- 北营
-
1.定义域:(0,+∞)
2.值域:R
3.性质:①当x=1时,y=0,即图象过点(1,0);②y=log(a)x,当0<a<1时,在定义域单调递减;当a>1时,在定义域单调递增.
- ardim
-
值域R
定义域x>0
性质是与指数函数图象关于y=x对称
且过(1,0)
- 左迁
-
http://baike.baidu.com/view/331649.htm
对数函数性质
对数函数是指数函数的反函数 y=logax(a>0且a≠1) (0,+ ∞) (-∞,+∞) 当a>1时, x>1时,y>0(大大得大) x=1时,y=0 0<x<1时, y<0(大小得小) 当0<a<1时, 0<x<1时,y>0(小小得大) x=1时,y=0 x>1时, y<0(小大得小) 当a>1时,y=logax是增函数 当0<a<1时,y=logax是减函数2023-06-29 04:09:464
对数函数的性质是什么呢?
对数函数的性质是:值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。注意:对数函数(Logarithmic Function)是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。2023-06-29 04:10:061
对数函数的性质是什么?
对数函数的性质是:对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。对数函数与质数函数的关系:对数函数的一般形式为 y=㏒ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。2023-06-29 04:10:211
对数函数有什么性质?
一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。“log”是拉丁文logarithm(对数)的缩写,读作:[英][lu0254ɡ][美][lu0254ɡ, lɑɡ]。2023-06-29 04:10:512
对数函数的性质是什么?
对数函数的性质:一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。产生历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。2023-06-29 04:10:591
对数函数图像及性质
对数函数图像及性质如下:对数函数性质:对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。对数函数的图形是指数函数的图形关于直线y=x的对称图形,因为它们互为反函数。(1)对数函数的定义域为大于0的实数集合。(2)对数函数的值域为全部实数集合。(3)函数总是通过(1,0)这点。(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。(5)显然对数函数无界。拓展:考纲要求:1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2.理解对数函数的概念;理解对数函数的单调性,掌握函数图象通过的特殊点。3.了解指数函数 y=a 与对数函数 y=logax 互为反函数(a>0,a≠1)。常见考法:多以三大题型考查对数函数的图像和性质的应用。题目难度一般较大。在高考中也经常和导数等知识联合考查。本节知识点包括对数函数的概念、对数函数的图像及其性质、指数函数与对数函数的关系等知识点。重点是对数函数的图像和性质。2023-06-29 04:11:121
对数函数的性质?
你这思路是没有错,图形也没有画错,但是那个自变量是指数函数y=a^x的自变量,a=2,5,10,这个是求对数㏒的函数,所以自变量变成y了,所以最后应该是y作为自变量,令y都等于同一个数值,就是你所说曲线越靠近x轴越大2023-06-29 04:11:322
对数的性质
1) 1的对数等于02) 底的对数等于13) 乘积的对数等于对数的和4) 商的对数等于被除数的对数与除数对数的差5) 幂的对数等于幂指数与底的对数的积6) 对数恒等式7) 换底公式2023-06-29 04:11:392
对数函数的性质有哪些?
1.当底数相同的时候:当0<a<1时,真数越大(越小),函数值越小(越大),如㏒1/2 3>㏒1/2 5.当a>1时,真数越大(越小),函数值越大(越小),如㏒2 3<㏒2 5.2.当底数不相同的时候:①当真数相同时,⑴当0<a<1时,当真数大于0小于1时,底数越大,函数值越大,当真数大于1时,底数越大,函数值越小。⑵当a>1时,当真数大于0小于1时,底数越大,函数值越小,当真数大于1时,底数越大,函数值越大。②当真数不相同时,应该将两个对数相除,利用换底公式,常换成底为e,再运用上述方法。要熟练掌握对数的有关性质,多做练习,才能运用自如。2023-06-29 04:11:511
对数函数图像及性质
对数函数图像及性质如下:对数函数的图像在第一、四象限,过定点(1,0)和点(a,1),y轴是其渐近线。底数大小决定了图像相对位置的高低,且不论底数是大于1还是小于1,按顺时针方向,图像对应的对数函数的底数逐渐变大。如果两个对数函数的底互为倒数,则它们的函数图像关于x轴对称。对数函数与指数函数互为反函数,它们的图像关于直线y=x对称。定义域求解:对数函数y=logax 的定义域是{x 丨x>0};值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数函数零点:x=12023-06-29 04:12:111
指数函数与对数函数性质是什么 性质规律的比较
1、对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点; 2、对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数; 3、对数函数的图像在y轴右侧,指数函数的图像在x轴上方; 4、对数函数的图像在区间(1,正无穷)上,当底数大于1时底数越大图像越接近x轴,当底数小于1时底数越小越图像越接近x轴。 5、性质规律的比较:指数函数和对数函数的单调性都由底数来决定,当时它们在各自的定义域内都是减函数,当时它们在各自的定义域内都是增函数;指数函数和对数函数都不具有奇偶性;它们的变化规律是,指数函数当时 ,当时即有“同位大于1,异位小于1”的规律,而对数函数当时 ,当时即有“同位得正,异位得负”的规律。2023-06-29 04:12:311
对数的运算性质是怎么得出来的?
