汉邦问答 / 问答 / 问答详情

如图,AB是圆O的直径,AC是圆O的弦,以OA为直径的圆D与AC相交于点E,AC=10.求AE的长.

2023-07-24 10:24:19
ardim

连接DE,因为AD=0.5AO,DE=AD=0.5AO=0.5OC(D,O都是圆心,圆半径相等。AD=DE,AO=CO)

所以DE=0.5OC,AD=0.5AO

因为角A是公共角

所以三角形ADE与三角形AOC相似

所以AE/AC=AD/AO=0.5

AE=0.5AC=5

善士六合

解:连接EO,

∵OA为⊙D直径,

∴∠AEO=90°,

∵AC是⊙O的弦,

∴AE=EC,

∵AC=10,

∴AE=5.

NerveM

连结E0、CB。两个都是直角三角形,相似。1:2

5

AB为圆O的直径,D是弧BC中点,DE垂直于AC交AC延长线于E,圆O的切线BF交AD的延长线于F若

题没说完啊求什么啊看看是这么个思路不作DG⊥AB交AB于G,设AG=x,则DG=DE=3.由相似三角形,DG/AG=BF/AB,DG/BG=AB/BF即3/x=BF/10,3/(10-x)=10/BF消去x,解得BF=30或10/3
2023-07-24 06:15:332

ab是圆o的直径,点d在ab的延长线上,c,e是圆o上的两点,ce=cb

连接oc因为ce=cb,oa=oc所以∠eac=∠cab=∠aco因为∠bcd=∠eac所以∠bcd=∠aco因为ab为直径所以∠ocb=∠aco所以∠bcd=∠aco所以CD与圆o相切
2023-07-24 06:15:462

AB是圆O的直径,

证明:(1)连接FD因为A,D在圆O上所以OA=OD因为A,D在圆F上所以FA=FD因此,三角形FAO,FDO中DO=AOFA=FDFO=FO所以,三角形FAO全等于三角形FDO所以,角FDO=角FAO因为角FAO=90所以角FDO=90即FD垂直CO因为FD是圆F的半径,FD垂直CD所以CD与圆F相切(2)因为角CAO=角CDF=90,角C=角C所以三角形CDF,CAO相似所以CD/CA=FD/AO因为AO=1/2AB,AB=AC所以CD=2FD因为AE是圆的直径,FD是圆的半径所以AE=2FD所以AE=CD
2023-07-24 06:16:011

AB为圆O的直径

连接oc,oc为半径,设半径等于X,OE=X-4,因为AB垂直于CD,所以CE=DE=16\2=8,由勾股定理得OE^2+EC^2=OC^2,将X代入得(X-4)^2+8^2=X^2所以X=10
2023-07-24 06:16:201

AB是圆O的直径,角ACB的平分线交圆O于点D,试探求AC,BC,CD三者存在的数量关系

AC+BC=根号2倍CD证明:延长CB,使BE=AC,连接DE因为AB是圆O的直径所以角ACB=90度因为角ACB的平分线交圆O于点D所以角ACD=角BCD=1/2角ACB=45度因为角ACD=1/2弧AD角BCD=1/2弧BD所以AD=BD因为角CAD=角EBD所以三角形CAD和三角形EBD全等(SAS)所以角ACD=角E=45度CD=ED因为角BCD+角E+角CDE=180度所以角CDE=90度所以三角形CDE是等腰直角三角形由勾股定理得:CE^2=CD^2+ED^2所以CE=根号2倍CD因为CE=BC+BE所以AC+BC=根号2倍CD
2023-07-24 06:16:331

如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A,B的任意两点,求证 平面PAC⊥平面PBC

AB是圆O的直径所以角ACB=90即AC⊥BCPA垂直于圆O所在的平面PA⊥BCPA与AC交于A点BC⊥平面PACBC属于平面PBC平面PAC⊥平面PBC
2023-07-24 06:16:421

已知ab是圆o的直径,AB为2,C是圆O上异于A、B的一点,P是圆O所在平面上任一点,则(PA+P

已知AB是圆O的直径,AB长为2,C为圆O上异于AB的一点,P是圆O所在平面上任一点,则(向量PA加向量PB)向量PC的最小值是以O为原点,OA为x轴,建立直角坐标系,设C(cosu,sinu),sinu≠0,P(p,q),则A(1,0),B(-1,0),PA=(1-p,-q),PB=(-1-p,-q),PC=(cosu-p,sinu-q),∴向量(PA+PB)PC=(-2p,-2q)*(cosu-p,sinu-q)=-2pcosu+2p^2-2qsinu+2q^2=2(p-cosu/2)^2+2(q-sinu/2)^2-1/2,当p=cosu/2,q=sinu/2时它取最小值-1/2.
2023-07-24 06:16:491

