- 铁血嘟嘟
-
初中知识结构的梳理
一、数与代数
(1)数与式:
1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴: ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平
方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数: ①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
(2)方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:①两个二元一次方程组成的方程组叫做二元一次方程组。
②适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
③二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程与二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根x=
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和
二根之积
也可以表示为 利用韦达定理,可以求出一元二次方程中的各系数
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△= ,这里可以分为3种情况:
①当△>0时,一元二次方程有2个不相等的实数根;
②当△=0时,一元二次方程有2个相同的实数根;
③当△<0时,一元二次方程没有实数根
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
①在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
②在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
③在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
④在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=kX+b(b为常数,k不等于0)的形式,则称Y是X的一次函数。
②当b=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=kX的图象是经过原点的一条直线。
③在一次函数中,当k〈0,b〈O,则经第二,三,四象限;当k〈0,b〉0时,则经第一,二,四象限;当k〉0,b〈0时,则经一,三,四象限;当k〉0,b〉0时,则经一,二,三象限。
④当k〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二.空间与图形
(1)图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系 那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果 那么
85、(3)等比性质:如果
那么
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r)
⑤两圆内含 d<R-r(R>r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)赞同
- 苏萦
-
你可以去看一些参考书 自己总结其实最好
面与面相交成什么
面面相交得到直线。两平面相交(intersectionbetweentwoplanes)是两平面间的一种位置关系,如果两个平面只有一条公共直线,就说这两个平面有相交位置关系,简称两平面相交。这两个平面称为相交平面,而这条公共直线称为这两个平面的交线。直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。它有无数条对称轴,其中一条是它本身,还有所有与它垂直的直线(有无数条)对称轴。在平面上过不重合的两点有且只有一条直线,即不重合两点确定一条直线。在球面上,过两点可以做无数条类似直线。2023-07-05 22:24:381
面与面相交得到什么线与线相交得到什么
三维上来说,两个平面,只要不相互平行,相交,即可得到一条直线。线线相交,如果是二维上来说,只要两直线不平行,就有一个焦点。如果是三维上来说,则,还有可能异面相交。即无焦点,但是投影相交。望采纳!!!2023-07-05 22:24:521
面与面相交得到什么?线与线相交得到什么?
前面的直线,后面得一点2023-07-05 22:26:185
图形是由什么什么什么构成的面与面相交得到什么线与线相交得到什么线有什么和
图形是由点、线、面组成的, 面与面相交得到线,线与线相交得到点, 故答案为:点,线,面;面,面;线,线.2023-07-05 22:26:471
面可以分为___和___两种,线与线相交得到___,面与面相交得到____图型是由___,___?
面可以分为平面和曲面,线与线相交得到面,面与面相交得到立体图形。这是几何知识。2023-07-05 22:26:552
几何体是由什么围成的,面与面相交得到什么,什么与什么相交得到点。
几何体是由面围成的,面与面相交得到线,线与线相交得到点。面分平面与曲面,线分直线与曲线。2023-07-05 22:27:041
面与面相交得到什么?
得到的是一条直线2023-07-05 22:27:122
面与面相交得什么,线与线相交得什么
三维上来说,两个平面,只要不相互平行,相交,即可得到一条直线。线线相交,如果是二维上来说,只要两直线不平行,就有一个焦点。如果是三维上来说,则,还有可能异面相交。即无焦点,但是投影相交。点、线、面是几何学里的概念,是平面空间的基本元素。扩展资料:点、线、面三者的关系1、点最重要的功能在于表明位置和进行聚焦,点与面是比较而形成的,同样一个点,如果布满整个或大面积的平面,它就是面了,如果在一个平面中多次出现,就可以理解为点;2、点与点之间连接形成线,或者点沿着一定方面规律性的延伸可以成为线,线强调方向和外形;3、平面上三个以上点的连接可以形成面,同时,平面上线的封闭或者线的展开也可以形成面,面强调形状和面积;以上3点可以概括总结点、线与面之间的微妙关系。参考资料来源:百度百科-点线面2023-07-05 22:27:201
面与面相交得线什么意思?
举个例子 地面和墙相交,得到的就是墙角的线2023-07-05 22:27:284
面与面相交为什么得到线?
