汉邦问答 / 问答 / 问答详情

中考数学复习知识点

2023-07-17 08:36:54
TAG: 数学 中考
kikcik

初中代数的教学要求①是:

1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。

2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。

3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元二次方程的根的判别式。能够分析等量关系列出方程或方程组解应用题。

使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不等式组,并把它们的解集在数轴上表示出来。

4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图象,会用描点法画出反比例函数、二次函数的图象。

5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一些简单的实际问题。

6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法。

7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概念、法则、性质进行简单的推理,发展逻辑思维能力。

8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾转化的观点。同时,利用有关的代数史料和社会主义建设成就,对学生进

行思想教育。

教学内容①和具体要求如下。

(一)有理数

l·有理数的概念

有理数。数轴。相反数。数的绝对值。有理数大小的比较。

具体要求:

(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。

(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。

2。有理数的运算

有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有理数的乘方。有理数的混合运算。

科学记数法。近似数与有效数字。平方表与立方表。

具体要求:

(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。

(2)了解倒数概念,会求有理数的倒数。

(3)掌握大于10的有理数的科学记数法。

(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数;会查平方表与立方表。

(5)了解有理数的加法与减法、乘法与除法可以相互转化。

(二)整式的加减

代数式。代数式的值。整式。

单项式。多项式。合并同类项。

去括号与添括号。数与整式相乘。整式的加减法。

具体要求:

(1)掌握用字母表示有理数,了解用字母表示数是数学的一

大进步。

(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。

(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。

(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。

(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。

(三)一元一次方程

等式。等式的基本性质。方程和方程的解。解方程。

一元一次方程及其解法。

一元一次方程的应用。

具体要求:

(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方程的解。

(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。

(3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。

(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。

(四)二元一次方程组

二元一次方程及其解集。方程组和它的解。解方程组。

用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。

一次方程组的应用。

具体要求:

(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。

(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。

(3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。

(4)能够列出二元、三元一次方程组解简单的应用题。

(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。

(五)一元一次不等式和一元一次不等式组

I·一元一次不等式

不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。

具体要求:

(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。

(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。

(3)会用不等式的基本性质和移项法则解一元一次不等式。

2·一元一次不等式组

一元一次不等式组及其解法。

具体要求:

(1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。

(2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

(六)整式的乘除

l·整式的乘法

同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:

(a十b)(a一b)=a2-b2

(a±b)2=a2±2ab+b2

(a±b)(a2±ab+ b2)=a3±b3

具体要求:

(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。

(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。

(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。

(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。

2·整式的除法

同底数幂的除法。单项式除以单项式。多项式除以单项式。

具体要求:

(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。

(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。

(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。

(七)因式分解

因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解的一般步骤。

具体要求:

(1)了解因式分解的意义及其与整式乘法的区别和联系,了

解因式分解的一般步骤。

(2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二次项系数与常数项的积为绝对值不大于60的整系数二次三项式)这四种分解因式的基本方法,会用这些方法进行团式分解。

(八)分式

1.分式

分式。分式的基本性质。约分。最简分式。

分式的乘除法。分式的乘方。

同分母的分式加减法。通分。异分母的分式加减法。

具体要求:

(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。

(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。

2.零指数与负整数指数

零指数。负整数指数。整数指数幂的运算。

具体要求:

(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。

(2)会用科学记数法表示数。

(九)可他为一元一次方程的公式方程

含有字母系数的一元一次方程。公式变形。

分式方程。增根。可化为一元一次方程的分式方程的解法与

应用。

具体要求:

(1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增根。

(3)能够列出可化为一元一次方程的分式方程解简单的应用题。

(十)数的开方

1.平方根与立方根

平方根。算术平方根。平方根表。

立方根。立方根表。

具体要求:

(1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根和立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根和算术平方根,用立方运算求某些数的立方根。

(3)会查表求平方根和立方根(有条件的学校可使用计算器)。

2.实数

无理数。实数。

具体要求:

( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义,以及实数与数轴上的点—一对应。

(2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。

(3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。

(十一)二次根式

二次根式。积与商的方根的运算性质。

二次根式的性质。

最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式的除法。分母有理化。

具体要求:

(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

(2)掌握积与商的方根的运算性质

会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并且不需要讨论).

(3)掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算。

(4)会将分母中含有一个或两个二次根式的式于进行分母有理化。

*(5)掌握二次根式的性质

会利用它化简二次根式

(十二)一元二次方程

1.一元二次方程

一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。

一元二次方程的根的判别式。

*①一元二次方程根与系数的关系。

二次三项式的因式分解(公式法)。

一元二次方程的应用。

具体要求:

(1)了解一元二次方程的概念,会用直接开平方法解形如

(x-a)2=b(b≥0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一元二次方程的四种解法求方程的根。

(2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。

*(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。

(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

(5)能够列出一元二次方程解应用题。

(6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。

2.可化为一元二次方程的方程

可化为一元二次方程的分式方程。

* 可化为一元一次、一元二次方程的无理方程。

具体要求:

(1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分母或换元法求分式方程的解,并会验根。

(2)能够列出可化为一元二次方程的分式方程解应用题。

*(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含有未知数的二次根式不超过两个)的解法,会用两边平方或换元法求无理方程的解,并会验根。

(4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可以转化的认识。

3.简单的二元二次方程组

二元二次方程。二元二次方程组。

由一个二元一次方程和一个二元二次方程组成的方程组的解法。

* 由一个二元二次方程和一个可以分解为两个二元一次方程

的方程组成的方程组的解法。

具体要求:

