在后来的和算家中常用来总称求解曲线长、图形(平面图形或曲面图形)的面积及立体的体积的方法.但孝和创立的圆理只限于圆、球的有关计算.他关于圆理的研究主要集中在《括要算法》第4卷(贞卷)中,由“求圆周率术”、“求弧矢弦率术”和“求立圆积率术”(立圆即球)三部分组成.他求圆的正 215,216,217边形的周长a,b,c,并对此施以增约术,用a,b,c的一种平均值作为圆周长的近似值,由此求得圆周率的小数点后11位数字,接着又用他的“求弧术”是由弦a,矢c,径d来求弧长s的方法,他给出公式:其中A0, A1, A2, A3, A4, A5是由 c=c0,c1,c2,c3,c4,c5和相应的s=s0,s1,s2,s3,s4,s5来确定的.如果上述插值公式中没有分母(d-c)i(i=1,2,…,5),则与牛顿插值公式完全一样.这个公式与牛顿插值公式的原理相同.牛顿插值公式是I.牛顿(Newton)发现的,W.琼斯(Jones)得到牛顿允许后著成《微分法》(Methodus differentilis,1711)将其公布于世,而《括要算法》是1709年写成序、跋,1712年出版的,因此可以说关孝和与牛顿几乎同时各自独立地发现了这个公式.对于球的体积,他提出了“求立圆积率术”,首先用平行平面把球截成50个薄片,将各薄片先看成以各自的接近球心一侧的底面为底的圆柱,求这50个“圆柱”的体积之和;再将各薄片看成是以各自的另一底面为底的圆柱,求出这50个“圆柱”的体积之和,再求出这两个体积和的平均值a作为这50个薄片的总体积.同样将球截成100个、200个薄片,分别如上求出这100个、200个薄片的总体积b和c,用增约术求出将其作为球体积.虽然这一过程中用增约术的条件并不充足,但他如此分割—转换—求和的求积方法中,积分思想已开始萌芽.“角术”是建立正多边形的边长与外接圆半径、边长与内切圆半径之间关系式的方法.他对正3—20边形分别给出了这种关系式,而以前的和算家只是求出了边数不大于15的正多边形的上述关系式.另外,孝和在推导过程中所用的几何学上的定理,有一些是仅凭直觉得到的.7.研究了幻方问题,又用同余式解决了日本流传的古老的“继子立”即“立后嗣”的问题《七部书》中的《方阵之法·圆攒之法》给出了幻方(他称为“方阵”)和圆攒的一般构造方法,即按一定规律变化n-2阶幻方的每一个数,将其相应地作为“内核”,再在外圈上按一定规则填上4n-4个数就可以得到n阶幻方.这种方法与16世纪德国数学家M.施蒂费尔(Stiefel)首次在其著作《整数算术》(Arithme-tica Integra,1544)中尝试证阴幻方的思想是一致的.“继子立”是在日本广泛流传的一个古老问题,它说的是,某贵族家有30个孩子,其中15人是前妻所生,15人为后妻所生.要从这30个孩子中选出一个来继承家业,就让这30个孩子排成一圈,从某一个小孩开始往下数,让第10个孩子从圈中退出,再从下一个继续数,数到20时就让对应20的那个孩子从圈中出去.照此数下去,数到整十的数时就把对应该数的孩子从圈中拉出,直到最后剩下一个孩子,就由这个孩子来继承家业.如果现在只剩下一个前妻之子和14个后妻之子了,那么只要从这个前妻之子开始数,就可以使这个孩子成为“继子”.孝和在《算脱验符之法》中将这个问题理论化并用同余式进行了推导证明.除上述著作之外,孝和在数学方面还写下了《角法并演段图》、《阙疑抄一百问答术》、《勿惮改答术》等书.在天文历法方面他也有许多著作,如《授时历经立成》四卷、《授时历经立成立法》(1681)、《授时发明》、《四余算法》(1697)、《星曜算法》、《数学杂著》(又名《天文数学杂著》)等.先前数学对关孝和的影响从上面的介绍可以看出,关孝和的数学研究有的起源于在他之前的和算著作中的“遗题”.他最初的数学著作《发微算法》是对泽口一之的《古今算法记》(1671)中遗题的解答.他还解答了礒村吉德的《算法阙疑抄》(1659)的100道遗题和村濑义益的《算法勿惮记》(1673)的遗题,至今尚存有关的抄本.有些遗题成为关孝和研究的起点.例如《算法阙疑抄》第45个问题(“圆台斜截口”)引出了他对椭圆的研究;第 41个问题(“俱利加罗卷”,即在圆锥形棒上緾绳,求绳长)引出了他对畹背问题的研究.他的一些重要的思想方法也是从这些著作中得到的.例如,泽口一之在《古今算法记》中通过变换方程系数避开了有两个正根的情况,关孝和由此受启发变换“无商式”和“负商式”系数使其根达到要求,进而得到了求多项式函数的极大值、极小值的“适尽方级法”.