如图,AB是圆O的直径,AM和BN是它的两条切线,DE切圆O于点E,交AM于点D,交BN于点C,F是

解:(1)证明:连接OE,∵AM、DE是⊙O的切线,∴DA=DE,∠OAD=∠OED=90°,又∵OD=OD,在△AOD和△EOD中,DA=DE。∠OAD=∠OED=90°OD=OD,∴△AOD≌△EOD,∴∠AOD=∠EOD=1/2∠AOE,∵∠ABE=1/2∠AOE,∴∠AOD=∠ABE,∴OD∥BE;(2)OF=1/2CD.理由:连接OC,∵BC、CE是⊙O的切线,∴∠OCB=∠OCE,∵AM∥BN,∴∠ADO+∠EDO+∠OCB+∠OCE=180°,由(1)得∠ADO=∠EDO,∴2∠EDO+2∠OCE=180°,即∠EDO+∠OCE=90°,在Rt△DOC中,∵F是DC的中点,∴OF=1/2CD.
2023-07-24 06:17:091

AB是圆o的直径

飘过、、、、、、
2023-07-24 06:17:161

已知ab是圆o的直径,p为ab上一点,c,d为圆上两点在ab同侧,且∠cpa=∠dpb,求证:c,d、p、o四点共圆

已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S。延长CP交圆O于M。延长DP交圆O于N。因为AB是直径,所有由于对称性,直线MN也经过S。设圆O的方程是=0设P点是(-p,0)A点是(-1,0)S点是(-s,0)设PD斜率是k则直线CP,DP组成的"X"形,可以看成退化的双曲线。其方程设为[y-k(x+p)][y+k(x+p)]=0也就是yy-kk(xx+2px+pp)=0而直线SD,SM组成的“X"形,可以看成退化的双曲线,且也过CDMN四点。所以方程可以表示为:yy-kk(xx+2px+pp)+u(x^2+y^2-1)=0其中u待定由于是过s点的“X"形,所以方程应该形如:[y-w(x+s)][y+w(x+s)]=0也就是yy-ww(xx+2sx+ss)=0所以yy-kk(xx+2px+pp)+u(x^2+y^2-1)=0与yy-ww(xx+2sx+ss)=0有相同的形式所以yy-kk(xx+2xp+pp)+uxx+uyy-u=(1+u)yy-(kk-u)xx-2kkpx-(u+kkpp)yy-ww(xx+2sx+ss)=0(1+u)[yy-ww(xx+2sx+ss)]=0(1+u)yy-(1+u)ww(xx+2sx+ss)]=0对应的系数成比例(1+u)ww=kk-u2(1+u)wws=2kkp(1+u)wwss=u+kkpp所以(1+u)wws=kkp(1+u)ww(ss+1)=kk(pp+1)所以(ss+1)p=(pp+1)s所以0=pps+s-p-pss所以(ps-1)(p-s)=0所以ps=1由于圆O半径r是1所以OP*OS=r^2SC*SD=SO^2-r^2=OS^2-OP*OS=(OS)(PS)完毕CDPO共圆
2023-07-24 06:17:291

初中几何题 AB是圆O的直径,CD是弦

恶心
2023-07-24 06:17:394

已知AB是圆O的直径,BC是圆O的弦,点D是圆O外一点,∠DCA=∠B。

2023-07-24 06:18:052

如图,AB是⊙O的直径,C是圆上一点,连接CA,CB,过点O作弦BC的垂线,交于点D,连接AD. (?

没有图形无法回答
2023-07-24 06:18:241

如图,已知AB是圆O的直径,点P是圆O上的任一点(不与点A、B重合),求∠APB=90° 用向量法

向量的表示不好写,就不那么规范写的,注意一下字母不要改变顺序,要明白: 设圆的半径长为r, 则OP^2=r^2,OA×OB=-r^2,OA+OB=0, ∴PA×PB=(OP-OA)×(OP-OB) =OP^2-(OA+OB)OP+OA×OB =r^2-r^2=0 ∴PA⊥PB ∴∠APB=90°
2023-07-24 06:18:441