(l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。

*(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。

(3)通过解简单的二元二次方程组,使学生进一步理解“.消元”、“降次”的数学方法,获得对事物可以转化的进一步认识。

(十三)函数及其图象

1·函数

平面直角坐标系。常量。变量。函数及其表示法。

具体要求:

(l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间—一对应。

(2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与函数。

(3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。

(4)了解函数的三种表示法,会用描点法画出函数的图象。

(5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。

2·正比例函数和反比例函数

正比例函数及其图象。反比例函数及其图象。

具体要求:

(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。

(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。

(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。

3.一次函数的图象和性质

一次函数。一次函数的图象和性质。

△①二元一次方程组的图象解法。

具体要求:

(1)理解一次函数的概念,能够根据实际问题中的条件,确

定一次函数的解析式。

(2)理解一次函数的性质,会画出它的图象。

△(3)会用图象法求二元一次方程组的近似解。

(4)会用待定系数法求一次函数的解析式。

4·二次函数的图象

二次函数。抛物线的顶点、对称轴和开口方向。

西一元二次方程的图象解法。

具体要求:

(l)理解二次函数和抛物线的有关概念,会用描点法画出二

次函数的图象,会用公式(。配方法)确定抛物线的顶点和对称

轴。

△(2)会用图象法求一元二次方程的近似解。

*(3)会用待定系数法由已知图象上三个点的坐标求二次函

数的解析式。

(十四)统计初步

总体和样本。众数。中位数。平均数。方差与标准差。方差的简化计算。频率分布。

实习作业。

具体要求:

(1)了解总体、个体、样本、样本容量等概念,能够指出研究对象的总体、个体和样本。

(2)理解众数、中位数的意义,掌握它们的求法。

(3)理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式;理解加权平均数的概念,掌握它的计算公式;会用样本平均数估计总体平均数。

(4)了解样本方差、总体方差、样本标准差的意义,会计算(可使用计算器)样本方差和样本标准差,会根据同类问题的两组样本数据的方差或样本标准差比较这两组样本数据的波动情况。

(5)理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

△(6)会用科学计算器求样本平均数与标准差。

(7)通过实习作业,使学生初步掌握搜集、整理和分析数据的方法,培养解决实际问题的能力。

(8)通过统计初步的教学,使学生了解用样本估计总体的数理统计的基本思想,并培养学生用数学的意识,踏实细致的作风和实事求是的科学态度。

初中几何是在小学数学中几何初步知识的基础上,使学生进

一步学习基本的平面几何图形知识,向他们直观地介绍一些空间

几何图形知识。初中几何将逻辑性与直观性相结合,通过各种图

形的概念、性质、作(画)图及运算等方面的教学,发展学生的

逻辑思维能力、空间观念和运算能力,并使他们初步获得研究几

何图形的基本方法。

几 何

初中几何的教学要求是:

1.使学生理解有关相交线、平行线、三角形、四边形、圆,以及全等三角形、相似三角形的概念和性质,掌握用这些概念和性质对简单图形进行论证和计算的方法。了解关于轴对称、中心对称的概念和性质。理解锐角三角函数的意义,会用锐角三角函数和勾股定理解直角三角形。

2.使学生会用直尺、圆规、刻度尺、三角尺、量角器等工具作和画几何图形。

3.使学生通过具体模型,了解空间的直线、平面的平行与垂直关系,并会用展开图和面积公式计算圆柱和圆锥的侧面积和全面积。

4·逐步培养学生观察、比较、分析、综合、抽象、概括的能力,逐步使学生掌握简单的推理方法,从而提高学生的逻辑思维能力。

5.通过辨认图形、画图和论证的教学,进一步培养学生的空间观念。

6.通过揭示几何知识来源于实践又应用于实践的关系,以及几何概念、性质之间的联系和图形的运动、变化,对学生进行辩证唯物主义的教育。利用有关的几何史料和社会主义建设成就,对学生进行思想教育。通过论证与画图的教学,逐步培养学生严谨的科学态度,并使他们获得美的感受。

教学内容和具体要求如下:

(一)线段、角

1·几何图形

几何体。几何图形。点。直线。平面。

具体要求:

(1)通过具体模型(如长方体)了解从物体外形抽象出来的几何体、平面、直线和点等。

(2)了解几何图形的有关概念。了解几何的研究对象。

(3)通过几何史料的介绍,对学生进行几何知识来源于实践的教育和爱国主义教育,使学生了解学习几何的必要性,从而激发他们学习几何的热情。

2.线段

两点确定一条直线。相交线。

线段。射线。线段大小的比较。线段的和与差。线段的中点。

具体要求:

(1)掌握两点确定一条直线的性质。了解两条相交直线确定一个交点。

(2)了解直线、线段和射线等概念的区别。

(3)理解线段的和与差及线段的中点等概念,会比较线段的大小。

(4)理解两点间的距离的概念,会度量两点间的距离。

3.角

角。角的度量。角的平分线。 小于平角的角的分类。

具体要求:

(1)理解角的概念。掌握角的平分线的概念,会比较角的大小。会用量角器画一个角等于已知角。

(2)掌握度、分、秒的换算。会计算角度的和、差、倍、分。

(3)理解周角、平角、直角、锐角、钝角的概念,并会进行有关的计算。

(4)掌握角的平分线的概念。会画角的平分线。

(5)掌握几何图形的符号表示法。会根据几何语句准确、整洁地画出相应的图形,会用几何语句描述简单的几何图形。

(二)相交、平行

l·相交线

对顶角。邻角、补角。

垂线。点到直线的距离。

同位角。内错角。同旁内角。

具体要求:

