汉邦问答 / 问答 / 问答详情

初中100道一元一次方程题

2023-07-26 14:23:24
gitcloud

1.x+2=3

x=1

2.x+32=33

x=1

3.x+6=18

x=12

4.4+x=47

x=43

5.19-x=8

x=11

6.98-x=13

x=85

7.66-x=10

x=56

8.5x=10

x=2

9.3x=27

x=9

10.7x=7

x=1

11.8x=8

x=1

12.9x=9

x=1

13.10x=100

x=10

14.66x=660

x=10

15.7x=49

x=7

16.2x=4

x=2

17.3x=9

x=3

18.4x=16

x=4

19.5x=25

x=5

20.6x=36

x=6

21.8x=64

x=8

22.9x=81

x=9

23.10x=100

x=10

24.11x=121

x=11

25.12x=144

x=12

26.13x=169

x=13

27.14x=196

x=14

28.15x=225

x=15

29.16x=256

x=16

30.17x=289

x=17

1:

4x+2=x+7

3x=5

x=5/3

2:

3-6x-4=2/3

-6x=5/3

x=-5/18

3:

(4x+2)/6-(5x-1)/6

-x+3=6x=-3

4:

4x/(2x+6)+1=7/(2x+6)

7-4x=2x+6

x=1/6

0.4(x-0.2)+1.5=0.7x-0.38

x=6

30x-10(10-x)=100

x=5

4(x+2)=5(x-2)

x=18

120-4(x+5)=25

x=18.75

15x+863-65x=54

x=16.18

3(x-2)+1=x-(2x-1)

x=3/2

11x+64-2x=100-9x

x=2

3X+18=52

x=34/3

4Y+11=22

y=11/4

3X*9=5

x=5/27

8Z/6=48

z=36

3X+7=59

x=52/3

4Y-69=81

y=75/4

8X*6=5

x=5/48

7Z/9=4

y=63/7

15X+8-5X=54

x=4.6

5Y*5=27

y=27/40

8x+2=10

x=1

x*8=88

x=11

y-90=1

y=91

2x-98=2

x=50

6x*6=12

x=1/3

5-6=5x

x=-1/5

6*x=42

x=7

55-y=33

y=22

11*3x=60

x=20/11

3X+5X=48

X=6

14X-8X=12

X=2

6*5+2X=44

X=7

20X-50=50

X=5

28+6X=88

X=10

32-22X=10

X=1

24-3X=3

X=7

10X*(5+1)=60

X=1

99X=100-X

X=1

X+3=18

X=15

X-6=12

X=18

56-2X=20

X=18

4y+2=6

Y=1

x+32=76

Y=44

3x+6=18

Y=4

16+8x=40

Y=4

2x-8=8

Y=8

4x-3*9=29

X=0.5

8x-3x=105

Y=21

x-6*5=42

Y=72

x+5=7

X=2

2x+3=10

X=3.5

12x-9x=9

X=3

6x+18=48

X=5

56x-50x=30

X=5

5x=15

X=3

78-5x=28

X=4

32y-29=3

X=1

5x+5=15

X=2

89x-9=80

X=1

100-20x=20

X=4

55x-25x=60

X=2

76y-75=1

Y=1

23y-23=23

Y=2

4x-20=0

X=5

80y+20=100

U=1

53x-90=16

X=2

2x+9x=11

X=1

12y-12=24

Y=3

80+5x=100

X=4

7x-8=6

X=2

65x+35=100

X=1

19y+y=40

Y=2

25-5x=15

X=2

79y+y=80

Y=1

42x+28x=140

X=2

3x-1=8

X=3

90y-90=90

Y=2

80y-90=70

Y=2

8y+2y=160

Y=16

88-x=80

X=8

9-4x=1

X=2

20x=40

X=2

65y-30=100

X=2

51y-y=100

Y=2

85y-1=-86

Y=-1

45x-50=40

X=2

0.4(x-0.2)+1.5=0.7x-0.38

x=6

30x-10(10-x)=100

x=5

4(x+2)=5(x-2)

x=18

120-4(x+5)=25

x=18.75

15x+863-65x=54

x=16.18

3(x-2)+1=x-(2x-1)

x=3/2

11x+64-2x=100-9x

x=2

1.7(2x-1)-3(4x-1)=4(3x+2)-1

2.(5y+1)+ (1-y)= (9y+1)+ (1-3y)

3.[ (- 2)-4 ]=x+2

4.20%+(1-20%)(320-x)=320×40%

5.2(x-2)+2=x+1

6.2(x-2)-3(4x-1)=9(1-x)

7.11x+64-2x=100-9x

8.15-(8-5x)=7x+(4-3x)

9.3(x-7)-2[9-4(2-x)]=22

10.3/2[2/3(1/4x-1)-2]-x=2

11.5x+1-2x=3x-2

12.3y-4=2y+1

13.87X*13=5

14.7Z/93=41

15.15X+863-65X=54

16.58Y*55=27489

17.2(x+2)+4=9

18.2(x+4)=10

19.3(x-5)=18

20.4x+8=2(x-1)

21.3(x+3)=9+x

22.6(x/2+1)=12

23.9(x+6)=63

24.2+x=2(x-1/2)

25.8x+3(1-x)=-2

26.7+x-2(x-1)=1

27.x/3 -5 = (5-x)/2

28.2(x+1) /3=5(x+1) /6 -1

29.(1/5)x +1 =(2x+1)/4

30.(5-2)/2 - (4+x)/3 =1

最后来套综合题

一、填空题.(每小题3分,共24分)

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 910 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果精确到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x≥0时,3x=18,∴x=6

当x<0时,-3=18,∴x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、19.解:原方程变形为

200(2-3y)-4.5= -9.5

∴400-600y-4.5=1-100y-9.5

500y=404

∴y=

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

∴21x=63

∴x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形图片的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形图片.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.12×1281=153.72≈154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

24.解:(1)∵103>100

∴每张门票按4元收费的总票额为103×4=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数>乙班人数

∴甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,∴103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,∴这种情况不存在.

