汉邦问答 / 问答 / 问答详情

初三一元二次方程题.要有答案.

2023-07-08 10:14:28
阿啵呲嘚

3x^2+27=0

3x^2-4x-4=0.

(2y+1)^2+3(2y+1)+2=0.

(x-2)^2-3=0

2x^2-5x+1=0

x(8+x)=16

(2x-3)^2-2(2x-3)-3=0

x^2-17x+66=0

(x+1)^2-2(x-1)^2=6x-5

4(x+2)^2=9(2x-1)^2

已知:X平方+X+1=0 则X平方+1/X平方(也就是X平方分之一)=?

1.在长为10(根号5+1)cm的线段AB上有一点C, 且有AC^2=AB*BC,则AC长?

2.某旅馆有客房140间,当每间客房的日租金为60元时,每天都客满.如果一间客房的日租金增加5元,则客房每天的出租数会减少5间,当每间客房的日租金为多少元时,每日获得的总租金高达10000元?.

3.在等腰三角形ABC中.BC=6.AB.AC的长是关于x的方程x^2-10x+m=0的两个整数根,求m

4.用22㎝长的铁丝能不能折成一个32平方厘米的矩形?说明理由

5.若a为有理数,试探求当b为何值时,关于x的一元二次方程x^2+3(a-1)x+(2a^2+a+b)=0的根为有理数?

6.设关于y的一元二次方程3(m-2)y^2-2(m+1)y-m=0有正整数根,试探求满足条件的整数m

一,选择题:

1,下列方程(1)-x2+2=0 (2)2x2-3x=0 (3)-3x2=0 (3)-3x2=0 (4)x2+=0 (5)=5x (6)2x2-3=(x-3)(x2+1)中是一元二次方程的有( )

A,2个 B,3个 C,4个 D,5个

2,下列配方正确的是( )

x2+3x=(x+)2- (2)x2+2x+5=(x+1)2+4

(3)x2-x+=(x-)2+ (4)3x2+6x+1=3(x+1)2-2

A,(1)(3) B,(2)(4) C,(1)(4) D,(2)(3)

3,方程(x-1)2+(2x+1)2=9x的一次项系数是( )

A,2 B,5 C,-7 D,7

4,方程x2-3x+2-m=0有实根,则m的取值范围是( )

A,m>- B,m≥ C,m≥- D,m>

5,方程(m+1)x2-(2m+2)x+3m-1=0有一个根为0,则m的值为( )

A, B, C,- D,-

6,方程x2-mx+=0的大根与小根的差是( )

A,0 B,1 C,m D,m+1

7,如果关於x的方程3ax2-2(a-1)x+a=0有实数根,则a的取值范围是( )

A,a<且a≠0 B,a≥ C,a≤且a≠0 D,a≤

8,若方程2x(kx-4)-x2+6=0没有实数根,则k的最小整数值是( )

A,1 B,2 C,3 D,4

9,一元二次方程一根比另一根大8,且两根之和为6,那麽这个方程是( )

A,x2-6x-7=0 B,x2-6x+7=0 C,x2+6x-7=0 D,x2+6x+7=0

10,方程3=2x-6变形为有理方程应是( )

A,4x2-33x+54=0 B,4x2-27x+42=0 C,4x2+21x+42=0 D,4x2-33x+38=0

11,通过换元,把方程3x2+15x+2=2化为整式方程,下面的换元中,正确的是设( )

A,=y B,3x2+15x=y C,=y D,x2+5x+1=y

12,去分母解关於x的方程产生增根,则m的值是( )

A,2 B,1 C,-1 D,以上答案都不对

13,下面四组数①②③④中,是方程组的解的是( )

A,①和④ B,②和④ C,①和② D,③和④

14,已知方程组,有两个相等的实数解,则m的值为( )

A,1 B,-1 C, D,±1

二,填空题:

将方程x2+=x+x化成一般形式是____________,二次项系数是____________,一次项系数是____________,常数项是____________.

在实数范围内分解因式:2x2-4x-3=____________.

方程8x2-(k-1)x+k-7=0的一个根是0,则k=____________.

以-和为根的一元二次方程是____________.

制造某种药品,计划经过两年使成本降低到81%,则平均每年降低的百分率是________.

若x1,x2是方程2x2-7x+4=0的两根,则x12+x22的值为____________.

已知关於x的方程x2+ax+1-a2=0的两根之和等於3a-8,则两根之积等於___________.

三,解方程.6(x2+)+5(x+)-38=0

四,两个质数p,q是方程x2-99x+m=0的两个根,求的值

《一元二次方程》测试题

一、填空题:(每空3分,共30分)

1、方程(x-1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .

2、关于x的方程是(m2-1)x2+(m-1)x-2=0,那么当m 时,方程为一元二次方程;

当m 时,方程为一元一次方程.

3、若方程 有增根,则增根x=__________,m= .

4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.

5、若方程kx2-6x+1=0有两个实数根,则k的取值范围是 .

6、设x1、x2是方程3x2+4x-5=0的两根,则 .x12+x22= .

7、关于x的方程2x2+(m2-9)x+m+1=0,当m= 时,两根互为倒数;

当m= 时,两根互为相反数.

8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,

该方程的另一个根x2 = .

9、方程x2+2x+a-1=0有两个负根,则a的取值范围是 .

10、若p2-3p-5=0,q2-3q-5=0,且p≠q,则 .