他在《题术辨议之法》中,对“碎术”(即“自远至近数次而求所问”的方法,他认为“其术不定也”,因而不是最恰当的方法)问题采用逐次逼近法解决,这可能是从《算法勿惮改》中受到启发的,因为《算法勿惮改》在日本是首次使用逐次逼近法的著作.但是,他的最主要的数学成就并不能在他之前的和算著作中找到线索,这就在他的研究与先前和算家的研究之间形成了一个“断层”.一些人认为,弥补这个断层的是中国数学和西方数学对他的影响.据日本武林史著作《武林隐见录》(1738)中“关新助算术秩事”一条记载,孝和估计到南部某寺收藏的“唐本”(指古时由中国传到日本的书籍)中可能有数学书,就去南都搜寻,并将其抄录下来带回江户研究.从此类“秩事”中可知关孝和在研究中参考了中国数学著作.从孝和的数学成果来看,对他的研究产生较大影响的中国数学著作是《杨辉算法》(1378)和清朝的《天文大成管窥辑要》等.《杨辉算法》是杨辉的《乘除通变本末》(上卷为《算法通变本末》,中卷为《乘除通变算宝》,下卷为《法算取用本末》,与史仲荣合著)、《田亩比类乘除捷法》和《续古摘奇算法》三部著作合刻的,在朝鲜重刻后传入日本并保存下来.孝和从《杨辉算法》中得到了“翦管术”的名称和问题形式,并完善了“翦管术”.另外,《杨辉算法》中已有类似于“霍纳法”的解方程方法,大概是孝和从中受到启发,才提出了分别相当于霍纳法和牛顿逼近法的两种解方程方法.朝黄鼎的《天文大成管窥辑要》对孝和也有影响.孝和的《授时发明》(或称《天文大成三条图解》)就是对此书第三卷的解释,由此看来孝和曾仔细研究过这部书.书中有对元朝郭守敬《授时历》中“三差法”所作的解说,可能由此引出了孝和对“招差法”的研究.关于西方数学的影响是进入明治时代之后才开始研究的.17世纪中叶荷兰莱顿大学的F.范·斯霍腾(Schooten)教授有一个学生,名叫P.哈特辛乌斯(Hartsingius),是日本人.这由荷兰阿姆斯特丹大学的D.J.科尔泰韦赫(korteweg)教授给林鹤一博士的信中可知.这个日本人后来是否回到日本已无法证实.但据日本数学史家三上义夫考证,那个时期在日本有一名叫鸠野巴宗的医学家,此人或许就是哈特辛乌斯.如果这个推测正确,则说明当时已经有人将西方数学带回日本了,从而可以认为关孝和的数学研究直接受到西方数学的影响.从以上的介绍可以看出,关孝和从以往数学家的研究中发现问题,又对这些问题从理论上加以解决或者将其推广为一般性方法.除此之外他还有自己的首创性研究.这些成果奠定了和算的基础,摆脱了日本数学家单纯介绍中国数学的传统束缚,成为后世和算家的典范.关流数学教育及关流弟子关孝和作为一个数学家的同时又是一位数学教育家.他一生中亲自授过课的弟子就有几百人,其中最杰出的是荒木村英及建部贤弘、建部贤明两兄弟,村英的弟子中有松永良弼,贤弘的弟子中有中根元圭,元圭弟子中有山路主住等最为著名.孝和与他的弟子们的研究构成了和算的一个最大流派——关流(关流各代数学家系谱如文后图所示).能培养出这许多杰出的弟子,与孝和创立的教育方式有很大关系.他根据学生的情况分成五个等级分别集中指导,每一级都规定有相应的具体数学内容和具体教材.初级的教以珠算,进而筹算,高级的从演段术到点窜术,随着每一级学生学业的完成而分别授以相应的“免许证”,相当于现在的毕业证,有“见题免许”、“隐题免许”、“伏题免许”、“别传免许”和“印可免许”五个等级.后来这种方式不断发展,成为关流严格的教育制度——五段免许制.只有得到五个等级的免许之后,才可以被称为“关流第几传”,而且最后得到“印可”的只限于几名高徒.后来随着数学研究的发展,加入到各等级的学习内容不断增加,五段免许制日益完善和严格.到了山路主住成为关流掌门人时,据说规定一代弟子中只传一子和高徒二人.关于所用的教材,除了关孝和的著作之外,其他关流数学家也写过教科书,如山路主住的《关流算术》45卷作为关流入门者的最初教程;久留岛义太的《广益算梯》25卷也作为数学初学者的教材.可见,关孝和创立的五段免许制体系,已有班级授课制的萌芽.附:关流系谱参考资料:http://www.cnmaths.com/zttj/Print.asp?ArticleID=512023-05-21 01:51:311
线性方程的解法,哪本数学典籍最早提供? A,九章算术 B,杨辉算法。C,五曹算经 D,周牌算经
九章算术第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。2023-05-21 01:51:401
除了祖冲之外,我国历史上还有哪些优秀的数学家?