故甲班为58人,乙班为45人.

苏萦

看看吧,行不行

一元一次方程练习题

基本题型:

一、选择题:

1、下列各式中是一元一次方程的是( )

A. B.

C. D.

2、方程的解是( )

A. B. C. 1 D. -1

3、若关于的方程的解满足方程,则的值为( )

A. 10 B. 8 C. D.

4、下列根据等式的性质正确的是( )

A. 由,得 B. 由,得

C. 由,得 D. 由,得

5、解方程时,去分母后,正确结果是( )

A. B.

C. C.

6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )

A. 0.81a 元 B. 1.21a元 C. 元 D. 元

8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )

A.不赚不亏 B.赚8元 C.亏8元 D. 赚8元

9、下列方程中,是一元一次方程的是( )

(A)(B)(C)(D)

10、方程的解是( )

(A) (B) (C) (D)

11、已知等式,则下列等式中不一定成立的是( )

(A) (B)

(C) (D)

12、方程的解是,则等于( )

(A) (B) (C) (D)

13、解方程,去分母,得( )

(A) (B)

(C) (D)

14、下列方程变形中,正确的是( )

(A)方程,移项,得

(B)方程,去括号,得

(C)方程,未知数系数化为1,得

(D)方程化成

15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.

(A)3年后; (B)3年前; (C)9年后; (D)不可能.

16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为,则列出的方程正确的是( )

(A) (B)

(C) (D)

17、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是元,那么种植草皮至少需用( )

(A)元; (B)元; (C)元; (D)元.

一年期 二年期 三年期

2.25 2.43 2.70

18、银行教育储蓄的年利率如右下表:

小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )

(A)直接存一个3年期;

(B)先存一个1年期的,1年后将利息和自动转存一个2年期;

(C)先存一个1年期的,1年后将利息和自动转存两个1年期;

(D)先存一个2年期的,2年后将利息和自动转存一个1年期.

二. 填空题:

1、,则________.

2、已知,则__________.

3、关于的方程的解是3,则的值为________________.

4、现有一个三位数,其个位数为,十位上的数字为,百位数上的数字为,则这个三位数表示为__________________.

5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.

6、某数的3倍比它的一半大2,若设某数为,则列方程为____.

7、当___时,代数式与的值互为相反数.

8、在公式中,已知,则___.

日 一 二 三 四 五 六

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数

,请用一个等式表示之间的关系______________.

10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.

11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.

12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).

13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.

14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元

15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=__________.

三、解方程:

1、 2、

3、 4、

5、 6、

7、 8、

9、已知是方程的根,求代数式的值.

四、列方程解应用题:

1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?

2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?

3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?⑵ 一班代表队的最后得分能为145分吗?请简要说明理由.

4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?

(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?

5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?

6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?

7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?

8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?

较高要求:

1、已知,那么代数式的值。

2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).

(A)既不获利也不亏本 (B)可获利1% (C)要亏本2% (D)要亏本1%

3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?

4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.

方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;

(1)你认为选择哪种方案获利最多,为什么?

(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?

5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?

一元一次方程复习题

学号 班级 姓名

一、填空题

1、下列各式中是代数式的有 个

3a+2p 3a+2p=1 3ad 5a>3 6a≠1

2、解一元一次方程的一般步骤是:

①______;②________;③________;④_________;⑤_______。

3、一元一次方程的标准形式是______;一元一次方程的最简形式是________________________。在ax=b中,当a≠0时,方程有唯一解 ;当 时,方程无解;当 时,方程有无数解。

4、下列是一元一次方程的有( )个

(A)x+1=3(B)x-2y=3(C)x(x+1)=2(D)

(E) (F)3x+3>1(G)2(x-1)=2x+5

5、(1)若x(n-2)+2n=0是关于x的方程一元一次方程,则n= ,此时方程的解是x=___。

(2)若ax+x(n-2)+2n=0是关于x的一元一次方程,则a ;m=_____。

6、已知x=-2是方程2x+m-4=0的一个根,则m的值是 。

7、若k是方程2x+1=3的解,则4k+2= 。

8、当k=_____时,方程kx-2=0与2x-3=5是同解方程。

9、若x=-2是方程 的解,则 ______。

10、已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则m= 。

11、如果关于x的方程 有唯一解,则a= ;有无穷解,则a= ;有无解,则a= ;

12、x=-2是方程( )的解

(A)5x+3=4x-1(B) 2(x-2)=5x+2(C)

13、若 和 互为相反数,则y=_______。

与 互为倒数,则x= .

14、当x= 时, 的和为1

15、下列叙述正确的是 。

①若a=b,则a+c=b+ c ②若a=b,则a-c=b- c

③若a+c=b+ c,则a=b ④若a-c=b- c,则a=b

⑤若a=b,则ac=bc ⑥若ac=bc,则a=b

⑦若a=b,则 ⑧若 ,则a=b

⑨若a=b,则 ⑩若 ,则a=b

⑾若a=b,则a2=b2 ⑿若a2=b2,则a=b

⒀若a=b,则a3=b3 ⒁若a3=b3,则a=b

16、方程2y-6=y+7变形为2y-y=7+6,这种变形叫 ,根据是 .