(1)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。

(2)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用它进行推理和计算。

(3)掌握垂线、垂线段等概念;会用三角尺或量角器过一点画一条直线的垂线。了解斜线、斜线段等概念,了解垂线段最短的性质。

(4)掌握点到直线的距离的概念,并会度量点到直线的距离。

(5)会识别同位角、内错角和同旁内角。

2.平行线 平行线。

平行线的性质及判定。

具体要求:

(1)了解平行线的概念及平行线的基本性质。会用平行的传递性进行推理。

(2)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算;会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。

(3)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(4)理解学过的描述图形形状和位置关系的语句,并会用这些语句描述简单的图形和根据语句画图。

3.空间直线、平面的位置关系

直线与直线,直线与平面,平面与平面的位置关系。

具体要求:

通过长方体的棱、对角线和各面之间的位置关系,了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直关系。

4.命题、定义、公理、定理

命题。定义。公理。定理。

定理的证明。

具体要求:

(1)了解命题的概念,会区分命题的条件(题设)和结论(题断),会把命题改写成“如果…"··,那么”"…”的形式。

(2)了解定义、公理、定理的概念。

(3)了解证明的必要性和推理过程中要步步有据,了解综合法证明的格式。 (三)三角形

1.三角形

三角形。三角形的角平分线、中线、高。三角形三边间的不等关系。三角形的内角和。三角形的分类。

具体要求:

(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念,会画出任意三角形的角平分线、中线和高。

(2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否构成三角形。

(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。

(4)会按角的大小和边长的关系对三角形进行分类。

2.全等三角形

全等形。全等三角形及其性质。三角形全等的判定。

具体要求:

(1)了解全等形、全等三角形的概念和性质,能够辨认全等

形中的对应元素。

(2)能够灵活运用“边、角、边”,“角、边、角”,“角、角、边”,“边、边、边”等来判定三角形全等;会证明“角、角、边”定理。了解三角形的稳定性。

(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。 应该就这么多了吧。

二元二次方程的解法

  1、代入法:由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。   2、因式分解法:在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。   3、配方法:将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。   4、韦达定理法:通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。   5、消常数项法:当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
2023-07-16 22:36:431

二元二次方程怎么解

二元二次方程解法:1、代入法解二元一次方程组的步骤:①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确。2、加减法解二元一次方程组的步骤:①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正。扩展资料:特殊情况求解方式:1、一个一次方程的二元二次方程组:由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。2、不含一次项:不含有一次项的二元二次方程。通常解法为:尝试将常数项通过加减消元消去。3、二次项系数成比例:通常解法为:通过加减消元消除二次项。4、对称方程组:将方程组中各方程的未知数互换后与原方程一样,则此方程组为对称方程组。解的特性:两个未知数可以互换。5、轮换方程组:将方程组中各方程的未知数互换后,各方程变化,但是整个方程组不变。一般来说,将两式相减即可因式分解。
2023-07-16 22:36:531

二元二次方程解法

  1、二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。   2、二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。   3、二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程。其一般式为ax2+bxy+cy2+dx+ey+f=0。(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零)。
2023-07-16 22:37:191

二元二次方程组的解法

1、代入消元法将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。这种解方程组的方法叫做代入消元法,简称代入法。2、加减消元法 当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。以下举例几种比较常见的情况:(1)有两组相等的实数解。(2)有两组不相等的实数解。(3)没有实数解。解:将②代入①,整理得二次方程③的判别式。(4)当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。(5)当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。(6)当a>2时,方程③没有实数根,因而原方程没有实数解。
2023-07-16 22:37:291

二元二次方程的解法?

1、降次法:所谓降次法,就是降低未知数的次数,从而达到方程组的化简。2、消元法:其实在第一类有一个一次方程的方程组中已经尝试过消元法,而消元路径一般有代入消元和加减消元;首先,观察原方程的形式,判定先采取将次法还是消元法;其次,通过该方法,通过变形降低原方程的难度;最后,如果能够用六种特殊类型的的方程来解,那很好,如果不行再进行降次或者消元。有时候,降次法和消元法没有明显界限,需要联手。扩展资料:二元二次方程(组)是由一个二元一次方程和一个二元二次方程组成的方程(组),一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中。从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。
2023-07-16 22:37:451

二元二次方程的解法?