如图,ab是圆o的直径,弦bd垂直ao于e

证明:连接AD,∵AB为圆的直径, ∴∠ADB=90°, 又EF⊥AB,∠EFA=90° ∴A、D、E、F四点共圆. ∴∠DEA=∠DFA.
2023-07-24 06:18:511

如图,AB是圆O的直径,PA是圆O的切线,点C是圆O上

角PAC等于角ABC(弦切角定理) 因为CB平行于PO 所以角ABC=角AOP 所以角PAC=角AOP 角ODA=180-角AOP-角DAO=180-角PAC-角DAO=90度 再用全等三角形就可以证明三角形PAO全等三角形PCO 所以是pc与圆是相切的关系 然后你列方程设pc是x x是根号下2+2倍根号65 htp://zhidao.baidu.com/question/193273117.html
2023-07-24 06:19:201

如图所示,AB是圆O的直径,D为圆O上一点,CD交BA的延长线于点C,若角ADC=角B

连接OD,第二题的解答是:由(1)可知△CDO为直角三角形,AC=1,CD等于半径的根号3倍,所以设半径为r,则CD=根号3r,所以AO=1+根号3r,在根据勾股定理列出方程,即可求解
2023-07-24 06:19:272

AB为圆O 的直径,AB垂直AC,BC交圆O于D,E是AC的中点,ED与AB的延长线交于点F

证明:(1)因为 AB是圆O的直径,        所以 角ADC=角ADB=90度,      又 E是AC中点,     所以 AE=ED, 角EAD=角EDA,     因为 OA=OD,     所以 角OAD=角ODA,     所以 角EAD+角OAD=角EDA+角ODA,     即: 角OAE=角ODE,     因为 AB垂直于AC,     所以 角OAE=90度,     所以 角ODE=90度,     所以 DE为圆O的切线。   (2)因为 DE是圆O的切线,     所以 角BDF=角BAD,      又 角F=角F,     所以 三角形BDF相似于三角形DAF,     所以 BF/DF=BD/AD,     因为 AB垂直于AC, 三角形ABC是直角三角形,角CAB是直角,      又 角ADB=90度,     所以 三角形ABD相似于三角形ADC,     所以 BD/AD=AB/AC,     所以 AB/AC=BF/DF。
2023-07-24 06:19:371

如图,ab是圆o的直径,bd是圆o的弦,延长bd到c,使dc=bd

1、AB=AC 证明: ∵直径AB ∴∠ADB=90 ∴AD⊥BC ∵BD=CD ∴AD垂直平分BC ∴AB=AC 2、等边△ABC ∵直径AB ∴∠AFB=90 ∴AF⊥BF ∵AF=CF ∴BD垂直平分AC ∴AB=BC ∵AB=AC ∴AB=AC=BC ∴等边△ABC
2023-07-24 06:20:071

如图,ab是圆o的直径,点cd在圆o上,角b等于60°,则角adc

(1)∵∠ABC与∠ADC都是弧AC所对的圆周角, ∴∠ADC=∠B=60°. (2)∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠BAC=30°. ∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即 BA⊥AE. ∴AE是⊙O的切线.
2023-07-24 06:20:141

如图所示已知ab是圆o的直径mn分别是aobo的中点cm垂直abdn垂直ab

证明:连结OC、OD,如图, ∵AB是⊙O的直径,M,N分别是AO,BO的中点, ∴OM=ON, ∵CM⊥AB,DN⊥AB, ∴∠OMC=∠OND=90°, 在Rt△OMC和Rt△OND中, OM=ON OC=OD , ∴Rt△OMC≌Rt△OND(HL), ∴∠COM=∠DON, ∴ AC = BD .
2023-07-24 06:20:211

如图,AB是圆O的直径,弦CD⊥AB,F为CD延长线上一点,FB交圆O于点E,试探求BC与BE,BF之间的数量关系,为什么?

(1) AB垂直平分CD, 所以 BC=BD(2)角C=角BDC =角F+角DBF(3)角C=角DBF+角BDE ( 同一弧上对应圆上角相等)(4) 由(2)、(3)得 角F=角BDE(5) 加上一个公用角DBF,所以三角形BDE 相似与三角形BDF(6) 所以BD:BF=BE:BD 所以 BD^2=BE*BF(7) 又根据(1)所以 BC^2=BE*BF
2023-07-24 06:21:041

如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C (1)求证:CB∥MD;