17、在公式v= av0 +2t中,已知v=100,v0=20,t=4,则a=___。

18、2a3bn+1与-9am+nb3是同类项。求2m-3n= 。

二、计算

1、2x:3=5:6 3、2(x-2)-3(4x-1)=5(1-x)

三、应用题

行程问题

1、甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.

(1) 两列火车同时开出,相向而行,经过多少小时相遇?

(2) 快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?

(3) 若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?

(4) 若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千米?

2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速各是多少?

3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米?

4、一架飞机在两城之间飞行,风速为24千米 /小时,顺风飞行需2小时50分,逆风飞行需要3小时。

(1)求无风时飞机的飞行速度

(2)求两城之间的距离。

5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.

(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?

(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?

销售问题

1、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式。

2、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。则进价为每件多少元?

3、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?

4、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

5、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折?

6、某种商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店是赚了还是赔了?

7、某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈还是亏?

人员调配问题

1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?

3、某工人按原计划每天生产20个零件,到预定期限还有100个零件不能完成,若提高工作效率百分之二十五,到期将超额完成50个,问预定期限是多少天?

工程问题

1、一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?

2、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.

数字问题

1、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数。

2、有一个两位数,它的十位上的数字比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数。

年龄问题

1、小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄。

陶小凡

第3章 一元一次方程全章综合测试

(时间90分钟,满分100分)

一、填空题.(每小题3分,共24分)

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数.

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.

二、选择题.(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是( ).

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足( ).

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.把方程 的分母化为整数后的方程是( ).

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组

D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )

A.3个 B.4个 C.5个 D.6个

三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程: -9.5.

20.解方程: (x-1)- (3x+2)= - (x-1).

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.

23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 910 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果精确到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

答案:

一、1.3

2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)

3. (点拨:解方程 x-1=- ,得x= )

4. x+3x=2x-6 5.y= - x

6.525 (点拨:设标价为x元,则 =5%,解得x=525元)

7.18,20,22

8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]

二、9.D

10.B (点拨:用分类讨论法:

当x≥0时,3x=18,∴x=6

当x<0时,-3=18,∴x=-6

故本题应选B)

11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)

12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)

13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)

14.D

15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)

16.D 17.C

18.A (点拨:根据等式的性质2)

三、19.解:原方程变形为

200(2-3y)-4.5= -9.5

∴400-600y-4.5=1-100y-9.5

500y=404

∴y=

20.解:去分母,得

15(x-1)-8(3x+2)=2-30(x-1)

∴21x=63

∴x=3

21.解:设卡片的长度为x厘米,根据图意和题意,得

5x=3(x+10),解得x=15

所以需配正方形图片的边长为15-10=5(厘米)

答:需要配边长为5厘米的正方形图片.

22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故

100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171

解得x=3

答:原三位数是437.

23.解:(1)由已知可得 =0.12

A站至H站的实际里程数为1500-219=1281(千米)

所以A站至F站的火车票价为0.12×1281=153.72≈154(元)

(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66

解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.

24.解:(1)∵103>100

∴每张门票按4元收费的总票额为103×4=412(元)

可节省486-412=74(元)

(2)∵甲、乙两班共103人,甲班人数>乙班人数

∴甲班多于50人,乙班有两种情形:

①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得

5x+4.5(103-x)=486

解得x=45,∴103-45=58(人)

即甲班有58人,乙班有45人.

②若乙班超过50人,设乙班x人,则甲班有(103-x)人,

根据题意,得

4.5x+4.5(103-x)=486

∵此等式不成立,∴这种情况不存在.

故甲班为58人,乙班为45人.

======================================================================

3.2 解一元一次方程(一)

——合并同类项与移项

【知能点分类训练】

知能点1 合并与移项

1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.

(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.

2.下列变形中:

①由方程 =2去分母,得x-12=10;

②由方程 x= 两边同除以 ,得x=1;

③由方程6x-4=x+4移项,得7x=0;

④由方程2- 两边同乘以6,得12-x-5=3(x+3).

错误变形的个数是( )个.

A.4 B.3 C.2 D.1

3.若式子5x-7与4x+9的值相等,则x的值等于( ).

A.2 B.16 C. D.

4.合并下列式子,把结果写在横线上.

(1)x-2x+4x=__________; (2)5y+3y-4y=_________;

(3)4y-2.5y-3.5y=__________.

5.解下列方程.

(1)6x=3x-7 (2)5=7+2x

(3)y- = y-2 (4)7y+6=4y-3

6.根据下列条件求x的值:

(1)25与x的差是-8. (2)x的 与8的和是2.

7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.

8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.

知能点2 用一元一次方程分析和解决实际问题

9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?

10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.

11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.

(1)爸爸追上小明用了多长时间?

(2)追上小明时距离学校有多远?

【综合应用提高】

12.已知y1=2x+8,y2=6-2x.

(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?

13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.

【开放探索创新】

14.编写一道应用题,使它满足下列要求:

(1)题意适合一元一次方程 ;

(2)所编应用题完整,题目清楚,且符合实际生活.

【中考真题实战】

15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.

(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.

(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).

答案:

1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.

(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.

2.B [点拨:方程 x= ,两边同除以 ,得x= )

3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)

4.(1)3x (2)4y (3)-2y

5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .

(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.

(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.

(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,

系数化为1,得y=-3.

6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.

(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,

系数化为1,得x=-10.

7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]

8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]

9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.

解这个方程,得x=7.

答:桶中原有油7千克.

[点拨:还有其他列法]

10.解:设应该从盘A内拿出盐x克,可列出表格:

盘A 盘B

原有盐(克) 50 45

现有盐(克) 50-x 45+x

设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.

解这个方程,得x=2.5,经检验,符合题意.

答:应从盘A内拿出盐2.5克放入到盘B内.