二、选择题:(每小题3分,共15分)

1、方程 的根的情况是( )

(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根

(C)方程没有实数根 (D)方程的根的情况与 的取值有关

2、已知方程 ,则下列说中,正确的是( )

(A)方程两根和是1 (B)方程两根积是2

(C)方程两根和是-1 (D)方程两根积是两根和的2倍

3、已知方程 的两个根都是整数,则 的值可以是( )

(A)-1 (B)1 (C)5 (D)以上三个中的任何一个

4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )

A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0

5、用配方法解下列方程时,配方有错误的是( )

A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25

C.2t2-7t-4=0化为 D.3y2-4y-2=0化为

三、解下列方程:(每小题5分,共30分)

(1) (2)

(3) (4)4x2-8x+1=0(用配方法)

(5) 3x2+5(2x+1)=0(用公式法) (6)

四、(本题6分)

(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?

五、(本题6分)

有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?

六、(本题6分)

(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.

七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)

(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.

(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?

(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?

一、填空题:(每空3分,共30分)

1、方程(x–1)(2x+1)=2化成一般形式是 ,它的二次项系数是 .

2、关于x的方程是(m2–1)x2+(m–1)x–2=0,那么当m 时,方程为一元二次方程;

当m 时,方程为一元一次方程.

3、若方程 有增根,则增根x=__________,m= .

4、(2003贵阳)已知方程 有两个相等的实数根,则锐角 =___________.

5、若方程kx2–6x+1=0有两个实数根,则k的取值范围是 .

6、设x1、x2是方程3x2+4x–5=0的两根,则 .x12+x22= .

7、关于x的方程2x2+(m2–9)x+m+1=0,当m= 时,两根互为倒数;

当m= 时,两根互为相反数.

8、若x1 = 是二次方程x2+ax+1=0的一个根,则a= ,

该方程的另一个根x2 = .

9、方程x2+2x+a–1=0有两个负根,则a的取值范围是 .

10、若p2–3p–5=0,q2-3q–5=0,且p≠q,则 .

二、选择题:(每小题3分,共15分)

1、方程 的根的情况是( )

(A)方程有两个不相等的实数根 (B)方程有两个相等的实数根

(C)方程没有实数根 (D)方程的根的情况与 的取值有关

2、已知方程 ,则下列说中,正确的是( )

(A)方程两根和是1 (B)方程两根积是2

(C)方程两根和是-1 (D)方程两根积是两根和的2倍

3、已知方程 的两个根都是整数,则 的值可以是( )

(A)—1 (B)1 (C)5 (D)以上三个中的任何一个

4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )

A. x2+3x+4=0 B. x2-4x+3=0 C. x2+4x-3=0 D. x2+3x-4=0

5、用配方法解下列方程时,配方有错误的是( )

A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25

C.2t2-7t-4=0化为 D.3y2-4y-2=0化为

三、解下列方程:(每小题5分,共30分)

(1) (2)

(3) (4)4x2–8x+1=0(用配方法)

(5) 3x2+5(2x+1)=0(用公式法) (6)

四、(本题6分)

(2003宁夏)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?

五、(本题6分)

有一间长为20米,宽为15米的会议室,在它们中间铺一块地毯为,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空宽度为多少米?

六、(本题6分)

(2003南京)某灯具店采购了一批某种型号的节能灯,共用去400元.在搬运过程中不慎打碎了5盏,该店把余下的灯每盏加价4元全部售出,然后用所得的钱又采购了一批这种节能灯,且进价与上次相同,但购买的数量比上次多了9盏.求每盏灯的进价.

七、(本题12分,其中第(1)问7分,第(2)问是附加题5分)

(2003潍坊) 如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.

(1) 如果P、Q分别从A、B同时出发,经过几秒,使△PBQ的面积等于8平方厘米?

(2) (附加题)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ的面积等于12.6平方厘米?

gitcloud

我只能给你这么多,因为你只给20分。

1、某工厂甲、乙、丙三个工人每天所生产的机器零件数是:甲和乙的比是3:4,乙和丙的比是5:6,若乙每天生产的件数比甲和丙两人的和少931件,问每个工人每天生产多少件?

2、已知初一(1)与初一(2)班各有44人,各有一些学生参加课外天文小组,(1)班参加天文小组的人数恰好是(2)班没有参加的人数的1/3,(2)班参加天文小组的人数是(1)班没有参加的人数的1/4,问两个班参加的人数各是多少?

3.某几关有三个部门,A部门有84人,B部门有56人,C 部门有60人。如果每个部门按照相同的比例裁减

人员,使这个几关留下150人。求 C 部门留下的人数是多少?

4.某车间有60名工人,生产某种配套产品,该产品由一个螺栓赔两个螺母而成。每个工人每天平均生产螺栓14个或螺母20个。应该分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套?

一元一次方程的应用测试题(B卷)

一、填空题(每小题3分,共18分)

1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.

(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;

(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.

2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.

3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.

4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.

5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.

6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.