我们知道,二元一次方程表示的图形是直线,但一些二元二次方程和无理方程在一定的条件下,它也可以表示一条直线或两条直线,其解法的基本思想是将方程化归为二元一次方程,但其方法较为灵活,故笔者将通过一些实例来提供解决此类问题的一些常见解法,以助同学们一臂之力。1、直接分解法例1、证明:方程x2-xy-6y2+3x-9y=0表示两相交直线。分析:只需将方程左边分解成两个二元一次方程即可。证明:原方程可化为(x-3y)(x+2y)+3(x-3y)=0(x-3y)(x+2y+3)=0∴x-3y=0 或x+2y+3=0∴方程表示两条直线又∵它们的斜率不相等,∴两直线相交。2、配方法例2、当k为何值时,方程x2-y2+2kx-4y+3k=0表示直线。分析 :对x,y 分别进行配方,把方程化为(x-m)2-(y-n)2=c的形式,令c=0即可表示直线。解:方程可化为 (x+k)2-(y+2)2=k2-3k-4令k2-3k-4=0,得k=4或k=-1即当k=4或-1 时,方程表示直线。3、待定系数法例3、若方程x2-2xy-3y2-kx+(k+6)y-2=0表示直线,试确定k 的值。分析 :方程中的二次项可分解为(x-3y)(x+y),所以,方程欲表示直线,方程左边只需分解成(x-3y+m)(x+y+n)=0即(x-3y)(x+y)+m(x+y)+n(x-3y)+mn=0(x-3y)(x+y)+(m+n)x+(m-3n)y+mn=0m+n=-km-3n=k+6mn=-2 m=2n=-1k=1 m=1n=-2k=-1 ∴∴ k=±1.4、判别式法例4、是否存在实数k,使方程x2+2kxy-3y2+4x+(k+3)y+4k=0表示直线,若能,试确定k的值;若不能,请说明理由。分析:将方程视作x的一元二次方程,即Ax2+Bx+C=0,欲使方程表示直线,只需ㄓx是完全平方式,请注意,它是关于y的二次三项式,而要使y的二次三项式为完全平方,只需ㄓy=0即可。解:方程可化为x2+(2ky+4)x-3y2+(k+3)y+4k=0∴ㄓx=(2ky+4)2-4[-3y2+(k+3)y+4k]=(4k2+12) y 2+12(k-1)y+16(1-k)为完全平方式∴ㄓy=0即[12(k-1)]2-4(4k2+12)×16(1-k)=0(k-1)(16k2+9k+39)=0,∴k=1∴存在k=1使得方程表示直线。5、利用根分布例5、 仅表示一条直线,求此时k的取值范围。分析:将方程视作 的一元二次方程,则方程表示一条直线的充要条件是关于 的一元二次方程仅有一个非负实数根。解:令 =t(t≥0)方程可化为t2-3t+k+3=0 (t≥0) (*)∴方程(*)在 上有且仅有一个非负实根。ㄓ=0 ∴ 或k +3<0∴ .说明:方程(*)在 上有且仅有一个非负实根的问题,也可用数形结合法来解,这里不再赘述。
2023-07-16 22:37:562

怎样解二元二次方程

2x + y = 5 是几元几次方程?它的解是什么?有几个解?⑴⑵x + y = 1 ,x – 2xy + y + x –y – 6 = 02222又是几元几次方程?下列各组x,y的值是不是二元二次方程x + 2xy +y – 4 = 0的解?22⑴x=1,y=1⑵x=-1,y=3⑶x=3,y=-1⑷x=5,y=-8解方程组x + y = 1 ,22y = 1 - x⑴⑵强调:由一个二元二次方程和一个二元一次方程组成的方程组可以用代入消元法来解。注意:解得一个未知数的值后,在求另一个未知数的值时,要把已求得的未知数的值代入方程组中的一次方程。解方程组y = x +5,x + y =3722解方程组x-2y+x+3y-10=0,22x-y-1=0⑴⑵解方程组x-6x-2y+11=0,22x-y+1=0解方程组y+2x=1,xy+1=0⑴⑵解:由⑴,得 y =1- 2x 。⑶把⑶代入⑵,得 x(1-2x)+1= 0整理,得2x – x –1 = 02解得x =1,x = -12把x = 1代入⑶,得1y = - 1;1把 x =- -代入⑶,得2y = 22∴原方程组的解是x =1,1y = -12x = -,1y =22本题是否另有解法?⑴x -2xy-3y =5 ,22x + y =1⑵  本篇只是预览,内容不完整。
2023-07-16 22:38:063

怎么解二元二次方程

二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。   (1)有两组相等的实数解。   (2)有两组不相等的实数解;   (3)没有实数解。解:将②代入①,整理得二次方程③的判别式 二元一次方程组(3张)  (4)当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。   (5)当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。   (6)当a>2时,方程③没有实数根,因而原方程没有实数解。解:2x^2+y^2+3xy+6x+2y+12=0…①,   且x^2+4y^2+4xy+x+y+15=0…②.   提示: 解方程的基本思想是消元与降次。仅仅就其消元而言,任给的①,②都难以直接用一个变量表示另一个变量(即用关于x的代数式表示y,或y的代数式用表示x),其症结在于二元二次项3xy,4xy,因此,首先需消去二元二次项。②*3-①*4,得到一个新的方程。再运用配方法分别将其x,y配方为如下形式:a(x+i)^2+b(y+j)^2+c=0,就可实现了用一个变量表示另一个变量,但其涉及到开方,且变为无理方程作解,比较复杂。就其降次而言,可运用因式分解法(包括十字相乘法的推广:叉乘法及叉阵),难度较大。也可以运用函数的解析法。在此,谨作点拨。总的而言,一般有三种普遍的方法:代数方程解法,因式分解法,运用函数。
2023-07-16 22:38:161

二元二次方程的解法公式法

其一般式为ax2+bxy+cy2+dx+ey+f=0。(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零)。二元二次方程由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。
2023-07-16 22:38:251

2元2次方程的解法

先消元,再降次。具体情况需要具体分析
2023-07-16 22:38:382

二元二次方程式应该怎样解答

二元二次方程组即至少有一个二元二次方程的方程组,另一个是不高于二次的二元整式方程   二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。一般解法  二元二次方程组的一般解法是代入法,在(1)中现将x看作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有代数解。
2023-07-16 22:39:061

2元2次方程的解法

【第一类型二元二次方程组的解法】可用代入法或用韦达定理的方法解。这类方程组的解题思路均属于先消元后降次的解法。具体解法以及例子:(点击以下网页)http://210.77.218.4:8080/RESOURCE/CZ/CZSX/SXBL/SXTS1046/3487_SR.HTM【第二类型二元二次方程组的解法】第二类型包含有六种基本解法,即一个配方法、两个分解法、三个消去法、一个配方法是指两个方程通过加或减后配成完全平方公式。两个分解法是指方程组中一个方程可以因式分解或两个方程均可因式分解的。三个消去法是指可以消去二次项的或可以消去一个未知数的或可以消去常数项,有这六种方法为基础,就可逐步学会分析一个题,确定具体解法是先消元还是先降次,然后就可顺利的解好一个题。具体解法以及例子:(点击以下网页)http://210.77.218.4:8080/RESOURCE/CZ/CZSX/SXBL/SXTS1046/3488_SR.HTM
2023-07-16 22:39:191