11.解:(1)设爸爸追上小明时,用了x分,由题意,得

180x=80x+80×5,

移项,得100x=400.

系数化为1,得x=4.

所以爸爸追上小明用时4分钟.

(2)180×4=720(米),1000-720=280(米).

所以追上小明时,距离学校还有280米.

12.(1)x=-

[点拨:由题意可列方程2x+8=6-2x,解得x=- ]

(2)x=-

[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]

13.解:∵ x=-2,∴x=-4.

∵方程 x=-2的根比方程5x-2a=0的根大2,

∴方程5x-2a=0的根为-6.

∴5×(-6)-2a=0,∴a=-15.

∴ -15=0.

∴x=-225.

14.本题开放,答案不唯一.

15.解:(1)设CE的长为x千米,依据题意得

1.6+1+x+1=2(3-2×0.5)

解得x=0.4,即CE的长为0.4千米.

(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),

则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);

若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),

则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).

故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).

余辉

..我编一个吧

3x=6 5x+10=20 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6 3x=6

答案2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

康康map

ax+b=cx+d a b c d 随意编

x=(d-b)/(a-c)

豆豆staR

买本参考书就解决了……又不贵

一元一次方程的解法是怎么样的?

一元一次方程的解法是:1、去分母:方程两边同时乘各分母的最小公倍数。2、去括号:一般先去小括号,再去中括号,最后去大括号,但顺序有时可依据情况而定使计算简便,可根据乘法分配律。3、移项:把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。4、合并同类项:将原方程化为ax=b(a≠0)的形式。5、化系数为一:方程两边同时除以未知数的系数。6、得出方程的解。一元一次方程的性质:一般解方程之后,需要进行验证。验证就是将解得的未知数的值代入原方程,看看方程两边是否相等。如果相等,那么所求得的值就是方程的解。一元一次方程也可在数学定理的证明中发挥作用,如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。
2023-07-26 10:22:351

一元一次方程的解法

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。下面来看看如何解一元一次方程吧。 一元一次方程解题步骤 1、去分母,在方程两边各项都乘以各分母的最小公倍数; 2、去括号,一般先去小括号,再去中括号,最后去大括号,如括号外有减号或除号的话一定要变号; 3、移项,把方程中含有未知数的项都移到方程的一边,一般是含有未知数的项移到方程左边,而把常数项移到右边; 4、合并同类项,把方程化成ax=b(au22600)的形式; 5、将系数化为1,在方程两边都除以未知数的系数a,得到方程的解x=b/a。解方程口诀去分母,去括号,移项时,要变号,同类项,合并好,再把系数来除掉。 一元一次方程的价值意义 一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。
2023-07-26 10:22:511

一元一次方程的解法大全

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。下面整理了一元一次方程的解法,供大家参考。 一元一次方程解法 1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号) 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 一元一次方程满足条件 1.它是等式; 2.分母中不含有未知数; 3.未知数最高次项为1; 4.含未知数的项的系数不为0。 等式的性质 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。 等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。 等式的性质三:等式两边同时乘方(或开方),等式仍然成立。 解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。 做一元一次方程应用题的重要方法 1.认真审题 (审题) 2.分析已知和未知量 3.找一个合适的等量关系 4.设一个恰当的未知数 5.列出合理的方程(列式) 6.解出方程(解题) 7.检验 8.写出答案(作答)
2023-07-26 10:23:251

一元一次方程6种解法

一元一次方程6种解法如下:(1)一般方法:去分母、去括号、移项、合并同类项、系数化为1;(2)求根公式法;(3)去括号方法:方程两边同时乘以一个数,去掉方程的括号、移项、合并同类项、系数化为1;(4)约分方法;(5)比例性质法:根据比例的基本性质,去括号,移项,合并同类项,系数化为1;(6)图像法。学习一元一次方程是解决二元一次方程组的基础,也是初中代数中的一个重点知识,掌握了解题技巧,一元一次方程就会很简单。解一元一次方程常用的方法技巧:整体思想、换元法、裂项、拆添项等。当方程中的系数用字母表示时,这样的方程叫做含有字母系数的方程,也叫含参数的方程。
2023-07-26 10:23:391

一元一次方程解法

一元一次方程解法如下:1、去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘)。2、去括号:先去小括号,再去中括号,最后去大括号。记住如括号外有减号的话一定要变号。3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边,移项要变号。4、合并同类项:把方程化成ax=b(a≠0)的形式。5、系数为成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。简介:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。一元一次方程通常可用于做数学应用题。也可应用于物理、化学的计算,如给出液体密度和压强,通过公式计算液体深度的问题。
2023-07-26 10:23:501

一元一次方程的解法

一元一次方程解法的基本步骤如下:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数;2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式;5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。解一元一次方程注意事项(1)在实际解方程的过程中不一定要按照自上而下的顺序,有些步骤可以合并简化。(2)去括号不要拘泥于形式,一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行。(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆,这也是很多同学计算时最容易出错的地方。
2023-07-26 10:24:221

一元一次方程怎么解

一元一次方程解法:1、去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。2、去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。3、移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。4、合并同类项。5、将未知数的系数化为1:根据不等式基本性质2或3。解方程的意义:解方程免去了逆向思考的不易,可以直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
2023-07-26 10:24:451

一元一次方程的解法有哪些

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。接下来分享一元一次方程的解法。 一元一次方程的解法 (1)一般方法: ①去分母:去分母是指等式两边同时乘以分母的最小公倍数。 ②去括号:括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。 ③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 ④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b (a≠0)。 ⑤系数化为1。 (2)图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。 (3)求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。 一元一次方程的定义 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。一元一次方程是一种线性方程,且只有一个根。 判断一元一次方程的条件 (1)首先必须是方程。 (2)其次必须含有一个未知数。 (3)分母中不含有未知数。
2023-07-26 10:24:591

一元一次方程怎么解?