二、选择题(每小题3分,共24分)

7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是

A.20 B.33 C.45 D.54

8.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么

A.甲比乙更优惠 B.乙比甲更优惠

C.甲与乙同等优惠 D.哪家更优惠要看原价

9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为

A.(x+y)千米/小时 B.(x-y)千米/小时

C.(x+2y)千米/小时 D.(2x+y)千米/小时

10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是

A.a米 B.(a+60)米 C.60a米 D. 米

11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为

A.1-( + )m B.5- m

C. m D.以上都不对

12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为

A.x-1=5(1.5x) B.3x+1=50(1.5x)

C.3x-1= (1.5x) D.180x+1=150(1.5x)

13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为

A.a元 B.1.08a元 C.0.972a元 D.0.96a元

14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为

全月应纳税金额 税率(%)

不超过500元 5

超过500元到2000元 10

超过2000元至5000元 15

…… ……

A.1900元 B.1200元 C.1600元 D.1050元

三、简答题(共58分)

15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.

(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.

(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.

(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).

(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.

16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?

17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.

18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的 ,第二班取200棵和余下的 ,第三班取300棵和余下的 ,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.

19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.

参考答案

一、1.(1)25 (2)200 2.960 3.8π 4.80%x=5+3 10 5.36 6.66

二、7.A 8.B 9.C 10.B 11.B 12.D 13.C 14.C

三、15.(1)10 100 0 (2)8 96 4 (3)15 75 10 (4)6.4 128.6 (5)大 圆

四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=5

17.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.

18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:

100+ (x-100)=200+ 〔x-200-100- ·(x-100)〕,也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的 ”也是最后一个班级的树苗数的 ,由最后两班的树苗相等,可得方程:

100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得 =100,还可以设每班级取树苗x棵,得 =100.

19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6·(36-x)=100-27.60,

解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.

20.略

wpBeta

你去图书观借本龙们来看。。

300题都有。。。

还有答案。。。

余辉

就20分谁管你找啊

关于x的两个一元二次方程有一个相同的根

两式相减-x^2-x=0x=0 x=-1相同的根x=0代入t=0
2023-07-07 22:33:041

一元二次方程怎么求解?

x1+x2=-b/a拓展资料:数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。资料参考:百度百科 一元二次方程
2023-07-07 22:33:301

求解一元二次方程有4种解法例题

1、因式分解x^2-6x+8=0(x-2)(x-4)=0x=2 or x=42、先化简平方再求值x^2-4x-1=0(x-2)^2=5x=正负根号5+2等·····
2023-07-07 22:33:462

一元二次方程的公式?

一元二次方程普通式:ax^2+bx+ca是二次项系数,且要不等于0 b为一次项系数 c为常数项一元二次求根公式:x=[-b±(b^2-4ac)^(1/2)]/2a△=b^2-4ac 当△>0时,方程有两个不相等实根当△=0时,方程有两个相等实根当△<0方程无实根注意:无实根不等于无解
2023-07-07 22:33:541

关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1、x2,且x1...

∵x1+x2=m,x1x2=2m-1,∴x12+x22=(x1+x2)2-2x1x2=m2-2(2m-1)=7;解可得m=-1或5;当m=5时,原方程即为x2-5x+9=0的△=-110,有两根,则有(x1-x2)2=(x1+x2)2-4x1x2=13.答:(x1-x2)2的值为13.
2023-07-07 22:34:061

关于x的一元二次方程x^2

2023-07-07 22:34:231

解一元二次方程:-3X2-4X+4=0

解:-3xx-4x+4=0 bb-4ac=64x1=-2 x2=2/3
2023-07-07 22:34:371

一元二次方程

ABBACBA
2023-07-07 22:35:1210

关于一元二次方程的题

1. b*b-4ac>0 X1不等于X2 所以 (M-1)的平方-4*(2*M的平方-M)>0 所以-7M的平方+2M+1>0 求出M即可2. X1的平方+X2的平方=(X1+X2)的平方-2*X1*X2 (X1+X2)的平方=(b/a)的平方=(M-1)的平方 X1*X2 =-c/a=2*M的平方-M X1的平方+X2的平方=2, 所以=(M-1)的平方-2*(2*M的平方-M)=2 求出M即可
2023-07-07 22:35:402

q的值是-1,另一个根是1+根号2
2023-07-07 22:35:481

下列方程中,关于x的一元二次方程是(  )A.3(x+1)2=(2x+1)B.x+1x-2=0C.ax2+bx+c=0D.x2+2x=x2-

A、是关于x的一元二次方程,故此选项正确;B、是分式方程,故此选项错误;C、当a≠0,b、c为常数时,是一元二次方程,故此选项错误;D、是一元一次方程,故此选项错误;故选:A.
2023-07-07 22:35:551

下列方程中,是关于x的一元二次方程的为(  )A.2x2=0B.4x2=3yC.x2+1x=-1D.x2=(x-1)(x-2

A、符合一元二次方程的定义,正确;B、方程含有两个未知数,故错误;C、不是整式方程,故错误;D、化简后3x-2=0,未知数的最高次数是1,故错误,故选:A.
2023-07-07 22:36:021

数学解一元二次方程。

2023-07-07 22:36:112

关于x的一元二次方程x^2+x-k=0 有两个实数根x1,x2,若

解:Δ=1+4K≥0,得:K≥-1/4。由题意得:X1^2+X1=K,X2^2+X2=K,[2+X1+X1^2](3-2(X2+X2^2)=3∴(2+K)(3-2K)=3,2K^2+K-3=0,(2K+3)(K-1)=0,K=1或K=-3/2(舍去),∴K=1。
2023-07-07 22:36:261