面与面相交,两个面有一条公共的直线,或曲线。两个平面相交,有一条公共的直线。两个曲面相交,有一条公共的曲线。一个平面和一个曲面相交,有一条公共的曲线。如:α面与β面相交,其公共部分是一条线mp。2023-07-05 22:27:351
面与面相交得什么,线与线相交得什么
三维上来说,两个平面,只要不相互平行,相交,即可得到一条直线.线线相交,如果是二维上来说,只要两直线不平行,就有一个焦点.如果是三维上来说,则,还有可能异面相交.即无焦点,但是投影相交.2023-07-05 22:28:172
面与面相交得到什么,线与线相交得到什么
因为面是由线组成的,线与面相交为点或线(两者重合)所以面与面相交就像无数条平行的线与面相交交点在一条线上所以面与面相交就为线特殊的为面即重合。2023-07-05 22:28:341
面与面相交可以得出一条线吗
不平行的平面与平面相交得出直线。曲面相交线为曲线。2023-07-05 22:28:443
圆柱是由三个面围成的,其中一个是什么,另两个是什么,面与面相交得到的图形是什么
其中一个是矩形,另外两个是圆,面与面相交得到的是圆.请采纳,谢谢.2023-07-05 22:28:541
面有( ),也有( ),面与面相交成点,线有( ),也有( ),线与线相交得到点
面有( ),也有( ),面与面相交成点,线有( ),也有( ),线与线相交得到点 上面的题目中“面与面相交成点”应该是“面与面相交成线” 面有(平面),也有(曲面),面与面相交成线,线有(直线),也有(曲线),线与线相交得到点 下面是一个类似的问题,供参考:2023-07-05 22:29:041
曲面与曲面相交得到什么?
曲面与曲面相交可以得到曲线,但严格的说,你说的曲面是封闭还是不封闭没有给出,而且曲面的曲率可以为0,即是平面,所以有多种情况,可以是曲线,直线等2023-07-05 22:29:141
面有什么面和什么面之分线有什么线和什么线之分
内容如下:几何图形由(点)、(线)、(面)构成,线有(直)线和(曲)线之分;面有(平)面和(曲)面之分,面与面相交得到(线),线与线相交得到(点)。几何图形简介:可以分为以下几类: 第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:旋转体:包括:圆柱;圆台;圆锥;球;球冠;弓环;圆环;堤环;扇环;枣核形;等其表面积公式为:S=2*L*π*R(L是基图的周长,π是常数,R是重心到轴的距离)其体积公式为:V=2*S*π*R(S是基图的面积,π是常数,R是重心到轴的距离)第四类:截面体:包括:棱台;圆台;斜截圆柱;斜截棱柱;斜截圆锥;球冠;球缺等其表面积和体积一般都是根据图形加减解答。2023-07-05 22:29:232
面与面相交怎么得出线
确定两个交点,【延长一个平面内任意一条直线,看它和另一个平面交于哪一个点,重复两次即可】然后,两个交点连线,就可以得到两个平面的交线了。2023-07-05 22:29:341
面与面相交得到几条线什么意思
得到6条线2023-07-05 22:29:444
举例说明面与面相交得到线,线与线相交得到点
1、 点点的存在有多种形式,点可以存在于线段之上,线的两端、线的转折处等,还可以存在于面的边角之处,两个面相交的边缘之处,还可以存在于圆的圆心等;点是一种具有空间位置的视觉单位;点是相对与形状和面积而言的,主要是它与周围其他要素共同比较时具有凝聚视觉的作用;点的主要特性:通过视线的引力而导致心理张力如果在视野中同时存在两个同样性质的点,视线将会在两点间形成一段无形的线;如果在视野中同时存在三个同样性质的点,视线将会在三点间形成一个三角形;如果在视野中同时存在无数个同样性质的点,视线将会在无数个点间形成虚面;由点构成的虚线、虚面能够让人感觉到有时间性、关联性、或有轻松、或有韵律的效果;点在平面构成中有很多方法;点虽然是造型上最小的视觉单位,但是点与形的关系有相当实质的意义;2、 线在造型学上两种不同概念的线同时存在,并发挥着不同的作用;直观的线:明确的存在于造型形体表面处,是面与面的分界线,体与体的分割线;非直观的线:存在于两个面的交接处,立体形的转折处、两种色彩交接处等;造型学上的线有积极的和消极的两种意义,积极的线是指独立存在的线,消极的线是指存在于面的边缘和体的棱边的线;线的构成方法有很多种;3、 面积极的面是指具体的面消极的面是指虚有的面正方形、三角形、圆被称为三个基本形态;利用数学法则构成的直线或曲线称为“几何形”;它给人明确、理智的感觉,但容易产生单调的弊病;非人力所能完全控制其恒定现象的形称为“偶然形”;它富有特殊、抒情的效果,但容易流于轻率顺乎自然且具有秩序性美感的形称为“有机形”;它有舒畅、和谐的感觉,但要考虑形体本身与外在力的相互关系才能合理的存在;非秩序性且故意寻求表现某种情感特征的形称为“不规则形”;它富于活泼、多变而轻快的效果,但容易造成混乱与杂乱的弊端;不知道对不对哈 O(∩_∩)O~2023-07-05 22:30:062
一个平面与一个曲面相交所得的线一定是曲线吗?是不是也有可能是直线?