东汉时期的赵爽,著有《周髀算经》一书。朱世杰,著有《算学启蒙》和《四元玉鉴》,杨辉,著有《杨辉算法》。2023-05-21 01:52:0011
隋唐时的数学是怎样的?
隋朝和唐朝之间的数字 : 2 东方尙英 : 艳阳红 ( 回答 )2023-05-21 01:52:442
宋元时期的科技发明
26855888888825645362023-05-21 01:52:534
隋唐时的数学是怎样的?
在数学方面,隋唐时较著名的数学专著有唐代王孝通的《缉古算经》。隋唐两代很重视数学教育,隋代国子寺设有算学博士,唐代国子监设有算学馆,唐高宗时还令李淳风等人将汉唐以来十部重要数学典籍编为《算经十书》,并进行注释,在“国学行用”。唐代中晚期,随着商业发展的需要,一些普及性的实用算书也出现了,如龙受益的《算法》、江本的《一位算法》、陈从运的《得一算经》等,但这些典籍都未能流传下来。人宋以后,商业活动的日益频繁推动了宋元计算学的不断进步,以算筹为主的计算工具逐步为快速简捷的珠算所代替;在数学教育和研究方面,除了官学外,社会上的一些知识分子也私立算学,设帐授徒。数学教学和研究的推广,使此期的数学成就辉煌。其中如高次方程的数值解法、多元高次方程组解法、一次同余式解法、高次有限差分法都比西方要早出400~800年。这些重大成就的代表作如:南宋秦九韶的《数书九章》,发明以“大衍求一术”求解高次方程的数值;元代李冶的《测圆海镜》《益古演段》发明“天元术”,以建立数字高次方程;南宋杨辉的《详解九章算法》《日用算法》《杨辉算法》记载了“增乘开方法”和“开方作法本源”;元代朱世杰的《四元玉鉴》,讲述了多元高次方程组解法和高阶等差级数等问题。2023-05-21 01:53:071
数的发展历程 数学的发展史
分数分别产生于测量及计算过程中。在测量过程中,它是整体或一个单位的一部份;而在计算过程中,当两个数(整数)相除而除不尽的时候,便得到分数。一般可分为五期:上古期:(2700B.C.~200B.C.)对数学有所创见的有伏羲氏、黄帝、隶首、缍等人。其成就归纳如下:1. 结绳:最古的记数方法,传为伏羲所创。2. 书器:一种最古的记数工具,传为隶首所创。3. 河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。4. 八卦:传为周公所创,是最初的二进制法。5. 规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。6. 几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。7. 九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。8. 技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。9. 算学教育:周朝时,把算数列为六艺之一,再小学时就受以珠算。初等数学在此时期已有相当基础,算数与几何由于人类实际生活的需要已初步形成,但并无形成一定逻辑关联的系统。中古期:(200B.C.~600A.D.由汉至隋)中国数学家对于算学已有可考据的著作。1. 而对圆周率寄算最有成就者为祖冲之。所得结果比之西方早一千多年。2. 算经十书的编篡:算经十书为:周髀,九章算术,孙子算经,张丘健算经,夏侯阳算经,五曹算经,海岛算经,五经算术,辑古算经及缀术,后因缀术亡失,而已数术记遗代之;其中辑古算经在唐朝才完成。