初三数学,关于一元二次方程的问题

由题意的 X+X2=-1 X1-X2=+-1 所以可求出X1X2=0 所以-b/A+C=-1 2C-A=0 即B=3C A=2C所以代入方程 X1=0 X2=-1 a:b:c=2:3:1 因为看错了二次项系数 所以-B/A=5 C/A=4 所以可求出B=-5/4C 由乙可知X1X2=+-12 所以可知C/A=+-12所以B=+-15A 所以方程应该是X^2+-15X+-12=0
2023-07-07 22:36:344

下列方程中,是关于x的一元二次方程的是(  )A.1x2+1x-2=0B.ax2+bx+c=0C.3x(x-1)+6x=3x2+7D.5x2

A、是分式方程,故A错误;B、a=0时,不是一元二次方程,故B错误;C、不含二次项,故C错误;D、5x2=4是一元一二次方程,故D正确;故选:D.
2023-07-07 22:36:561

(x2+x+1 )(x2+x-1)怎么解 要公式分解做

这都不会写,弱智,上课有没有听啊
2023-07-07 22:37:163

你将两根代入方程,两式相加
2023-07-07 22:37:252

m=3时,无实根,后面看不清。
2023-07-07 22:37:341

若关于x的一元两次方程(m-2)x平方+x+m平方-4=0的一个根为0,则m的值是?

将x=0带入的 m=正负2 又因为m-2不能等于0 所以m=-2 答题不容易望采纳
2023-07-07 22:37:424

一元二次方程! 有点乱..!!

这位两点应该是Y=0吧,不然不能求的,再仔细看下题
2023-07-07 22:37:503

下列方程中,是关于x的一元二次方程的是(  )A.ax2+bx+c=0B.1x2+1x-5=0C.(x+1)(x-2)=1D.x2+2y

A、a不能为0,故此选项错误;B、是分式方程,选项错误;C、符合一元二次方程定义,正确;D、方程含有两个未知数,选项错误.故选:C.
2023-07-07 22:38:091

已知实数m是关于x的方程x2-2x-3=0的一个根,则代数式2m2-4m+2值为______

∵实数m是关于x的方程x2-2x-3=0的一个根,∴m2-2m-3=0,∴m2-2m=3,∴2m2-4m+2=2(m2-2m)+2=2×3+2=8.故填:8.
2023-07-07 22:38:361

在一元二次方程中,X的解是否能为0

可以,只要能解出来但一般没有那么简单
2023-07-07 22:38:463

一元二次方程根的判别式的应用

一般求根,或者求参数范围,不难的,这样的题目不难的,多做一点就好了呀,加油吧,希望你能考个好成绩。
2023-07-07 22:38:541

数学初二上 一元二次方程

1010
2023-07-07 22:39:252

已知关于x的一元二次方程x^2+(2k+1)x+k^2-2=0的两根x1和x2,且(x1-2)(x1-x2)=0,则k的值为______.

由于(X1-2)(X1-x2)=0所以x1=x2=2,带入x^2+(2k+1)x+k^2-2=0得:4+2(2k+1)+k^2-2=0k^2+4k+4=0(k+2)(k+2)=0k=-2
2023-07-07 22:39:311

探究一元二次方程x的平方-mx加(m-2)=0,的根的情况

b平方减4ac等于m平方减4m加8恒大于零,所以方程有两个不相等实数根
2023-07-07 22:39:492

已知a、B是关于x的一元二次方程x2-(m - 2)x+(m2 + 3m+5)=0的两个实数根

a^2+β^2=(a+β)^2-2aβ=(m-2)^2-2(m^2 + 3m+5)=-(m^2+10m+6)=-(m+5)^2+19<=19所以,最大值19,此时m=-5
2023-07-07 22:40:091

已知关于x的一元二次方程x^2+ax+c=0的两根为1和-2,则二次三项式x62+ax+c因式分解的结果是

(x-1)(x+2)
2023-07-07 22:40:173

用配方法解一元二次方程,怎么解?

先把方配出来,然后将多余的部分,就是除二次方外的部分移动到等号另外一边,然后开方,就可以得到两个数值,然后再根据题意.
2023-07-07 22:40:485

2x+x^2+1=0是不是一元二次方程吗?

2X+X^2+1=0是一个关于X的一元二次方程.
2023-07-07 22:41:391

关于x的一元一次方程(k2-1)x2+(k-1)x-8=0的解是______.?

解题思路:利用一元一次方程的定义计算确定出k的值,即可求出方程的解. 根据题意得:k2-1=0,k-1≠0, 解得:k=-1, 方程为-2x-8=0, 解得:x=-4, 故答案为:-4 ,1,笨蛋,这是关于x的一元二次方程或二元二次方程,不是一元一次方程,2,
2023-07-07 22:41:451

一元二次方程 x属于r,b平方-4ac为什么是大于等于0,

b平方-4ac小于0 无解啊
2023-07-07 22:42:022

分母带有x的一元二次方程怎么解

用定义法和性质法。一元二次方程指只含有一个未知数(一元)并且未知数项的最高次数是2(二次)的整式方程。一元二次方程经过整理都可化成一般形式:ax_+bx+c=0(a≠0),其中ax_叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。公元前2000年左右,古巴比伦的数学家就能解一元二次方程了,他们是这样描述的:已知一个数与它的倒数之和等于一个已知数,求出这个数。他们使用等式子,再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。
2023-07-07 22:42:191

初三数学一元二次方程问题 请详细回答每一步

1. m=0 时 方程为17x2+1=0 成立 m不为0时设m2-8m+17=0 则△=8*8-4*17= -4〈0 所以m2-8m+17 不为0 得证2.
2023-07-07 22:42:305