当然可能是直线. 只要是平行于直母线的平面和柱面相交,得到的都是平行于母线的直线 甚至不是柱面都可能得到直线(比如直纹面,只要该平面恰好通过某条直母线)2023-07-05 22:30:141
举例说明面于面相交得到线
拿筷子夹菜,筷子相交的那个点 1、 点点的存在有多种形式,点可以存在于线段之上,线的两端、线的转折处等,还可以存在于面的边角之处,两个面相交2023-07-05 22:30:231
圆锥面与面相交得到的线是什么
曲面2023-07-05 22:30:314
我们知道面与面相交得到一条线,但教室的墙角为什么是一个点呢?
三个平面的交点……2023-07-05 22:30:383
面有( ),也有( ),面与面相交成点,线有( ),也有( ),线与线相交得到点
面有(平面),也有(曲面),面与面相交成线,线有(直线),也有(曲线),线与线相交得到点2023-07-05 22:30:462
一平面与一曲面相交得到
1.两个平面相交成一条直线 你打开书本时候,两个面是不是相交一条直线 2.一个平的面与一个曲的面相交得到一条曲的线 自己在本上画画就得到曲线了 3.一条直的线与一个平的面相交得到一个点 拿一只铅笔扎破一张纸,只会有一个点破2023-07-05 22:30:541
图形是由点,线,面构成的。面与面相交得到线,线与相交得到面。(1)找出图1-4中的点,线,面。(2
图四在哪里2023-07-05 22:31:052
面和面相交的地方形成什么?分为什么和什么?
两个面相交会形成一条直线,就像两条直线相交会形成一个点一样。2023-07-05 22:31:134
一个平面与曲面相交得到?
你好!一个平面与曲面相交可能得到直线也可能得到曲线2023-07-05 22:31:401
线与面相交成【】,面与面相交成【】。
线与线相交成点,面与面相交成线,题好像出错了,求采纳。。。2023-07-05 22:31:482
一个正方形有几个面,面与面相交成几条线,线与线相交成几个点
1)正方体由6个平面围成。圆柱由2个平面和一个曲面围成2)2条曲线3)8个顶点,每个顶点由3条棱相交2023-07-05 22:31:572
面有什么面和什么面之分?线有什么线和什么线之分?
内容如下:几何图形由(点)、(线)、(面)构成,线有(直)线和(曲)线之分;面有(平)面和(曲)面之分,面与面相交得到(线),线与线相交得到(点)。几何图形简介:可以分为以下几类: 第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:旋转体:包括:圆柱;圆台;圆锥;球;球冠;弓环;圆环;堤环;扇环;枣核形;等其表面积公式为:S=2*L*π*R(L是基图的周长,π是常数,R是重心到轴的距离)其体积公式为:V=2*S*π*R(S是基图的面积,π是常数,R是重心到轴的距离)第四类:截面体:包括:棱台;圆台;斜截圆柱;斜截棱柱;斜截圆锥;球冠;球缺等其表面积和体积一般都是根据图形加减解答。2023-07-05 22:32:471
一个平面与一个曲面相交得到什么?请画图,求详解,给跪了…
如图:2023-07-05 22:32:542
一个平面与一个曲面相交能不能得到一条直线
有可能,比如,圆柱的面与跟它的轴线平行的平面相交时,能得到两条直线;相切时能得到一条直线。前提是,曲面内必须有直线。2023-07-05 22:33:071
平面和曲面相交,只能得到曲线
下列说法正确的是( A平面和曲面相交不一定得曲线 ) A平面和曲面相交不一定得曲线 B两条线相交只能得一个交点 (两条直线才行) C两个面相交只能得到一条交线 (两个平面才行) 不懂得欢迎追问.2023-07-05 22:33:151
四棱柱的两个面相交得到什么
首先分析两个物体所具有的面,四棱柱有6个平面,圆锥体有一个圆锥面和一个圆面.你所说的问题也就是平面与圆锥面的相惯线,如果平行于圆面的平面与圆锥体相惯,那么相惯线就是圆线(或整圆或圆弧),否则,平面与圆锥面的相...2023-07-05 22:33:223
将一张正方形的纸对折后,纸上会留下一道折痕,用数学知识可解释为什么
一张纸对折后,纸上会留下一道折痕,用数学知识可解释为面与面相交得到线,与此原理相同的例子还有相邻的墙面相交所成的线、长方体的六个面相交所成的线、圆柱的侧面与底面相交所成的曲线等2023-07-05 22:33:291
面与面相交得到什么?线与线相交得到什么?