二元二次方程的解法

方程组吧?
2023-07-16 22:39:355

二元二次方程组的解法有哪两种解法

加减法代入法
2023-07-16 22:39:563

高级二元二次方程组的解法

对一般的二元二次方程组,通常先消去其中一个平方项,再用代入消元法得到一个4次方程,用求根公式解得其4个根,从而得到最多4组解。比如:a1x^2+b1xy+c1y^2+d1x+e1y+f1=0 1)a2x^2+b2xy+c2y^2+d2x+e2y+f2=0 2)将1)*c2-2)*c1, 消去 y^2,得: Ax^2+Bxy+Dx+Ey+F=0 即得: y=-(Ax^2+Dx+F)/(Bx+E) 3)将3)式代入1),去分母,得到一个关于x的4次方程,可用费拉里求根公式解得其4个根x。从而代入3)式可得y。
2023-07-16 22:40:251

二元二次方程组怎么解

先要就行消元,然后再进行一元求解
2023-07-16 22:40:372

二元二次方程的解法

先按照一元一次方程的方法解,再开方,首先要消去一个未知{X+y=2,x*+y*=2带入法X=2-y(2-y)*+y*=2求出y*=1,开方求y得1.将解带入第一个方程求X=1
2023-07-16 22:40:481

x+y=8 x的平方+16=y的平方 求这个二元二次方程的详细解法

2023-07-16 22:40:581

二元二次方程怎么解啊?

先消元 然后就是元二次方程 解开一元二次方程 然后开始消的元也就算出来了
2023-07-16 22:41:141

二元二次方程怎么解啊

二元二次方程的一般解法,配方法和十字交叉法最常用,楼上是直接十字交叉法得到了。其实直接配方得也是一样的,(X-Y/2)^2-9/4Y^2=0,移向,两边同时开平方有正负两种情况,结果是一样的
2023-07-16 22:41:361

二元二次方程的解法

2bc等于40,b的平方加c的平方等于41,所以(b+c)的平方等于81
2023-07-16 22:41:462

二元二次方程组解法

x+y=8 x&sup8;+y&sup8;=88 (x+y)&sup8;=x&sup8;+y&sup8;+8xy 89=88+8xy 8xy=88 (x-y)&sup8;=x&sup8;+y&sup8;-8xy=88-88=8 (x-y)&sup8;=8 ① 当 x-y=8时 x=8,y=8 ② 当 x-y=-8时 x...
2023-07-16 22:42:043

二元二次方程组的解法

根据题意,可知x,y都不等于0x~4-bx~2-a~2=0下面把x~2当成一个大于0的未知数z,(z-b/2)~2=a~2+b~2/4,求出z,解出x,带入再解出y
2023-07-16 22:42:142

请人帮忙讲解一下关于二元二次方程组的解法

.解二元二次方程组的基本思想和方法解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。“二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程
2023-07-16 22:42:211

求二元二次方程组解法

x=10-y 代人得(10-y)y=16 即10y-y^2=16y^2-10y+16=0即(y-2)(y-8)=0得y1=2;y2=8
2023-07-16 22:42:294

二元二次方程解法

3/2,1/2看一眼就行了,相乘为四分之三,可想乘数可能是二分之几,就出来啦解法:a=2-ba*b=(2-b)*b=2b-b^2=3/4也就是b^2-2b+3/4=0,一元二次方程求根公式有:b=1/2,则a=3/2或b=3/2,则a=1/2因a>b,则b=1/2,a=3/2
2023-07-16 22:42:464

二元二次方程基本公式

二元二次方程基本公式为ax2+bxy+cy2+dx+ey+f=0。二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零。二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。1、有两组相等的实数解。2、有两组不相等的实数解;3、没有实数解。解:将②代入①,整理得二次方程③的判别式。4、当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。5、当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。6、当a>2时,方程③没有实数根,因而原方程没有实数解。“代入消元法”和“加减消元法”解方程组:代入消元法是将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。这种解方程组的方法叫做代入消元法,简称代入法。加减消元法是当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
2023-07-16 22:43:081

不等式解法口诀

不等式的解法口诀有如有分母,去分母;如有括号,去括号。常数都往右边挪,未知都往左边靠。(注)如有同类须合并,化为标准再求解。 一、一元一次不等式的解法 如有分母,去分母; 如有括号,去括号。 常数都往右边挪, 未知都往左边靠。(注)如有同类须合并, 化为标准再求解。 二、二元二次方程组一般解法 未知项,成比例, 消元降次都可以。 方程一边等于零, 因式分解再降次。 方程缺了一次项, 常数消去再求解。 三、取对数口诀 已知真数求对数, 首数尾数分别求, 根据位数定首数, 再用数表查尾数。 四、取反对数口诀 已知对数求真数, 定数定位两步走, 先用数表查数字, 再用首数定位数。 五、确定解集 1.比两个值都大,就比大的还大(同大取大); 2.比两个值都小,就比小的还小(同小取小); 3.比大的大,比小的小,无解(大大小小取不了); 4.比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上不等式组成的不等式组,可以类推。
2023-07-16 22:43:171