一元二次方程练习题

3x^2+27=03x^2-4x-4=0.(2y+1)^2+3(2y+1)+2=0.(x-2)^2-3=02x^2-5x+1=0x(8+x)=16(2x-3)^2-2(2x-3)-3=0x^2-17x+66=0(x+1)^2-2(x-1)^2=6x-54(x+2)^2=9(2x-1)^2本来就是抄的,我连开根都不会……x^2-6x+72-3x=9224x+x^2-63=14(x+4)^2+7x=301-7一,选择题:1,下列方程(1)-x2+2=0(2)2x2-3x=0(3)-3x2=0(3)-3x2=0(4)x2+=0(5)=5x(6)2x2-3=(x-3)(x2+1)中是一元二次方程的有()A,2个B,3个C,4个D,5个2,下列配方正确的是()x2+3x=(x+)2-(2)x2+2x+5=(x+1)2+4(3)x2-x+=(x-)2+(4)3x2+6x+1=3(x+1)2-2A,(1)(3)B,(2)(4)C,(1)(4)D,(2)(3)3,方程(x-1)2+(2x+1)2=9x的一次项系数是()A,2B,5C,-7D,74,方程x2-3x+2-m=0有实根,则m的取值范围是()A,m>-B,m≥C,m≥-D,m>5,方程(m+1)x2-(2m+2)x+3m-1=0有一个根为0,则m的值为()A,B,C,-D,-6,方程x2-mx+=0的大根与小根的差是()A,0B,1C,mD,m+17,如果关於x的方程3ax2-2(a-1)x+a=0有实数根,则a的取值范围是()A,a<且a≠0B,a≥C,a≤且a≠0D,a≤8,若方程2x(kx-4)-x2+6=0没有实数根,则k的最小整数值是()A,1B,2C,3D,49,一元二次方程一根比另一根大8,且两根之和为6,那麽这个方程是()A,x2-6x-7=0B,x2-6x+7=0C,x2+6x-7=0D,x2+6x+7=010,方程3=2x-6变形为有理方程应是()A,4x2-33x+54=0B,4x2-27x+42=0C,4x2+21x+42=0D,4x2-33x+38=011,通过换元,把方程3x2+15x+2=2化为整式方程,下面的换元中,正确的是设()A,=yB,3x2+15x=yC,=yD,x2+5x+1=y12,去分母解关於x的方程产生增根,则m的值是()A,2B,1C,-1D,以上答案都不对13,下面四组数①②③④中,是方程组的解的是()A,①和④B,②和④C,①和②D,③和④14,已知方程组,有两个相等的实数解,则m的值为()A,1B,-1C,D,±1二,填空题:将方程x2+=x+x化成一般形式是____________,二次项系数是____________,一次项系数是____________,常数项是____________.在实数范围内分解因式:2x2-4x-3=____________.方程8x2-(k-1)x+k-7=0的一个根是0,则k=____________.以-和为根的一元二次方程是____________.制造某种药品,计划经过两年使成本降低到81%,则平均每年降低的百分率是________.若x1,x2是方程2x2-7x+4=0的两根,则x12+x22的值为____________.已知关於x的方程x2+ax+1-a2=0的两根之和等於3a-8,则两根之积等於___________.三,解方程.6(x2+)+5(x+)-38=0四,两个质数p,q是方程x2-99x+m=0的两个根,求的值已知:X平方+X+1=0则X平方+1/X平方(也就是X平方分之一)=?1.在长为10(根号5+1)cm的线段AB上有一点C,且有AC^2=AB*BC,则AC长?2.某旅馆有客房140间,当每间客房的日租金为60元时,每天都客满.如果一间客房的日租金增加5元,则客房每天的出租数会减少5间,当每间客房的日租金为多少元时,每日获得的总租金高达10000元?.3.在等腰三角形ABC中.BC=6.AB.AC的长是关于x的方程x^2-10x+m=0的两个整数根,求m4.用22㎝长的铁丝能不能折成一个32平方厘米的矩形?说明理由5.若a为有理数,试探求当b为何值时,关于x的一元二次方程x^2+3(a-1)x+(2a^2+a+b)=0的根为有理数?6.设关于y的一元二次方程3(m-2)y^2-2(m+1)y-m=0有正整数根,试探求满足条件的整数m
2023-07-07 22:42:522