此时期的数学成就,可以从这十本算经中之其概略。数学成就可归纳为以下各点:(1)分数论的应用(2)整数勾股形的计算(3) 平方零约数:已建立开方的方法有两种(4)方程论:已有联立一次方程的解法。九章算数方程章为世界最早包含不只一个未知 数的算 式和联立方程组概念,并产生了正负数的概念。(5)平面立体形的计算:一切直线图的面积和体积公式皆正确;圆面积、球体积为近似公式(6)级数论上的成就:已有等差、等比问题产生。(7)数论上的成就:孙子算经上的「物不知数」是一次同余式问题,由此以后所推广的中国剩余定理比西洋早了一千多年。(8)数学教育制度的建立近古期:(600A.D.~1367A.D.由唐到宋元)分为前后两期,各以唐及宋元为代表。可以说是中国数学史的黄金时代;数学教育制度更臻完善,民间研究数学的风气很盛。数学成就归纳如下:(1) 代数学上的成就:中国古代数学家很早就知道利用代数方法解决实际问题;这时期天元术的产生促使代数学向前发展,使其成为更完整的数学体系。其它数学也获得更进一步的发展。数学家们掌握天元术之后,很快地把它应用到多元高次方程组而产生所谓的四元术;并利用天元术开方。开方数也推广到多乘方,比西洋数学家的发现早约五百年。求数学高次方程的正根方法也已建立起理论根据。(2) 几何学与三角学的成就:割圆术得到进一步的推广,除了平面割圆术外,球面割圆术也已产生,球面三角由此而初步建立起来。(3) 数论上的成就:一次同余的理论基础扩大了应用范围,有八次联立一次同余式的问题出现,在整数论上是一个伟大的成就。所用解一次同余式的方法为有名的辗转相除法,即西方数学家所谓欧几里得算法。(4) 级数论上的成就:级数论在世界数学史上有着悠久的历史,中算家所论述的在此中占有一定位子。由高阶等差级数研究中发明了招差数、垛积数。(5) 纵横图说的研究:一些有名的纵横图(所谓方阵图)已经产生。由以上所述,可以看出,有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。婆罗门、天竺数学输入中国,但中国的数学并没有受到影响;同时中国的数学也输入了百济和日本。近世纪:(1367A.D.~1750A.D.明初到清初)为中国算学衰落时期,统治者对数学教育不注重,民间研习数学风气不盛。回回历法在元末明初输入中国,至明末,应用回回历法已近尾声。自利玛窦至中国之后,西洋历法、西洋数学也随之输入中国。当时还有人研究中算,但由于中算不如西算的简明有系统,故中国古算陷入停顿状态而得不到新的发展。西洋数学输入的有笔算、筹算、代数学、对数术、几何学、平面及球面三角术、三角函数表、比例对数表、割圆术及圆锥曲线说。著名的天元术停滞不前,珠算随着实际生活的需要而产生,很多有关珠算实用算数书陆续出版;珠算术的发明是中算的革命、我国的伟大成就。清初的一些大数学家都致力于西洋数学的研究,编写了数学各科的入门书籍。中国数学输入朝鲜及把元明数学输入日本。最近世期:(1750A.D.~1910A.D.清干隆三十七到清末)西算输入告一段落。这时学术潮流偏向古典考证一路发展,数学研究也转到古代数学方面去,对算经十书与宋元算书加以传刻与研讨到达最高峰。当时数学家很多都能兼通中西数学,在高等数学方面获得相当的成就。对圆周率解析法作深入的探讨,级数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。2023-05-21 01:53:183
垛积术是什么?