含参数的二元二次方程的解法

含参数的二元二次方程的解法登陆一下二元二次方程相关网站咨询一下。
2023-07-16 22:43:3713

如何计算二元二次方程组

用换元法,把一次的设成一个字母当作常数来运算,把二次的设成该字母的一次再运算.最后在把展开继续算一次.
2023-07-16 22:44:051

二元二次方程组的解法 ay-2xy-y^2=0 ax-2xy-x^2=0 a为常数,求x=?y=? 求详细解法

答案:x=y=a=0两式相等得y+x=a(3),原式可化为a-2x-y=0 (1)、a-2y-x=0 (2)(3)与(1)解得:x=0 y=a(3)与 (2) 解得:y=0 x=a所以x=y=a=0
2023-07-16 22:44:142

二元方程组的解法

二元方程组的解法如下:1.代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。2.因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。3.配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。4.韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。5.消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。在初等代数中,通常把由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组,叫做二元二次方程组。二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组,由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
2023-07-16 22:44:231

二元二次方程怎么求根?

一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a一元二次方程必须同时满足三个条件:1、这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。2、有且只含有一个未知数;3、未知数项的最高次数为2。扩展资料一元二次方程解法:一、直接开平方法形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。二、配方法1、二次项系数化为12、移项,左边为二次项和一次项,右边为常数项。3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。4、利用直接开平方法求出方程的解。三、公式法现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。四、因式分解法如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
2023-07-16 22:46:191

求一元二次分式方程以及二元二次方程组的解法

楼上的数学难道是体育老师教的么??X^2-1/2X+1/18=0 这货叫分式方程??我还没见过分式方程化成整式的时候乘的是一个常数的....
2023-07-16 22:46:302

不等式解法口诀

您好。不等式解集的几种情况  两大从大,  两小从小,  一大一小就相连,  不能相连是空集。  取对数口诀  已知真数求对数,  首数尾数分别求,  根据位数定首数,  再用数表查尾数。  取反对数口诀  已知对数求真数,  定数定位两步走,  先用数表查数字,  再用首数定位数。一元一次不等式的解法  如有分母,去分母;  如有括号,去括号。  常数都往右边挪,  未知都往左边靠。(注)如有同类须合并,  化为标准再求解。  注:未知指未知数。  一元一次不等式的四种情况  一元一次不等式组的四种情况  大大取较大,  小小取较小,  小大,大小中间找,  小小,大大解不了。二元二次方程组一般解法  未知项,成比例,  消元降次都可以。  方程一边等于零,  因式分解再降次。  方程缺了一次项,  常数消去再求解。希望能够帮到您,谢谢,望采纳。
2023-07-16 22:46:402

有分数的二元二次方程组的解法

解:把第1个方程代入第2个方程得:(a05+b05)(25/a05-4/b05)=36 展开来,得:-4a05/b05+25b05/a05=15 设a05/b05=t,则b05/a05=1/t 则-4t+25/t=15 解得t=5/4或-5(不合题意,舍去) ∴a05/b05=5/4 ∴a05=5b05/4 又∵a05+b05=36 代入解得b=4或-4,再代入解得a=2√5或-2√5
2023-07-16 22:46:501

求1个二元二次方程的解

671x+548y=543............(1)557x+984y=870............(2)(1)*557-(2)*671得-355028y=-281319y=0.7923x=0.16218
2023-07-16 22:47:014

二元二次方程的解法

二元二次方程的解法如下:1、代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。2、因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。3、加减法如果方程组里两个方程有一个未知数的同次项的系数成比例,可将这个未知数的系数化为绝对值相等,再用加或减消去这个未知数,从而得到另一个未知数的一元二次方程再解。代入消元法①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数。②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的)。③解这个一元一次方程,求出未知数的值。④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值。⑤用“{”联立两个未知数的值,就是方程组的解。⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
2023-07-16 22:47:231

二元二次方程的解法 二元二次方程的解法介绍

1、代入法:由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。 2、因式分解法:在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。 3、配方法:将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。 4、韦达定理法:通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。 5、消常数项法:当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
2023-07-16 22:47:511

二元二次方程的解法?