证明:(1)∵∠1和∠D是弧CM的圆周角 ∴∠1=∠D ∵∠1=∠C ∴∠D=∠C ∴CB∥MD。 解:(2)∵∠C和∠M是弧BD的圆周角 ∴∠C=∠M ∵sinM= 2/3 ∴sinC= 2/3 连接AC,则 ∵AB是直径 ∴∠BCA=90° 易证∠C=∠BAC ∴sin∠BAC=2/3 ∴AB×sin∠BAC=BC AB=6即⊙O的直径为6。
2023-07-24 06:21:142

如图,AB是⊙O的直径,∠ABC=60°,点P是OB上一点

题目有问题,∠ABC=60°应改为∠BAC=60°1、证明:因为AB是⊙O的直径, 所以OC=OA 且∠OCA=∠BAC=60°. 由题意得:QP垂直于AB,则∠QPA=90° 所以∠Q=90°-60°=30° 因为CD是圆的切线 所以∠OCD=90° 则∠DCQ=90°-60°=30° 综上∠Q=∠DCQ=30°,CD=DQ 故:△CDQ是等腰三角形2、解:设圆半径为r,又△CDQ≌△COB 则0A=OB=OC=CD=DQ=r 因为△CDQ是等腰三角形,∠Q=∠DCQ=30° 所以CD=r*根号下3(余弦定理公式) 因为∠QPA=90°,∠Q=30° 所以AP=r*根号下3/2 OP=r*根号下3/2-r BP=AB-AP=2r- r*根号下3/2 BP:PO=(2r- r*根号下3/2):(r*根号下3/2-r) = (2- 根号下3 /2):( 根号下3 / 2 -1) (最后一步同时消去r)
2023-07-24 06:21:211

已知,如图,AB是圆O的直径,圆O过AC的中点D,DE切圆O于点D,交BC于点E,(1)求证DE垂直于

(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD∥BC,(3分)∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,(6分)∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴BC DC =DC CE ,∴BC=DC2 CE =42 3 =16 3 ,(9分)又∵OD=1 2 BC,∴OD=1 2 ×16 3 =8 3 ,即⊙O的半径为8 3 .(10分)
2023-07-24 06:21:292

如图:AB是圆O的直径,弦CD垂直于AB于点H,点C为弧AE的中点,AE与DC交于点F.(1)求证

连接AC,根据垂径定理,弧AC和弧AD相等,因为点C是弧AC的中点,所有弧AC和CE相等,所以弧CE和弧AD相等,所以角ACDD等于角CAE,所以AF=CF
2023-07-24 06:22:002

如图,ab是圆o的直径,bc是圆o的弦

)①根据垂径定理可知,CE=BE; ②根据直径所对的圆周角是直角可知,∠C=90°; ③根据三角形中位线定理可知,OE=12AC; ④根据垂径定理可知,CD^=BD^.
2023-07-24 06:22:161

数学 AB为的○o的直径,o为圆心,AB=20,DP与○o相切于点D,DP垂直PB,PD=8.求BC

你要求的是BD的长度吧!答案应该是4倍根号下5。按题中说明,AB的中点即圆心为O。则ODPB是一个直角梯形(OD垂直于DP,BP平行于OD,BP垂直于DP)。从B点到AD坐垂线,交OD于点X。则BX等于PD等于8,OX即为6,那么XD为4,在直角三角形BXD中,BX等于8,XD等于4,则BD等于4倍根号下5。
2023-07-24 06:22:244

已知 如图 ab是圆o的直径 c是圆o上一点,OD垂直BC于点D,过点C作圆O的切线,交OD得延长线于点E,连接BE。

证明:(1)连接OC,∵OD⊥BC,∴OC=OB,CD=BD(垂径定理),∴∠OCD=∠OBD,∵∠OCD+∠COE=∠OBD+∠BOE=90°,∴∠COE=∠BOE,在△OCE和△OBE中,∵OC=OB∠COE=∠BOEOE=OE,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,故可证得BE与⊙O相切.(2)过点D作DH⊥AB,连接AD并延长交BE于∵∠DOH=∠BOD,∠DHO=∠BDO=90°,∴△ODH∽△OBD,∴ODOB=OHOD=DHBD又∵sin∠ABC=23,OB=9,∴OD=6,∴OH=4,∴DH=OD2-OH2=25,又∵△ADH∽△AFB,∴AHAB=DHFB,1318=2√5FB,∴FB=36√513.同学您好,如果问题已解决,记得采纳哦~~~您的采纳是对我的肯定~祝您策马奔腾哦~请采纳。
2023-07-24 06:22:401