垛积术源于北宋时期科学家沈括首创的“隙积术”,用来研究某种物品按一定规律堆积起来求其总数问题,即高阶等差级数的研究。后世数学又家丰富和发展了这一成果。招差术的创立?发展和应用,在世界的数学史和天文学史上都具有的重大的意义和成就。北宋真宗时,有一年皇宫失火,很多建筑被烧毁,修复工作需要大量土方。当时因城外取土太远,遂采用沈括的方案:就近在大街取土,将大街挖成巨堑,然后引汴水入堑成河,使运料的船只可以沿河直抵宫门。竣工后,将瓦砾废料充塞巨堑复为大街。沈括提出的方案,一举解决了取土?运料?废料处理等问题。此外,沈括还有“因粮于敌”?“高超合龙”,“引水补堤”等,也都是使用运筹学思想的例子。沈括是北宋时期的大科学家,博学多识,在天文?方志?律历?音乐?医药?卜算等方面皆有所论著。沈括注意数学的应用,把它应用于天文?历法?工程?军事等领域,得出了许多重要的成果。沈括的数学成就主要是提出了隙积术?测算?度量?运粮对策等。其中的“隙积术”是高阶等差级数求和的一种方法,为后来南宋杨辉的“垛积术”?元代郭守敬和朱世杰的“招差术”开辟了道路。垛积,即堆垛求积的意思。由于许多堆垛现象呈高阶等差数列,因此垛积术在我国古代数学中就成了专门研究高阶等差数列求和的方法。沈括在《梦溪笔谈》中说:算术中求各种几何体积的方法,例如长方棱台?两底面为直角三角形的正柱体?三角锥体?四棱锥等,大致都已具备,唯独没有隙积这种算法。所谓隙积,就是有空隙的堆垛体,像垒起来的棋子,以及酒店里叠置的酒坛一类的东西。他们的形状虽像覆斗,4个测面也都是斜的,但由于内部有内隙之处,如果用长方棱台方法来计算,得出的结果往往比实际为少。沈括所言把隙积与体积之间的关系讲得一清二楚。同样是求积,但“隙积”是内部有空隙的,像累棋,层层堆积坛罐一样。而酒家积坛之类的隙积问题,不能套用长方棱台体积公式。但也不是不可类比,有空隙的堆垛体毕竟很像长方棱台,因此在算法上应该有一些联系。沈括是用什么方法求得这一正确公式的,《梦溪笔谈》没有详细说明。现有多种猜测,有人认为是对不同长?宽?高的垛积进行多次实验,用归纳方法得出的;还有人认为可能是用“损广补狭”办法,割补几何体得出的。沈括所创造的将级数与体积比类,从而求和的方法,为后人研究级数求和问题提供了一条思路。首先是南宋末年的数学家杨辉在这条思路中获得了成就。杨辉在《详解九章算术算法》和《算法通变本末》中,丰富和发展了沈括的“隙积术”成果,提出了一些新的垛积公式。沈括?杨辉等所讨论的级数与一般等差级数不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等。对这类高阶等差级数的研究,在杨辉之后一般称为“垛积术”。元代数学家朱世杰在其所著的《四元玉鉴》一书中,把沈括?杨辉在高阶等差级数求和方面的工作向前推进了一步。朱世杰对于垛积术做了进一步的研究,并得到一系列重要的高阶等差级数求和公式,这是元代数学的又一项突出成就。他还研究了更复杂的垛积公式及其在各种问题中的实际应用。对于一般等差数列和等比数列,我国古代很早就有了初步的研究成果。总结和归纳出这些公式并不是一件轻而易举的事情,是有相当难度的。上述沈括?杨辉?朱世杰等人的研究工作,为此作出了突出的贡献。777什么是招差数?“招差术”也是我国古代数学领域的一项重要成就,曾被大科学家牛顿加以利用,在世界上产生深远影响。我国古代天文学中早已应用了一次内插法,隋唐时期又创立了等间距和不等间距二次内插法,用以计算日月五星的视行度数。这项工作首先是由刘焯开始的。刘焯是隋代经学家?天文学家。他的门生弟子很多,成名的也不少,其中衡水县的孔颖达和盖文达,就是他的得意门生,后来成为唐代初期的经学大师。隋炀帝即位,刘焯任太学博士。当时,历法多存谬误,他呕心沥血制成《皇极历》,首次考虑到太阳视运动的不均性,创立“等间距二次内插法公式”来计算日?月?五星的运行速度。《皇极历》在推算日行盈缩,黄道月道损益,日?月食的多少及出现的地点和时间等方面,都比以前诸历精密得多。由于太阳的视运动对时间来讲并不是一个二次函数,因此即使用不等间距的二次内插公式也不能精确地推算太阳和月球运行的速度。因此,刘焯的内插法有待于进一步研究。宋元时期,天文学与数学的关系进一步密切了,许多重要的数学方法,如高次方程的数值解法,以及高次等差数列求和方法等,都被天文学所吸收,成为制订新历法的重要工具。元代的《授时历》就是一个典型。《授时历》是由元代天文学家兼数学家郭守敬为主集体编写的一部先进的历法著作。其先进的成就之一,就是其中应用了招差术。郭守敬创立了相当于球面三角公式的算法,用于计算天体的黄道坐标和赤道坐标及其相互换算,废除了历代编算历法中的分数计算,采用百位进制,使运算过程大为简化。与此同时,在推算太阳逐日运行的速度以及它在黄道上的经度时,郭守敬还创造了“招差术”,即三次内差法,使天体位置推算得更加精确,比牛顿提出的内差法一般公式早了近400年。招差术在朱世杰的时候得到了更深入的发展。《四元玉鉴》“如象招数”一门共5问,都是和招差有关的问题。因为朱世杰比较完善地掌握了级数求和方面的知识,特别是掌握了各种三角垛求和方面的知识的缘故,所以,他在我国数学史上第一次完整地列出了高次招差的公式。在欧洲,招差术由牛顿加以发展,推出著名的牛顿插值公式。朱世杰所发现的公式与牛顿插值公式在形式上和实质上都是完全一致的,而且比后者要早300多年。四元玉鉴2023-05-21 01:53:251
中国古代数学的发展历史的论文
浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横"‘直"”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。2023-05-21 01:53:442
中国古代的科学技术
我只能说中国古代的技术,人的头脑很好,要不怎么有4大发明呢?中国古代的很多东西都早于西方国家。这些都可以去查阅历史资料2023-05-21 01:53:533
古代数学7怎么写
柒2023-05-21 01:54:004
数学名著有哪些 有什么数学名著(包括作者名称)希望大家可以提供
国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就.可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位.中国古代的许多数学家曾经写下了不少著名的数学著作.许多具有世界意义的成就正是因为有了这些古算书而得以流传下来.这些中国古代数学名著是了解古代数学成就的丰富宝库. 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了.能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就. 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的.直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现.现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物. 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意.在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产. 《算经十书》 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书.十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》. 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪).《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作.就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算.当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载. 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部.它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的.在中国,它在一千几百年间被直接用作数学教育的教科书.它还影响到国外,朝鲜和日本也都曾拿它当作教科书. 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补.