我们知道,二元一次方程表示的图形是直线,但一些二元二次方程和无理方程在一定的条件下,它也可以表示一条直线或两条直线,其解法的基本思想是将方程化归为二元一次方程,但其方法较为灵活,故笔者将通过一些实例来提供解决此类问题的一些常见解法,以助同学们一臂之力。1、直接分解法例1、证明:方程x2-xy-6y2+3x-9y=0表示两相交直线。分析:只需将方程左边分解成两个二元一次方程即可。证明:原方程可化为(x-3y)(x+2y)+3(x-3y)=0(x-3y)(x+2y+3)=0∴x-3y=0 或x+2y+3=0∴方程表示两条直线又∵它们的斜率不相等,∴两直线相交。2、配方法例2、当k为何值时,方程x2-y2+2kx-4y+3k=0表示直线。分析 :对x,y 分别进行配方,把方程化为(x-m)2-(y-n)2=c的形式,令c=0即可表示直线。解:方程可化为 (x+k)2-(y+2)2=k2-3k-4令k2-3k-4=0,得k=4或k=-1即当k=4或-1 时,方程表示直线。3、待定系数法例3、若方程x2-2xy-3y2-kx+(k+6)y-2=0表示直线,试确定k 的值。分析 :方程中的二次项可分解为(x-3y)(x+y),所以,方程欲表示直线,方程左边只需分解成(x-3y+m)(x+y+n)=0即(x-3y)(x+y)+m(x+y)+n(x-3y)+mn=0(x-3y)(x+y)+(m+n)x+(m-3n)y+mn=0m+n=-km-3n=k+6mn=-2 m=2n=-1k=1 m=1n=-2k=-1 ∴∴ k=±1.4、判别式法例4、是否存在实数k,使方程x2+2kxy-3y2+4x+(k+3)y+4k=0表示直线,若能,试确定k的值;若不能,请说明理由。分析:将方程视作x的一元二次方程,即Ax2+Bx+C=0,欲使方程表示直线,只需ㄓx是完全平方式,请注意,它是关于y的二次三项式,而要使y的二次三项式为完全平方,只需ㄓy=0即可。解:方程可化为x2+(2ky+4)x-3y2+(k+3)y+4k=0∴ㄓx=(2ky+4)2-4[-3y2+(k+3)y+4k]=(4k2+12) y 2+12(k-1)y+16(1-k)为完全平方式∴ㄓy=0即[12(k-1)]2-4(4k2+12)×16(1-k)=0(k-1)(16k2+9k+39)=0,∴k=1∴存在k=1使得方程表示直线。5、利用根分布例5、 仅表示一条直线,求此时k的取值范围。分析:将方程视作 的一元二次方程,则方程表示一条直线的充要条件是关于 的一元二次方程仅有一个非负实数根。解:令 =t(t≥0)方程可化为t2-3t+k+3=0 (t≥0) (*)∴方程(*)在 上有且仅有一个非负实根。ㄓ=0 ∴ 或k +3<0∴ .说明:方程(*)在 上有且仅有一个非负实根的问题,也可用数形结合法来解,这里不再赘述。
2023-07-16 22:48:012

二元二次方程组怎么解

参考资料来源:百度百科-二元二次方程组
2023-07-16 22:48:123

二元二次方程详细解法

二元二次方程解法我可非常清楚。答:1、二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。2、二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。3、二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程。其一般式为ax2+bxy+cy2+dx+ey+f=0。(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零)。
2023-07-16 22:48:571

二元二次方程解法公式

二元二次方程解法公式:ax2+bxy+cy2+dx+ey+f=0。二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程。其一般式为ax2+bxy+cy2+dx+ey+f=0。a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零,当b=0时,a与d以及c与e分别不全为零,当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零。
2023-07-16 22:49:081

二元二次方程组的一般解法

二元二次方程组的一般解法是代入法,在(1)中现将y作常量,把(1)看作关于x的一元二次方程,用y表示x后,代入(2)中,得到关于y的方程。因为在解(1)的结果中,可能得到y是x的双值函数,所以可能得到两个方程,也可能得到无理方程,无理方程有理化后,最高可能得到四次方程,但仍有实数解。将(1)化为将(3)代入(2)中,解出x,再根据(3)解出y。二元二次方程组最多可能有四组解。用代入法解二元二次方程组计算量大,计算困难(尤其是解无理方程和一元四次方程),因此必须寻找更简便的方法。
2023-07-16 22:49:181