如图,AB是圆O的直径,C是弧BD的中点,CE垂直AB垂足为E,BD交CE于点F(1)求证CF=BF

证明:(1)连接AC,如图∵C是弧BD的中点∴∠BDC=∠DBC(1分)又∠BDC=∠BAC在三角形ABC中,∠ACB=90°,CE⊥AB∴∠BCE=∠BAC∠BCE=∠DBC(3分)∴CF=BF(4分)作CG⊥AD于点G,∵C是弧BD的中点∴∠CAG=∠BAC,即AC是∠BAD的角平分线.(5分)∴CE=CG,AE=AG(6分)在Rt△BCE与Rt△DCG中,CE=CG,CB=CD∴Rt△BCE≌Rt△DCG(HL)∴BE=DG(7分)∴AE=AB-BE=AG=AD+DG即6-BE=2+DG∴2BE=4,即BE=2(8分)又△BCE∽△BAC∴BC2=BEu2022AB=12(9分)BC=±2根号3(舍去负值)∴BC=2倍根号3
2023-07-24 06:22:512

如图,AB是圆O的直径,AC为弦,D是弧BC的中点,过点D作EF垂直于AC的延长线于E,交AB的延

你想问什么吧
2023-07-24 06:23:092

已知AB是园O的直径, C,D是圆O上的不同两点,∠COB=60°,向量CD=x向量OA+2x向量BC,则x的值是

建立坐标系如图,则三个点的坐标分别为A(-r,0),B(r,0),C(r/2,(根号3)*r/2),设D的坐标为(m,n)则建立方程x*(-r,0)+2x*(-r/2,(根号3)*r/2)=(m-r/2,n-(根号3)*r/2),计算得m-r/2=-2xr,n-(根号3)*r/2=(根号3)xr,可用x表示m,n,由于m*m+n*n=r*r(D 在圆上),计算得x=-1/7或者0.当x=0时,C与D重合,因此x=-1/7
2023-07-24 06:23:221

如图所示,AB是⊙O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.

因CD为半圆上三等分点,所以CD平行于AB,∠A=∠COB,所以AD∥OC,.由于CE⊥CE所以1.CD⊥OC所以CE为圆切线,2由于4条线两两平行,所以是平行四边形
2023-07-24 06:23:362

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆O的切线(2)P在DE的中点证明:延长BC,AD相交于点F∵OA=OB,OC∥AF∴BC=CF∵DE∥BF∴DP/FC=AP/AC=PE/BC∵FC=BC∴DP=PE
2023-07-24 06:24:112

如图1,AB是圆O的直径,点EC是圆O上的两点,AC平分BAE,AD⊥CD,BG⊥CD 求证:1.

1,连接BE∵AB是⊙O的直径,E在⊙O上∴∠AEB=∠DEB=90°∵AD⊥CD,BG⊥CD∴∠D=∠G=90°∴∠DEB=∠D=∠G=90°∴四边形DEBG是矩形∴DE=GB2,连接BC、EC∵AC平分∠BAE∴∠EAC=∠BAC∴⌒EC=⌒BC∴EC=BC∵DE=GB,∠D=∠G=90°∴⊿CDE≌⊿CGB∴DC=CG3,作CF⊥AB于F∵AC平分∠BAE,AD⊥CD∴AD=AF,CF=DC∵DC=CG∴CF=CG∵BC是Rt⊿CFB、Rt⊿CGB的公共边∴Rt⊿CFB≌Rt⊿CGB∴BF=BG∵AF+BF=AB∴AD+BG=AB
2023-07-24 06:24:171

AB是圆O的直径,C是圆O上一点,过点C作圆O的切线CD,过A作CD的垂线,垂足是点M若AB=6A,AM=4,求AC的长

连接OC,延长AB交CD于F.则△AFM∽△OFC则 OF/AF=OC/AM设BF=x则 (6+x)/(3+x)=4/3解之得 x=6在Rt△OCF中,应用勾股定理得 CF=6√2在RT△AFM中,应用勾股定理得 MF=8√2所以CM=2√2在Rt△AMC中,应用勾股定理得 AC=2√6
2023-07-24 06:24:251