《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作.1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系.可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了.正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章. 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法.书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题.《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法.还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的.这要比欧洲同类算法早出一千五百多年.在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则. 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外.在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲.再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”.现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版. 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作.这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题.这些测量数学,正是中国古代非常先进的地图学的数学基础.此外,刘徽对《九章算术》所作的注释工作也是很有名的.一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明.刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题. 《算经十书》的其余几部书也记载有一些具有世界意义的成就.例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名.而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的. 《缀术》是南北朝时期著名数学家祖冲之的著作.很可惜,这部书在唐宋之际公元十世纪前后失传了.宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数.祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页). 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了. 宋元算书 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系.在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展.宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页. 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家.所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年). 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页).书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多.《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学.杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法.这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件.朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容.《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页). 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年. 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的. 宋元以后,明清时期也有很多算书.例如明代就有著名的算书《算法统宗》.这是一部风行一时的讲珠算盘的书.入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了.特别是在明末清初以后的许多算书中,有不少是介绍西方数学的.这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程. 中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了.我们深信,经过努力,中国数学一定能迎头赶上世界先进水平. 注释: ① 贝佐也译作裴蜀或比左.2023-05-21 01:54:071
数学的历史
这里有数学详细发展史:http://www.fxzx.fp.net.cn/teacher/jhw/shihaigouchen/shuxueshi/shgc-sxls.htm1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。十四世纪中叶前,中国开始应用珠算盘。1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。1614年,英国的耐普尔制定了对数。1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。1638年,法国的费尔玛开始用微分法求极大、极小问题。1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。1654年,法国的帕斯卡、费尔玛研究了概率论的基础。1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。1670年,法国的费尔玛提出“费尔玛大定理”。1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。1686年,德国的莱布尼茨发表了关于积分法的著作。1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。1696年,法国的洛比达发明求不定式极限的“洛比达法则”。1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。1711年,英国的牛顿发表《使用级数、流数等等的分析》。1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。1715年,英国的布·泰勒发表《增量方法及其他》。1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。1733年,英国的德·勒哈佛尔发现正态概率曲线。1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。1736年,英国的牛顿发表《流数法和无穷级数》。1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。1742年,英国的麦克劳林引进了函数的幂级数展开法。1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。1772年,法国的拉格朗日给出三体问题最初的特解。1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。2023-05-21 01:54:153