三维上来说,两个平面,只要不相互平行,相交,即可得到一条直线。线线相交,如果是二维上来说,只要两直线不平行,就有一个焦点。如果是三维上来说,则,还有可能异面相交。即无焦点,但是投影相交。扩展资料:1.在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有有一个交点,则可以称为相切而不是相交。如果两个图形完全重合,则一般不称为相交。集合论中,两个集合相交是指它们的交集不是空集。2.相交弦定理(Intersecting Chords Theorem),数学术语,是指圆内的两条相交弦,被交点分成的两条线段长的积相等或经过圆内一点引两条弦,各弦被这点所分成的两线段的积相等。2023-07-05 22:33:591
面与面相交为什么得到线?
因为面是由线组成的,线与面相交为点或线(两者重合)所以面与面相交就像无数条平行的线与面相交交点在一条线上所以面与面相交就为线特殊的为面即重合。2023-07-05 22:34:131
面与面相交得到什么?线与线相交得到什么?
三维上来说, 两个平面, 只要不相互平行, 相交,即可得到一条直线. 线线相交, 如果是二维上来说, 只要两直线不平行, 就有一个焦点. 如果是三维上来说, 则,还有可能异面相交. 即无焦点,但是投影相交.2023-07-05 22:34:191
1.为什么说面与面相交得到线,线与线相交得到点?
凉皮啊,这样的问题……可以换一种方法思考:有这么一句话:点动成线,线动成面,面动成体。其实反过来就是你的问题了。思考一下:两条线,如果要相交,就必须有一个交点。就是这样啦。2023-07-05 22:34:261
面与面相交成线是什么意思
点动成线,线动成面,面动成体……2023-07-05 22:34:353
正方体面与面相交得几条线 要过程啊
这个交线就是正方体的棱所在直线,共12条2023-07-05 22:34:531
曲面与曲面相交得到什么?
曲面与曲面相交可以得到曲线,但严格的说,你说的曲面是封闭还是不封闭没有给出,而且曲面的曲率可以为0,即是平面,所以有多种情况,可以是曲线,直线等2023-07-05 22:35:011
截面怎么找
找截面的方法:用一个平面去截一个几何体,截出的面叫截面。“面与面相交得到线”,用平面去截几何体,所得到的截面就是这个平面与几何体每个面相交所围成的图形。几种常见几何体的截面:1、正方体的截面有:三角形,等腰三角形,等边三角形;正方形,长方形,平行四边形,菱形,梯形,五边形,六边形。2、圆柱的截面:圆,椭圆,长方形,不规则图形。3、圆锥的截面:圆,椭圆,等腰三角形,不规则图形。2023-07-05 22:35:112
线与面相交成什么
意思:面与面相交,两个面有一条公共的直线,或曲线。两个平面相交,有一条公共的直线。两个曲面相交,有一条公共的曲线。一个平面和一个曲面相交,有一条公共的曲线。如:α面与β面相交,其公共部分是一条线mp。线是点运动的轨迹,又是面运动的起点。在几何学中,线只具有位置和长度,而在形态学中,线还具有宽度、形状、色彩、肌理等造型元素。画家克利在包豪斯授课期间,曾这样给线下了定义:线就是运动中的点。扩展资料点的哲学含义:点就是宇宙的起源,没有任何体积,被挤在宇宙的“边缘”;点是所有图形的基础。线的哲学含义:线就是由无数个点连接而成的。面的哲学含义:面就是由无数条线组成的。三者关系1、点最重要的功能在于表明位置和进行聚焦,点与面是比较而形成的,同样一个点,如果布满整个或大面积的平面,它就是面了,如果在一个平面中多次出现,就可以理解为点;2、点与点之间连接形成线,或者点沿着一定方面规律性的延伸可以成为线,线强调方向和外形;3、平面上三个以上点的连接可以形成面,同时,平面上线的封闭或者线的展开也可以形成面,面强调形状和面积。参考资料:百度百科-点线面2023-07-05 22:35:422
线有什么和什么面有什么和什么
几何图形由(点)、(线)、(面)构成,线有(直)线和(曲)线之分;面有(平)面和(曲)面之分,面与面相交得到(线),线与线相交得到(点) 线是由无数个点集合成的图形. 线是由一个动点运动时产生的图形.线的分类 线分为直线和曲线.直线又分为直线、射线与线段.端点2023-07-05 22:36:011
一个平面与一个曲面相交所得的线一定是曲线吗?是不是也有可能是直线?
当然可能是直线。只要是平行于直母线的平面和柱面相交,得到的都是平行于母线的直线甚至不是柱面都可能得到直线(比如直纹面,只要该平面恰好通过某条直母线)2023-07-05 22:36:101
图中几何体由几个面围成?面与面相交成几条线?它们中有几条是直的,几条是曲的?
7个面14条线2023-07-05 22:36:214
图形是由什么构成的,什么与什么相交得到线,什么与什么相交得到点
面与面相交成线,线与线相交得点.点动成线,线动成面,面动成体图形由点、线、面构成2023-07-05 22:36:292