一元二次方程怎么解

只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程( quadratic equation of one variable )。    一元二次方程有四个特点:   (1)含有一个未知数;   (2)且未知数次数最高次数是2;   (3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.   (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a、b、c为常数,a≠0)编辑本段补充说明  1、该部分的知识为初等数学知识,一般在初二就有学习。(但一般二次函数与反比例函数会涉及到一元二次方程的解法)   2、该部分是高考的热点。   3、方程的两根与方程中各数有如下关系: X1+X2= -b/a,X1·X2=c/a(也称韦达定理)   4、方程两根为x1,x2时,方程为:x^2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)   5、b^2-4ac>0有2个不相等的实数根,b^2-4ac=0有两个相等的实数根,b^2-4ac<0无实数根。一般式  ax^2+bx+c=0(a、b、c是实数,a≠0)   例如:x^2+2x+1=0配方式  (x+b/2a)^2=(b^2-4ac)/4a^2 两根式  a(x-x1)(x-x2)=0   一般解法1.因式分解法  (可解部分一元二次方程)   因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。   如   1.解方程:x^2+2x+1=0   解:利用完全平方公式因式解得:(x+1﹚^2=0   解得:xu2081= xu2082=-1   2.解方程x(x+1)-3(x+1)=0   解:利用提公因式法解得:(x-3)(x+1)=0   即 x-3=0 或 x+1=0   ∴ xu2081=3,xu2082=-1   3.解方程x^2-4=0   解:(x+2)(x-2)=0   x+2=0或x-2=0   ∴ xu2081=-2,xu2082= 2   十字相乘法公式:   x^2+(p+q)x+pq=(x+p)(x+q)   例:   1. ab+b^2+a-b- 2   =ab+a+b^2-b-2   =a(b+1)+(b-2)(b+1)   =(b+1)(a+b-2)2.公式法  (可解全部一元二次方程)   首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根   1.当Δ=b^2-4ac<0时 x无实数根(初中)   2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即xu2081=xu2082   3.当Δ=b^2-4ac>0时 x有两个不相同的实数根   当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a   来求得方程的根3.配方法  (可解全部一元二次方程)   如:解方程:x^2+2x-3=0   解:把常数项移项得:x^2+2x=3   等式两边同时加1(构成完全平方式)得:x^2+2x+1=4   因式分解得:(x+1)^2=4   解得:xu2081=-3,xu2082=1   用配方法解一元二次方程小口诀   二次系数化为一   常数要往右边移   一次系数一半方   两边加上最相当4.开方法  (可解部分一元二次方程)   如:x^2-24=1   解:x^2=25   x=±5   ∴xu2081=5 xu2082=-55.均值代换法  (可解部分一元二次方程)   ax^2+bx+c=0   同时除以a,得到x^2+bx/a+c/a=0   设xu2081=-b/(2a)+m,xu2082=-b/(2a)-m (m≥0)   根据xu2081xu2082=c/a   求得m。   再求得xu2081、 xu2082。   如:x^2-70x+825=0   均值为35,设xu2081=35+m,xu2082=35-m (m≥0)   xu2081xu2082=825   所以m=20   所以xu2081=55, xu2082=15。   一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)   一般式:ax^2+bx+c=0的两个根xu2081和xu2082的关系:   xu2081+xu2082= -b/a   xu2081xu2082=c/a如何选择最简单的解法  1.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法)   2.看是否可以直接开方解   3.使用公式法求解   4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。 如果要参加竞赛,可按如下顺序:   1.因式分解 2.韦达定理 3.判别式 4.公式法 5.配方法 6.开平方 7.求根公式 8.表示法例题精讲  1、开方法:   直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n   例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   3x+1=±√7   x= ...   ∴xu2081=...,xu2082= ...   (2)解: 9x^2-24x+16=11   (3x-4)^2=11   3x-4=±√11   x= ...   ∴xu2081=...,xu2082= ...   2.配方法:   例1 用配方法解方程 3x^2-4x-2=0   解:将常数项移到方程右边 3x^2-4x=2   将二次项系数化为1:x^2-4/3x=2/3   方程两边都加上一次项系数一半的平方:x^2-4/3x+( -2/3)^2= 2/3+(-2/3 )^2   配方:(x-2/3)^2=10/9   直接开平方得:x-2/3=±√(10)/3   ∴xu2081= , xu2082= .   ∴原方程的解为xu2081=,xu2082= .   3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。   当Δ=b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)   当Δ=b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)   当Δ=b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a   (两个虚数根)(初中理解为无实数根)   例3.用公式法解方程 2x^2-8x=-5   解:将方程化为一般形式:2x^2-8x+5=0   ∴a=2, b=-8,c=5   b^2-4ac=(-8)^2-4×2×5=64-40=24>0   ∴x= (4±√6)/2   ∴原方程的解为xu2081=(4+√6)/2,xu2082=(4-√6)/2.   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。   例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8   (2) 2x^2+3x=0   (3) 6x^2+5x-50=0 (选学)   (4)x^2-4x+4=0 (选学)   (1)解:(x+3)(x-6)=-8 化简整理得   x^2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴xu2081=5,xu2082=-2是原方程的解。   (2)解:2x^2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴xu2081=0,xu2082=-3/2是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程通常有两个解。   (3)解:6x^2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴xu2081=5/2, xu2082=-10/3 是原方程的解。   (4)解:x^2-4x+4 =0   (x-2)(x-2 )=0   ∴xu2081=2 ,xu2082=2是原方程的解。