圆O的直径AB为10cm,弦AC为6cm,角ACB的平分线交圆O于点D,求CD

2023-07-24 06:24:551

如图,已知a b是圆o的直径,a c是弦,d是弧ac的中点,d e丄ab于e,交ac于f.连接bd

如图,AB是圆O的直径,AC是圆O的弦,D是弧AC的中点,DE垂直AB于点E,交AC于F,DB交AC于G,求证AF等于FG。证明;连AD,由∠ABD夹弧AD,∠DAC夹弧CD,弧AD=CD,∴∠ABD=∠DAC又∠ADE+∠DAE=90º,∠ABD+∠DAE=90º,∴∠ADE=∠ABD,得∠ADE=∠DAC,∴AF=DF∵∠ADE+∠BDE=90º,∠DAC+∠AGD=90º,∴∠BDE=∠AGD,∴DF=FG得AF=FG。
2023-07-24 06:25:201

ab是o的直径,cd是圆上两点 角abd等于40度

角abc等于40度 因为AB为直径 所以角ACB=90度 所以角BAC=50度 所以角BAD=25度 角BOD=50度 因为OB=OD 所以角abd=角OBD=(180-50)/2=65度
2023-07-24 06:25:471

如图所示,已知AB是圆O的直径,CD是弦,AE⊥CD于E,BF⊥CD于F

你要求证什么了~!?
2023-07-24 06:25:572

如图已知AB是圆O的直径,圆O1圆O2直径分别是OA,OB,圆O3与圆O圆O1圆O2均相切,则圆O3与圆O的半径之比为

图在哪
2023-07-24 06:26:133

如图,AB是圆O的直径,PA是圆O的切线,点C是圆O上

角PAC等于角ABC(弦切角定理)因为CB平行于PO所以角ABC=角AOP所以角PAC=角AOP角ODA=180-角AOP-角DAO=180-角PAC-角DAO=90度再用全等三角形就可以证明三角形PAO全等三角形PCO所以是pc与圆是相切的关系然后你列方程设pc是xx是根号下2+2倍根号65htp://zhidao.baidu.com/question/193273117.html
2023-07-24 06:26:221

如图AB是圆O的直径,C是BA延长线上的一点,CD与圆O相切于点D连接OD

图呢
2023-07-24 06:26:291

如图,AB为圆O的直径,C是圆O上的一点,D在AB的延长线上,∠DCB=∠A,求证:CD是圆O的切线

证明:因为AB是直径所以∠ACB=90°所以∠ACO+∠OCB=90°因为OA=OC所以∠A=∠ACO所以∠A+∠OCB=90°因为∠A=∠DCB,所以∠DCB+∠OCB=90°即∠OCD=90°因为C在圆上所以CD是圆的切线
2023-07-24 06:26:481

判断1111111是质数还是合数

合数,1111111=239×4649
2023-07-24 06:21:392

电脑密码提示是111111是什么意思?

可能是帮助提示密码记忆的,也可能是随便写的,自己的电脑自己不知道,那就不是你电码,注意可能出现法律责任。
2023-07-24 06:21:494

1111111打一成语

独一无二。
2023-07-24 06:22:074

秦九韶——海伦公式的证明

海伦公式 海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王 希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的著作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表(未查证)。 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注:"Metrica"(《度量论》)手抄本中用s作为半周长,所以 S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。—————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC=1/2*ab*√(1-cos^2 C)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角型ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2): 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px 2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4[c 2a 2-(c%| 2+a 2-b 2/2) 2] 当P=1时,△ 2=q, S△=√{1/4[c 2a 2-(c 2+a 2-b 2/2) 2]} 因式分解得 1/16[(c+a) 2-b 2][b62-(c-a) 2] =1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c) =p(p-a)(p-b)(p-c)由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c) 这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。
2023-07-24 06:21:251

二进制1111111(7个1)转换为十进制等于多少?

0+1+2+4+8+16+32+64=127
2023-07-24 06:21:246

海伦公式是什么

海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=根号{s(s-a)(s-b)(s-c)}而公式里的s:s={a+b+c}{2}由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。[编辑]证明与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为cos(C) = frac{a^2+b^2-c^2}{2ab}从而有sin(C) = sqrt{1-cos^2(C)} = frac{ sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab}因此三角形的面积S为S = frac{1}{2}ab sin(C)= frac{1}{4}sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2}= sqrt{s(s-a)(s-b)(s-c)}最后的等号部分可用因式分解予以导出。[编辑]外部连结香港科技大学数学系:数学数据库:阿基米德的数学成就和研究方法(http://db.math.ust.hk/articles/archimedes/c_archimedes.htm)取自"http://nvjiang.movieclub.com.cn/wiki/%E6%B5%B7%E4%BC%A6%E5%85%AC%E5%BC%8F"
2023-07-24 06:21:181