一元一次方程解法为去分母、去括号、移项、合并同类项、系数变为1。一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。历史溯源:一元一次方程最早见于约公元前1600年的古埃及时期。约公元前1650年,古埃及的莱因德纸草书中记载了第24题,题目为:“一个量,加上它的等于19,求这个量。”解决了形为的一次方程,即单假设法解决问题。公元前1世纪左右,中国人在《九章算术》中首次加入了负数,并提出了正负数的运算法则,解决了移项问题。在“盈不足”一章中提出了盈不足术。但该方法并没有被用来解决一元一次方程。在11~13世纪时传入阿拉伯地区,并被称为“契丹算法”。9世纪,阿拉伯数学家花拉子米在《对消与还原》中给出了解方程的简单可行的基本方法,即“还原”和“对消”。但没有采用字母符号。体现了明显的方程的思想。
2023-07-26 10:25:131

一元一次方程的解法?

就是未知数移到一边,数字移到一边,然后计算
2023-07-26 10:26:046

一元一次方程的解法公式

一元一次方程的解法公式:“ax+b=c”,其中a、b、c为已知数,x为未知数。解法公式为:x=(c-b)/a。1.推导过程将“ax+b=c”式移项,得“ax=c-b”,再式两边除以a,得x=(c-b)/a。2.实际应用一元一次方程广泛应用于生活中各种实际问题的解决中,如计算商品折扣价、计算投资收益等。3.特殊情况的处理-分母为零若a=0,则方程退化成“bx=c”,此时当b=0时,无论c取何值,都有无数解;当b不等于0时,当且仅当c/b=x时,有唯一解。4.特殊情况的处理-分子为零若c-b=0,则方程退化成“ax=0”,此时当a=0时,无论x取何值,都有无数解;当a不等于0时,x=0为唯一解。5.关于一元一次方程组的解法对于含有两个及以上一元一次方程的方程组,可以利用消元法来求出未知数的解,从而完成方程组的解法。6.一元一次方程变形解法当方程未能直接使用解法公式求解时,还可以利用变形法来简化问题。例如,方程“2x-3=7x+5”,可以先将方程两边的变量项移至同侧,并将常数项移至另一侧:2x-7x=5+3-5x=8x=-8/57.一元一次方程的图像一元一次方程可以看作是一条直线的方程,其图像在二维坐标系中为一条直线,其斜率k为方程中x的系数a,截距b为方程中的常数项。方程的解即为直线与x轴交点的横坐标,也就是图像上直线的交点。8.实际应用举例假设某商家进行促销活动,原价为x元的商品打折后的价格为y元,已知一种商品原价为20元,打4.5折后的价格为9元,请问此次促销的折扣力度是多少?设折扣力度为d,则有:20*(1-d)=9。通过变形可得出d的值:d=1-9/20=0.55即折扣力度为55%。9.总结一元一次方程是数学中最基础的内容之一,掌握其解法能为实际问题的解决提供重要的保障。无论是学习上的需要,还是在生活中的实际应用,一元一次方程都是大家需要熟练掌握的数学知识点。
2023-07-26 10:27:591

一元一次方程的解法步骤

  一元一次方程作为数学中常见到的题型之一,它的解法步骤有哪些呢。以下是由我为大家整理的“一元一次方程的解法步骤”,仅供参考,欢迎大家阅读。    一元一次方程的解法步骤   (1)中学数学——配方法的步骤:   先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式   (2)中学数学——分解因式法的步骤:   把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式   (3)中学数学——公式法   就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c。   拓展阅读:   一元二次方程的解法   大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解   (1)中学数学——配方法   利用配方,使方程变为完全平方公式,在用直接开平方法去求出解   (2)中学数学——分解因式法   提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解   (3)中学数学——公式法   这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a。    一元二次方程根的情况   利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:   I当△>0时,一元二次方程有2个不相等的实数根;   II当△=0时,一元二次方程有2个相同的实数根;   III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)    韦达定理   利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a。   也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。
2023-07-26 10:28:261

一元一次的方程解法

含字母系数的方程,通常在解题过程中需要讨论。如图所示:供参考,请笑纳。
2023-07-26 10:28:402

一元一次方程的解法

一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.方程意义一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题,通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。
2023-07-26 10:29:321

一元一次方程怎么解

一元一次方程解法如下:解一元一次方程的一般步骤如下:去分母,去括号,移项,合并同类项,系数化为1,把一个一元一次方程“转化”成x=a的形式。根据题意可交换步骤的顺序,去分母时注意没有分母的项也要同乘分母的最小公倍数,移项要改变符号,最后要形成检验的习惯。方程的解:能使方程左右两边相等的未知数的值称为方程的解,只含有一个未知数的方程的解也可以称为方程的根。解方程:求方程解的过程叫做解方程。一元一次方程是方程的起始内容,是初中数学的基础,学习时应根据具体问题中的数量关系列出方程,明确解方程的基本思想是转化,而转化的依据是等式的基本性质。要正确解一元一次方程,必须掌握解一元一次方程的一般步骤,并能根据题目的特点灵活掌握。运用等式的性质还要把握两个要点:一是等式两边是指两边的整体,两边的各项;二是两边发生变化相同,即两边各项发生的变化相同。注意,无论应用等式的哪条性质,等式两边都要发生相同的变化,否则等式不成立。等式的性质是等式变形,方程变形及解方程的依据。价值意义一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系。抽象成一元一次方程可解决的数学问题。例如在丢番图问题中,仅使用整式可能无从下手,而通过一元一次方程寻找作为等量关系的“年龄”,则会使问题简化。
2023-07-26 10:29:471