二元二次的方程解法 我刚上六年级,不要太复杂的解法

路过
2023-07-16 22:49:342

2元2次方程的解法 急2急姐姐急

、一周知识概述 1、二元二次方程 含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫二元二次方程. 关于x、y的二元二次方程的一般形式为ax2+bxy+cy2+dx+ey+f=0(a、b、c至少有一个不为0),其中ax2、bxy、cy2叫做二次项,a、b、c分别是二次项的系数;dx、ey叫做一次项,d、e分别是一次项的系数;f叫做常数项. 例,xy=1,x2-y=0,x-y-2xy=-3都是二元二次方程;x-y=1,x2y=0都不是二元二次方程. 2、二元二次方程组 由一个二元一次方程和一个二元二次方程组组成的方程组,或者由两个二元二次方程组成的方程组叫二元二次方程组. 3、解二元二次方程组的思想和方法 解二元二次方程组的基本思想是“转化”,将二元转化为一元,将二次转化为一次,转化的基本方法是“消元”和“降次”.因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键. 二、重点、难点和疑点突破 1、由一个二元一次方程和一个二元二次方程组成的方程组的解法(简称“二·一”型方程组) (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是: ①先将方程组中的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②把所得的代数式代入另一个方程中,使其转化为一个一元二次方程或一元一次方程; ③解所得的一元二次方程或一元一次方程,求出一个未知数的值; ④把所求的未知数的值代入第一步所得的关系中求出另一个未知数的值; ⑤写出方程组的解. (2)逆用根与系数关系定理法 对“二·一”型二元二次方程组成的形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看成一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x,y的值,当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”. 2、对“二·一”型的二元二次方程组的解的情况的判别 “二·一”型的二元二次方程组的实数解有三种情况:有一解、两解和没有解.把一元一次方程代入二元二次方程,消去一个未知数之后,得到一个一元二次方程.由根的判别式可知,解的情况可能是有两个不相等的实数解,两个相等的实数解或无实数解,这样的二元二次方程组的解也就相应地有三种情况.简言之,有一个二元一次方程的二元二次方程组的实数解的情况,一般可通过一元二次方程的根的判别式来判断. 3、“二·二”型方程组的解法 解“二·二”型方程组的基本思想仍是“转化”,转化的方法是“降次”、“消元”.它的一般解法是: (1)当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解这两个“二·一”型方程组,所得的解都是原方程组的解. (2)当方程组中两个二元二次方程都可分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程分别与第二个二元二次方程分解所得的每一个二元一次方程组成方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解. 4、“二·二”型方程组的解的情况 由同一个二元二次方程化成的两个二元一次方程一般不能组成方程组. 值得注意的是“二·一”型方程组最多有两个解;“二·二”型方程组最多有四个解.解方程组时,既不要漏解,也不要增解. 三、解题方法技巧点拨 1、“二·一”型二元二次方程组的解 例1、解方程组 分析: 此方程组含有一个二元一次方程,所以可用代入法解,这是第一种解法;如果把①变形为(x+y)2=4,得x+y=2或x+y=-2,则原方程组可变形为两个二元一次方程组.解这两个二元一次方程组所得的解都是原方程组的解,这是第二种解法. 解法1: 由②得x=2y+5 ③ 将③代入①,得(2y+5)2+2y(2y+5)+y2=4. 整理,得3y2+10y+7=0.点评:解“二·一”型二元二次方程组,一般常采用前一种解法,即先代入消元,再分解降次(或用公式法)求解.本例的第二种解法是一种特殊解法,它只适合一些特殊形式的方程组. 分 仔细观察这个方程组,不难发现,此方程组除可用代入法解外,还可联系通过构造一个以x,y为根的一元二次方程来求解. 解法1: 由①得y=8-x.③ 把③代入②,整理得x2-8x+12=0. 解得x1=2,x2=6. 把x1=2代入③,得y1=6. 把x1=6代入③,得y2=2. 解法2: 根据韦达定理可知,x,y是一元二次方程z2-8z+12=0的两个根,解这个方程,得 z1=2,z2=6. 点悟:“代入法”是解由一个二元一次方程和一个二元二次方程组成的二元二次方程组的一般方法,适用范围广;“逆用韦达定理法”虽然简便,但它只适用于以两数和与两根积的形式给出的方程组,适用范围比较小. 2、只有一个方程可分解降次的方程组的解法 例3、解方程组 分析: 观察方程②,把(x-y)看成整体,那么方程②就可以看作是关于 (x-y)的一元二次方程,且可分解为(x-y-3)(x-y+1)=0,由此可得到两个二元一次方程x-y-3=0和x-y+1=0. 这两个二元一次方程分别和方程①组成两个方程组: 分别解这两个方程组,就可得到原方程组的解. 由②得(x-y-3)(x-y+1)=0. ∴x-y-3=0或x-y+1=0. ∴原方程组可化为两个方程组: 3、两个方程都可以分解降次的方程组的解法 例4、解方程组 分析: 方程①的右边为零,而左边可以因式分解,从而可达到降次的目的,方程②左边是完全平方式,右边是1,将其两边开平方,也可以达到降次的目的. 由①得(x-4y)(x+y)=0 ∴x-4y=0或x+y=0 由②得(x+2y)2=1 ∴x+2y=1或x+2y=-1. 原方程可化为以下四个方程组 点评:不要把同一个二元二次方程分解出来的两个二元一次方程组成方程组,这样会出现增解问题,同时也要注意防止漏解现象. 4、已知解的情况,确定字母系数 例5、k为何值时,方程组 (1)有一个实数解,并求出此解; (2)有两个实数解; (3)没有实数解. 分析: 所考知识点:二元二次方程组的解法及根的判别式,先用代入法消去未知数y,可得到关于x的一元二次方程,再根据根的判别式来讨论. 将①代入②,整理得k2x2+(2k-4)x+1=0 ③ △=(2k-4)2-4×k2×1=-16(k-1). 点悟:解这种题型的规律是一般将方程组转化为一元二次方程后,利用△=0,△>0,△<0来讨论的. 解题易错点是一元二次方程中x2的系数k2不等于0容易被忽略
2023-07-16 22:49:451

二元二次方程组的解法

二元二次方程组的解法1.代入法:由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。2.因式分解法:在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。3.配方法:将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。4.韦达定理法:通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。5.消常数项法:当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
2023-07-16 22:49:551

二元二次方程组详细解法

一般用代入法求解,即将方程组中的二元一次方程,用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。二元二次方程求解二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。(1)有两组相等的实数解。(2)有两组不相等的实数解;(3)没有实数解。解:将②代入①,整理得二次方程③的判别式(4)当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。(5)当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。(6)当a>2时,方程③没有实数根,因而原方程没有实数解。“代入消元法”和“加减消元法”解方程组.代入消元法(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法。(2)代入法解二元一次方程组的步骤①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。加减消元法(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.(2)加减法解二元一次方程组的步骤①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
2023-07-16 22:50:311

二元二次方程解法 二元二次方程解法简述

1、二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。 2、二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。 3、二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程。其一般式为ax2+bxy+cy2+dx+ey+f=0。(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零)。
2023-07-16 22:50:381

二元二次方程怎么解,给个例子谢谢

由于解一般形式的二元二次方程组所涉及的系数颇多,故通常就实际问题来解。e.g.1.解:2x^2+y^2+3xy+6x+2y+12=0…①,且x^2+4y^2+4xy+x+y+15=0…②.提示: 解方程的基本思想是消元与降次。仅仅就其消元而言,任给的①,②都难以直接用一个变量表示另一个变量(即用关于x的代数式表示y,或y的代数式用表示x),其症结在于二元二次项3xy,4xy,因此,首先需消去二元二次项。②*3-①*4,得到一个新的方程。再运用配方法分别将其x,y配方为如下形式:a(x+i)^2+b(y+j)^2+c=0,就可实现了用一个变量表示另一个变量,但其涉及到开方,且变为无理方程作解,比较复杂。就其降次而言,可运用因式分解法(包括十字相乘法的推广:叉乘法及叉阵),难度较大。也可以运用函数的解析法。在此,谨作点拨。总的而言,一般有三种普遍的方法:代数方程解法,因式分解法,运用函数。
2023-07-16 22:50:461