小结  一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。   直接开平方法是最基本的方法。   公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解。   配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。课外拓展  一元二次方程   一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。 一般形式为ax^2+bx+c=0, (a≠0)。在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:已知一个数与它的倒数之和等于一个已给数,求出这个数,使 x1+ x2 =b,x1·x2=1,x^2-bx+1=0,   他们再做出解答 。可见巴比伦人已知道一元二次方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。   埃及的纸草文书中也涉及到最简单的二次方程,例如:ax^2=b。   在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。   希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。   公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程x^2+px+q=0的一个求根公式。   在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令 a、b、c为正数,如ax^2=bx、ax^2=c、 ax^2+c=bx、ax^2+bx=c、ax^2=bx+c 等。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。   十六世纪意大利的数学家们为了解三次方程而开始应用复数根。   韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。   我国《九章算术.勾股》章中的第二十题是通过求相当于 x^2+34x-71000=0的正根而解决的。我国数学家还在方程的研究中应用了内插法。编辑本段判别方法  一、教学内容分析   “一元二次方程的根的判别式”一节,在《华师大版》的新教材中是作为阅读材料的。从定理的推导到应用都比较简单。但是它在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。   教学重点:根的判别式定理及逆定理的正确理解和运用   教学难点:根的判别式定理及逆定理的运用。   教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。   二、学情分析   学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。   三、教学目标   依据教学大纲和对教材的分析,以及结合学生已有的知识基础,教学目标是:   知根的情况,因此,我们把叫做一元二次方程的根的判别式,通常用符号"△"编辑本段列一元二次方程解题的步骤  (1)分析题意,找到题中未知数和题给条件的相等关系; 一元二次方程(2)设未知数,并用所设的未知数的代数式表示其余的未知数;   (3)找出相等关系,并用它列出方程;   (4)解方程求出题中未知数的值;   (5)检验所求的答案是否符合题意,并做答.编辑本段经典例题精讲  1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.   2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.   3.一元二次方程 (a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.   4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.编辑本段韦达定理  韦达(Vieta"s ,Francois,seigneurdeLa Bigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。   他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。   韦达定理实质上就是一元二次方程中的根与系数关系   韦达定理(Viete"s Theorem)的内容   一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中   设两个根为X1和X2   则X1+X2= -b/a   X1*X2=c/a   韦达定理的推广   韦达定理在更高次方程中也是可以使用的。一般的,对一个一元n次方程∑AiX^i=0   它的根记作X1,X2…,Xn   我们有   ∑Xi=(-1)^1*A(n-1)/A(n)   ∑XiXj=(-1)^2*A(n-2)/A(n)   …   ΠXi=(-1)^n*A(0)/A(n)   其中∑是求和,Π是求积。   如果一元二次方程在复数集中的根是,那么法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。   由代数基本定理可推得:任何一元 n 次方程   在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:   其中是该方程的个根。两端比较系数即得韦达定理。   韦达定理在方程论中有着广泛的应用。   韦达定理的证明   设x1,x2是一元二次方程ax^2+bx+c=0的两个解。   有:a(x-x1)(x-x2)=0   所以 ax^2-a(x1+x2)x+ax1x2=0   通过对比系数可得:   -a(x1+x2)=b ax1x2=c   所以 x1+x2=-b/a x1x2=c/a   韦达定理推广的证明   设x1,x2,……,xn是一元n次方程∑AiX^i=0的n个解。   则有:An(x-x1)(x-x2)……(x-xn)=0   所以:An(x-x1)(x-x2)……(x-xn)=∑AiX^i (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理)   通过系数对比可得:   A(n-1)=-An(∑xi)   A(n-2)=An(∑xixj)   …   A0==(-1)^n*An*ΠXi   所以:∑Xi=(-1)^1*A(n-1)/A(n)   ∑XiXj=(-1)^2*A(n-2)/A(n)   …   ΠXi=(-1)^n*A(0)/A(n)   其中∑是求和,Π是求积。编辑本段计算机解一元二次方程  VB实现方法   "该代码仅可实现一般形式的求值,并以对话框形式显示。   dim a,b,c,x1,x2   "在这里添加a、b、c的赋值过程   "例如:a=text1.text   "b=text2.text   "c=text3.text   "以上代码为赋值   if a <> 0 and b <> 0 and c<> 0 then   if a*2 <> 0 and b^2-4*a*c<>0 then   x1=((0-b)+Sqr(b^2-4*a*c))/(2*a)   msgbox x1   x2=((0-b)-Sqr(b^2-4*a*c))/(2*a)   msgbox x2   else   msgbox("b^2-4*a*c和a不能为零")   end if   end if开放分类: 数学,方程,韦达定理 我来完善 “一元二次方程”相关词条: 二元二次方程二元一次方程一元三次方程三元一次方程一元一次方程一元四次方程统计初步绝对值二次根式相似图形分式二次函数二元一次方程组正比例函数换元法一元二次方程解法三次方程托勒密定理相交弦定理切线方程二元一次不等式直角三角形二元二次方程 二元一次方程 一元三次方程 三元一次方程 一元一次方程 一元四次方程 统计初步 二元二次方程组 绝对值 二次根式 相似图形 分式 二次函数 二元一次方程组 正比例函数 换元法 一元二次方程解法 三次方程 韦达定理 托勒密定理 相交弦定理 切线方程 二元一次不等式 直角三角形 一元二次方程定义补充说明一般式配方式两根式1.因式分解法2.公式法3.配方法4.开方法5.均值代换法如何选择最简单的解法例题精讲小结课外拓展判别方法列一元二次方程解题的步骤经典例题精讲韦达定理计算机解一元二次方程
2023-07-07 22:43:141