一元一次方程怎么解 详细过程

问题:3x+1=7 3x=7-1 3x=6 x=2
2023-07-26 10:30:133

一元一次方程组的解法

一元一次方程组的解法:一般解法:1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号);3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号。 4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。同解方程的解法(如果两个方程的解相同,那么这两个方程叫做同解方程):⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
2023-07-26 10:30:291

一元一次方程 怎么解

一元一次方程的解法很简单,但需要有一定的代数知识,例如:x+2x=3 那么2X+x=3x 也就是3x=3,那么X保留不动,右边的数除以左边的整数 也就是x=3×三分之一,即为X不动,右边的数除以左边不包括X的一次项系数,即为X=1 这是基础类型方程。 再来个例子:20X+10X=-100-100 即为30X=-200 遇到了除不尽的情况可以保留分数,切记分数要约到最简,即为X=-200X三十分之一 等于-三分之二(是负三分之二
2023-07-26 10:30:573

一元一次方程的解法 初中数学解题技巧

很多 初中生 对一元一次方程的解法不太了解,下面我为大家总结了一元一次方程的解法,仅供大家参考。 解一元一次方程的基本步骤 1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号; 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边; 4.合并同类项:把方程化成ax=b(a≠0)的形式; 5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解。 一元一次方程介绍 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。 一元一次方程解题技巧 无括号、无分母类型解题步骤 1.移项(未知数移到等号的左边,数字移到等号的右边,移项之前先变符号) 2.合并同类项(俗称"找朋友") 3.化未知数系数为1(注意两边同时乘除同一个数以及符号是否需要变化) 有括号类型解题步骤 1.去括号 2.移项 3.合并同类项 4.化未知数系数为1 有分母类型解题步骤 1.去括号 2.移项 3.合并同类项 4.化未知数系数为1 数学一元一次方程拓展资料 一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。 一元一次方程最早见于约公元前1600年的古埃及时期。公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。 16世纪, 数学 家韦达创立符号代数之后,提出了方程的移项与同除命题。1859年,数学家李善兰正式将这类等式译为一元一次方程。 以上就是我为大家总结的一元一次方程的解法,仅供参考,希望对大家有所帮助。
2023-07-26 10:31:121

解一元一次方程的步骤

使方程左右两边相等的未知数的值叫做方程的解。一般解法:1、去分母:在方程两边都乘以各分母的最小公倍数。2、去括号:先去小括号,再去中括号,最后去大括号。(记住如括号外有减号的话一定要变号)。3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边。移项要变号。4、合并同类项:把方程化成ax=b(a≠0)的形式。5、系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。
2023-07-26 10:31:331

一元一次方程的解法步骤

一、去分母做法:在方程两边各项都乘以各分母的最小公倍数;依据:等式的性质二二、去括号一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)依据:乘法分配律三、移项做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质一四、合并同类项做法:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律) 五、系数化为1做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。依据:等式的性质二. (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。但对于标准形式下的一元一次方程:ax+b=0 (a≠0)。可得出求根公式 。 由于一元一次函数都可以转化为ax+b=0(a,b为常量,a≠0)的形式,所以解一元一次方程就可以转化为:当某一个函数值为0时,求相应的自变量的值。从图像上看,这就相当于求直线y=kx+b(k,b为常量,k≠0)与x轴交点的横坐标的值。
2023-07-26 10:31:471

一元一次方程的概念及解法

一元一次方程定义是只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。一元一次方程只有一个根。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。一元一次方程的解法:1、合并同类项与整式加减中所学的内容相同,将等号同侧的含有未知数的项和常项分别合并成一项的过程叫做合并同类项。合并同类项的目的是向接近x=a的形式变形,进一步求出一元一次方程的解。2、移项①概念:把等式一边的某项变号后移到另一边,叫做移项。②依据:移项的依据是等式的性质1。③目的:通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,使方程更接近于x=a的形式。3、系数化为1①概念:将形如ax=b(a≠0)的方程化成x=b/a的形式,也就是求出方程的解x=b/a的过程,叫做系数化为1。②依据:运用等式的性质2,方程左右两边同时乘未知数系数的倒数。4、去括号解方程过程中,把方程中含有的括号去掉的过程叫去括号。5、去分母①去分母方法:一元一次方程的各项都乘所有分母的最小公倍数,依据等式的性质2使方程中的分母变为1。②去分母的依据:是等式的性质2,即在方程的两边都乘所有分母的最小公倍数,使方程的系数化为整数。
2023-07-26 10:32:061

解一元一次方程的步骤是什么??

1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解
2023-07-26 10:32:414

一元一次方程有几种解法

通过移项 符号变为相反的 再解出来 谢谢
2023-07-26 10:32:583

一元一次方程解法

移项,合并,求解。
2023-07-26 10:33:093

一元一次方程的解是指什么?

使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。
2023-07-26 10:33:321

一元一次方程的分式怎么解答

分式方程的解法 ①去分母{方程两边同时乘以最简公分母(最简公分母:①最小公倍数②相同字母的最高次幂③只在一个分母中含有的照写),将分式方程化为整式方程;若遇到互为相反数时.不要忘了改变符号};②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根). 验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根.否则这个根就是原分式方程的根.若解出的根是增根,则原方程无解. 如果分式本身约分了,也要带进去检验. 在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意. 归纳: 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法. 例题: (1)x/(x+1)=2x/(3x+3)+1 两边乘3(x+1) 3x=2x+(3x+3) 3x=5x+3 2x=-3 x=-3/2 分式方程要检验 经检验,x=-3/2是方程的解 (2)2/x-1=4/x^2-1 两边乘(x+1)(x-1) 2(x+1)=4 2x+2=4 2x=2 x=1 分式方程要检验 经检验,x=1使分母为0,是增根. 所以原方程2/x-1=4/x^2-1
2023-07-26 10:33:471

一元一次方程的解法

死简单的题目..怎么来这问呀.. 估计是作业吧...
2023-07-26 10:34:045

一元一次方程的概念与解法

一元表示方程中未知数的个数只有一个,一次表示方程中未知数的最高次幂是1。(次幂的意思是表示多少个相同的数相乘,如2的一次幂表示一个2,2的2次幂表示两个2相乘等于4,2的3次幂表示3个2相乘等于8)所以一元一次方程的概念就是只有一个未知数并且含未知数的最高次幂是1的方程,解法就是合并同类项,根据等式两边相等求解
2023-07-26 10:34:353

怎么解一元一次方程?sos各位大大救命啊!!!

1.去分母2.去括号3.移项4.合并同类项5.系数化为1
2023-07-26 10:34:577

一元一次方程的解法的标准格式,请举例说明

例如,解方程:5分之(x-1)=3分之(x-3)-2分之(x-2)解:5分之(x-1)=3分之(x-3)-2分之(x-2)去分母:6(x-1)=10(x-3)-15(x-2)去括号:6x-6=10x-30-15x+30移项:6x-10x+15x=-30+30+6合并同类项:11x=6系数化为1:x=6/11
2023-07-26 10:35:163

一元一次方程6种解法是什么

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。下面整理了一元一次方程的解法,供大家参考。 一元一次方程6种解法及步骤 1.去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数。 2.去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号。 3.移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边。 4.合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式。 5.把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。 6.求根公式法 对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。 一元一次方程的应用 一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。例如在丢番图问题中,仅使用整式可能无从下手,而通过一元一次方程寻找作为等量关系的“年龄”,则会使问题简化。
2023-07-26 10:35:281

人教版初一数学上册一元一次方程怎么解?谢谢

买991的计算机,直接按就行
2023-07-26 10:35:514

一元一次方程以前解法

ax+b=O(a≠O),x=一b/a
2023-07-26 10:36:022

高一—一元一次方程解法

将未知数x全提到等号一侧。睡提到另一侧。化简求解、
2023-07-26 10:36:163

怎样解一元一次方程

解一元一次方程的步骤:一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);依据:等式的性质2⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号)依据:乘法分配律⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质1⒋ 合并同类项:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律)依据:等式的性质2一元一次方程的解法使方程左右两边相等的未知数的值叫做方程的解。
2023-07-26 10:36:442

一元一次方程的解法步骤

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。那么如何解一元一次方程呢?下面就和我一起了解一下吧,供大家参考。 一元一次方程解法的基本步骤 1.去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数; 2.去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号; 3.移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边; 4.合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式; 5.把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。 一元一次方程等式的性质 (1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。a=b←→a+c=b+c (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。a=b←→ac=bc(c≠0) 一元一次方程的解法口诀记忆 先和方程照个面,看看方程长啥样?去分母,剥括号,分母括号要去掉。 去分母,莫急躁,先把分母倍数找。两边同乘公倍数,谨防漏乘某一处。 约去分母括号补,再去括号障碍除。去括号,有讲道,确定是否要变号? 正括号,白去掉,括号里面要照抄。负括号,要变号,里边各项都变到。 分母括号全没了,考虑移项是首要。未知移到左边来,常数右边去报到。 移项一定要变号,不动各项要照抄。两边分别合并好.未知系数再除掉。
2023-07-26 10:37:291

怎么解方程一元一次

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。3.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.
2023-07-26 10:37:431

一元一次方程的解法?

解一元一次方程有五步,即去分母、去括号、移项、合并同类项、系数化为1,所有步骤都根据整式和等式的性质进行。以解方程为例:去分母,得:去括号,得:移项,得:合并同类项,得:(常简写为“合并,得:”)系数化为1,得:扩展资料:一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。(1)公式法可以解所有的一元二次方程,公式法不能解没有实数根的方程(也就是b2-4ac<0的方程)。(2)因式分解法,必须要把等号右边化为0。(3)配方法比较简单:首先将方程二次项系数a化为1,然后把常数项移到等号的右边,最后后在等号两边同时加上一次项系数绝对值一半的平方。参考资料来源:百度百科-一元一次方程
2023-07-26 10:38:091

一元一次方程的解法总结

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。接下来分享一元一次方程的解法。 一元一次方程的解法 (1)一般方法: ①去分母:去分母是指等式两边同时乘以分母的最小公倍数。 ②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。 ③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 ④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b (a≠0)。 ⑤系数化为1。 (2)图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。 (3)求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。 一元一次方程的解法口诀记忆 先和方程照个面,看看方程长啥样?去分母,剥括号,分母括号要去掉。 去分母,莫急躁,先把分母倍数找。两边同乘公倍数,谨防漏乘某一处。 约去分母括号补,再去括号障碍除。去括号,有讲道,确定是否要变号。 正括号,白去掉,括号里面要照抄。负括号,要变号,里边各项都变到。 分母括号全没了,考虑移项是首要。未知移到左边来,常数右边去报到。 移项一定要变号,不动各项要照抄。两边分别合并好.未知系数再除掉。
2023-07-26 10:39:031

如何解一元一次方程?