1)M=1 X=22)根据M平方+8 与0的关系判断如果M平方+8大于零 有两个根等于零 两个根相等小于零 没有根
2023-07-07 22:43:233

初二一元二次方程,题目,详细过程!!

一、1二、(1)三分之一(2)-1三、-1
2023-07-07 22:43:313

关于x的一元二次方程,x^2-mx-6=0

m=5 或-5或 -1或 1-6=-2*3-6=2*-3-6=-1*6-6=1*-6两个根之和 =m
2023-07-07 22:43:402

已知x1.x2是关于x的一元二次方程(a-6)x^2+2ax+a=0的两个实数根,求使(x1+1)(x2+1)为负整数的a的整数值

7、8、9、12
2023-07-07 22:43:523

已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.

(1)x^2-(2k+1)x+k^2+k=0[x-(k+1)].(x-k) =0x= k+1 or k=>方程有两个不相等的实数根(2)AB=cAC =bBC=a=8△ABC是等腰三角形时k=8 or k+1=8k= 7 or 8
2023-07-07 22:44:101

为什么X属于R 则关于X的一元二次方程就有

k< 且k≠0。 根据一元二次方程kx2-x+1=0有两个不相等的实数根,知△=b 2 -4ac>0,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求 ∵ 有两个不相等的实数根, ∴△=1-4k>0,且k≠0,解得,k< 且k≠0。
2023-07-07 22:44:191

一元二次方程的两根在什么情况下同号?

关于x的一元二次方程ax平方+bx+c=0同时满足以下三条时,两根同号:1. a不等于02. b平方大于或等于4ac3. a、c同号
2023-07-07 22:44:446

一元二次方程 难题

由于x=2是一个根,故它满足方程。有4p-6+p^2-p=0, 即:p^2+3p-6=0解此二次方程,得其两根:p1=[-3+root(9+24)]/2=[-3+root(33)]/2p2=[-3-root(9+24)]/2=[-3-root(33)]/2其中root二次表示根号。
2023-07-07 22:45:133

什么是介电常数

介电常数,用于衡量绝缘体储存电能的性能.它是两块金属板之间以绝缘材料为介质时的电容量与同样的两块板之间以空气为介质或真空时的电容量之比. 介电常数代表了电介质的极化程度,也就是对电荷的束缚能力,介电常数越大,对电荷的束缚能力越强.
2023-07-07 22:40:041

简练隽永是什么意思

用得着问么,翻翻词典就行了呗,唉呀。。。。
2023-07-07 22:40:112

什么是介电常数

问题一:什么是介电常数? 真空的介电常数ε0=1/3.6π(pF/cm),相对介电常数εr=ε/ε0,ε是某介质的介电常数。 下面是几种物质的相对介电常数 液态:水:80; 丙三醇:47; 甲醇:37; 乙二醇:35-40; 乙醇:20-25; 笨:2.3; 松节油:3.2; 液氮:2; 液态二氧化碳:1.59; 液态空气:1.5 固体:白云石:8; 盐:6; 醋酸纤维素:3.7-7.5; 瓷器:5-7; 纤维素:3.9; 米及谷类:3-5; 砂:3-5;砂糖:3; 玻璃:3.7; 硫磺:3.4; 沥青:2.7; 聚四氟乙烯塑料:1.8-2.2; 纸:2; 云母:6-8 气态:空气及其他气体:1-1.2 问题二:什么叫介电常数? 表征介质在外电场作用下极化程度的物理量叫介电常数.(在交变电场作用下,介质的介电常数是复数,虚数部分反映了介质的损耗).实际上,介电常数并不是骇个不变的数,在不同的条件下,其介电常数也不相同. 问题三:介电常数的定义是什么? 现行教材第二册第110页介电常数(绝对介电常数ε)定义:电容器极板间充满电介质时,电容增大的倍数叫做电介质的介电常数,用ε表示并且明确其单位是Fu30fbM-1(定义).人教版高级中学试验课本《物理》第二册第24页介电常数(相对介电常数εR)定义:电容器极板间充满某种电介质时,电容增大到的倍数,叫做这种电介常数,也用ε表示,没有单位(定义2). 问题四:什么是电介质?介电常数的意义是什么 1、电介质: 电工中一般认为电阻率超过10欧u30fb厘米的物质便归于电介质。电介质的带电粒子是被原子、分子的内力或分子间的力紧密束缚着,因此这些粒子的电荷为束缚电荷。在外电场作用下,这些电荷也只能在微观范围内移动,产生极化。在静电场中,电介质内部可以存在电场,这是电介质与导体的基本区别。不导电的物质,如空气、玻璃、云母片、胶木等。  电介质包括气态、液态和固态等范围广泛的物质,也包括真空。固态电介质包括晶态电介质和非晶态电介质两大类,后者包括玻璃、树脂和高分子聚合物等,是良好的绝缘材料。凡在外电场作用下产生宏观上不等于零的电偶极矩,因而形成宏观束缚电荷的现象称为电极化,能产生电极化现象的物质统称为电介质。电介质的电阻率一般都很高,被称为绝缘体。有些电介质的电阻率并不很高,不能称为绝缘体,但由于能发生极化过程,也归入电介质。 2、介电常数: 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与介质中电场的比值即为相对介电常数(relative permittivity或dielectric constant),又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降。理想导体的相对介电常数虽然为1,但是由于无穷大的电导率导致趋肤深度为零,所以内部场强总为零形成电磁屏蔽。 介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*10^(-12)F/m。需要强调的是,一种材料的介电常数值与测试的频率密切相关。 一个电容板中充入介电常数为ε的物质后电容变大εr倍。电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 根据物质的介电常数可以判别高分子材料的极性大小。通常,相对介电常数大于3.6的物质为极性物质;相对介电常数在2.8~3.6范围内的物质为弱极性物质;相对介电常数小于2.8为非极性物质。
2023-07-07 22:39:291

清新隽永是什么意思

快乐ta咯了土木楼透露头女讨论了哭哭哭啦咯图图集,阿健健康康,hlalu
2023-07-07 22:39:256