解:第一步,将任何一个一元一次方程经过移项丶合并同类项,化为标准的形式:ax=b;第二步:对a分类讨论:①当a=0时,如果b=0,无数多个解;如果b≠0,则无解;②当a≠0时,有唯一的解x=b/a。
2023-07-26 10:39:142

一元一次方程的解法

一元一次方程的解法:去括号方法。①方程两边同时乘以一个数,去掉方程的括号。②移项。③合并同类项。④系数化为1。一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。
2023-07-26 10:39:261

一元一次方程怎么解 详细过程

一元一次方程解法的基本步骤如下:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数;2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式;5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。解一元一次方程注意事项:(1)在实际解方程的过程中不一定要按照自上而下的顺序,有些步骤可以合并简化。(2)去括号不要拘泥于形式,一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行。(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆,这也是很多同学计算时最容易出错的地方。
2023-07-26 10:39:431

一元一次方程6种解法是什么?

6种解一元一次方程的方法:(1)一般方法①去分母:去分母是指等式两边同时乘以分母的最小公倍数。②去括号:括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。⑤系数化为1:设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。(2)求根公式法对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。(3)去括号方法①方程两边同时乘以一个数,去掉方程的括号;②移项;③合并同类项;④系数化为1。(4)约分方法例如:(7/2)2=21/4(x-4/3)解法:两边同时除以21/4,得到7/3=x-4/3,求解:x=11/3。(5)比例性质法根据比例的基本性质,去括号,移项,合并同类项,系数化为1。(6)图像法对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
2023-07-26 10:40:221

一元一次方程公式是什么?

对于x的一元一次方程是:ax+b=0(a≠0),其求根公式为:x=-b/a。一元一次方程几种解法:1、去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数。2、去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号。3、移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边。4、合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式。5、把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。一元一次方程的应用:一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。如果仅使用算术,部分问题解决起来可能异常复杂,难以理解。而一元一次方程模型的建立,将能从实际问题中寻找等量关系,抽象成一元一次方程可解决的数学问题。如在初等数学范围内证明“0.9的循环等于1”之类的问题。通过验证一元一次方程解的合理性,达到解释和解决生活问题的目的,从一定程度上解决了一部分生产、生活中的问题。
2023-07-26 10:40:441

一元一次方程6种解法

学习一元一次方程是解决二元一次方程组的基础,也是初中代数中的一个重点知识,掌握了解题技巧,一元一次方程就会很简单,下面是我整理的内容,供大家参考。 一元一次方程是什么 只含有一个未知数,并且未知数的次数是1,系数不为0的方程叫做一元一次方程. 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0),它的解是x=-. 我们判断一个方程是不是一元一次方程要看它化简后的最简形式是不是标准形式ax+b=0(a≠0).例如方程3x2+5=8x+3x2,化简成8x-5=0是一元一次方程;而方程4x-7=3x-7+x表面上看有一个未知数x,且x的次数是一次,但化简后为0x=0,不是一元一次方程. 一元一次方程6种解法及步骤 (1)合并同类项 与整式加减中所学的内容相同,将等号同侧的含有未知数的项和常项分别合并成一项的过程叫做合并同类项。合并同类项的目的是向接近x=a的形式变形,进一步求出一元一次方程的解。 (2)移项 ①概念:把等式一边的某项变号后移到另一边,叫做移项。 ②依据:移项的依据是等式的性质1。 ③目的:通常把含有未知数的各项都移到等号的左边,而把不含未知数的各项都移到等号的右边,使方程更接近于x=a的形式。 (3)系数化为1 ①概念:将形如ax=b(a≠0)的方程化成x=b/a的形式,也就是求出方程的解x=b/a的过程,叫做系数化为1。 ②依据:运用等式的性质2,方程左右两边同时乘未知数系数的倒数。 (4)去括号 解方程过程中,把方程中含有的括号去掉的过程叫去括号。 (5)去分母 ①去分母方法:一元一次方程的各项都乘所有分母的最小公倍数,依据等式的性质2使方程中的分母变为1。 ②去分母的依据:是等式的性质2,即在方程的两边都乘所有分母的最小公倍数,使方程的系数化为整数。 ⑹答题。 我们在解一元一次方程的基本思想是把原方程化为ax=b(a≠0)的形式,其解法可分为两大步:①是化为ax=b(a≠0)的形式,②是解方程ax=b 一般来说,解方程就是以上5个步骤,但在解具体的方程时有些可能用不到,可根据方程的特点灵活选用。
2023-07-26 10:41:071

解一元一次方程的基本步骤

一般解法:   1.去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);  2.去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)  3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号  4.合并同类项:把方程化成ax=b(a≠0)的形式;  5.系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.  同解方程  如果两个方程的解相同,那么这两个方程叫做同解方程。  方程的同解原理:  ⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。  ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程
2023-07-26 10:41:151

解一元一次方程的步骤是什么?

去分母移项合并同类项将未知数整理到一边得到结果
2023-07-26 10:41:283

分数形式的一元一次方程怎么解

关照航勺军乐队顺源
2023-07-26 10:41:455

一元一次方程的解法步骤

初中数学中一元一次方程的解法有求根公式法、一般方法、图像法,接下来看一下具体内容。 一元一次方程的解法步骤 求根公式法 对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a. 推导过程 ax+b=0 ax=-b x=-b/a. 一般方法 (1)去分母:去分母是指等式两边同时乘以分母的最小公倍数。 (2)去括号 括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。 括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号,例:-(x-y)=-x+y。 (3)移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。 (4)合并同类项 合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。 通过合并同类项把一元一次方程式化为最简单的形式:ax=b (a≠0) (5)系数化为1 设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。这是解方程的一个通用步骤,就是解方程最后一个步骤。即方程两边同时除以未知项的系数.最后得到x=a的形式。 图像法 对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。 一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
2023-07-26 10:43:161