请你多看下对数函数的定义举个例子吧,假设lna=b则根据定义,我们可以知道e^b=a因为e^m*e^n=e^(m+n)所以ln(mn)=lnm+lnn相信你指数函数的性质一定很了解,由于指数函数与对数函数互为反函数,所以你可以根据指数函数的性质来推导出对数函数的性质。刚开始学对部分函数的运算性质不是很了解,等你学的更多了,站在与现在不同的高度看待问题了,这些东西就自然而然的明白了。2023-06-29 04:12:401
对数函数图像及性质
定义域为{X|X>0}底数1>a>0时函数在定义域内单调递减,a>1时在定义域内单调递增.且当f(X)=loga(X)时,恒过(1,0)希望对您有帮助`^^2023-06-29 04:12:472
对数函数的运算性质有几条?
对数函数有三条运算性质,它们分别是: 如果a>0且a≠1,M>0,N>0,则有 (1)log a (M·N)=log a M+log a N; (2)log a ( )=log a M-log a N; (3)log a M n =nlog a M(n∈R).2023-06-29 04:12:561
对数函数及其性质?
对函数y=logax,以a为底的对函数,其性质为①定义域为(0,+∞),②其值域为R,③都过点(1,0),就是说x=1时,y=0,④当a>1时,y=logax在(0,+∞)上单调递增;当0<a<1时,函数y=logax在(0,+∞)上单调递减2023-06-29 04:13:031
如何证明对数函数运算性质的第二条?
对数的定义和运算性质 一般地,如果a(a大于0,且a不等于1)的b次幂等于n,那么数b叫做以a为底n的对数,记作log(a)(n)=b,其中a叫做对数的底数,n叫做真数。 底数则要大于0且不为1真数大于0对数的运算性质: 当a>0且a≠1时,m>0,n>0,那么: (1)log(a)(mn)=log(a)(m)+log(a)(n); (2)log(a)(m/n)=log(a)(m)-log(a)(n); (3)log(a)(m^n)=nlog(a)(m)(n∈r) (4)换底公式:log(a)m=log(b)m/log(b)a(b>0且b≠1) (5)a^(log(b)n)=n^(log(b)a)证明: 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (5)对数恒等式:a^log(a)n=n; log(a)a^b=b对数与指数之间的关系 当a>0且a≠1时,a^x=nx=㏒(a)n2023-06-29 04:14:001
对数的运算性质有哪些
1对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,N>0;③loga1=0,logaa=1,alogaN=N,logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2对数式与指数式的互化式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)3对数的运算性质如果a>0,a≠1,M>0,N>0,那么(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM (n∈R).问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?②logaan=? (n∈R)③对数式与指数式的比较.(学生填表)式子ab=NlogaN=b名称a—幂的底数b—N—a—对数的底数b—N—运算性质am·an=am+nam÷an=(am)n=(a>0且a≠1,n∈R)logaMN=logaM+logaNlogaMN=logaMn=(n∈R)(a>0,a≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:①若a<0,则N的某些值不存在,例如log-28?②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数?③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数?为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?解题方法技巧1(1)将下列指数式写成对数式:①54=625;②2-6=164;③3x=27;④13m=5?73.(2)将下列对数式写成指数式:①log1216=-4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N?logaN=b.解答(1)①log5625=4.②log2164=-6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N?logaN=b.(2)①12-4=16.②27=128.③3x=27.④10-2=0.01.⑤e2.303=10.⑥10k=π.2根据下列条件分别求x的值:(1)log8x=-23;(2)log2(log5x)=0;(3)logx27=31+log32;(4)logx(2+3)=-1.解析(1)对数式化指数式,得:x=8-23=?(2)log5x=20=1. x=?(3)31+log32=3×3log32=?27=x?(4)2+3=x-1=1x. x=?解答(1)x=8-23=(23)-23=2-2=14.(2)log5x=20=1,x=51=5.(3)logx27=3×3log32=3×2=6,∴x6=27=33=(3)6,故x=3.(4)2+3=x-1=1x,∴x=12+3=2-3.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值?解答解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.解法二对所求指数式两边取以a为底的对数得logaA=loga(x512y-13)=512logax-13logay=512×4-13×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x·y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx1+lgx(x≠110,lgx≠-1).令lgx=t, 则lgy=-t1+t(t≠-1).∴lg(xy)=lgx+lgy=t-t1+t=t21+t.解题规律对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.∴Δ=S2+4S≥0,解得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5求值:(1)lg25+lg2·lg50+(lg2)2;(2)2log32-log3329+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20·12lg0.7的值.解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.(2)转化为log32的关系式.(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,设x=7lg20·12lg0.7能否先求出lgx,再求x?解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2=2lg5+lg2·(1+lg5)+(lg2)2=lg5·(2+lg2)+lg2+(lg2)2=lg102·(2+lg2)+lg2+(lg2)2=(1-lg2)(2+lg2)+lg2+(lg2)2=2-lg2-(lg2)2+lg2+(lg2)2=2.(2)原式=2log32-(log325-log332)+log323-5log59=2log32-5log32+2+3log32-9=-7.(3)由已知lgab=lg(a-2b)2 (a-2b>0),∴ab=(a-2b)2, 即a2-5ab+4b2=0.∴ab=1或ab=4,这里a>0,b>0.若ab=1,则a-2b<0, ∴ab=1( 舍去).∴ab=4,∴log2a-log2b=log2ab=log24=2.(4)设x=7lg20·12lg0.7,则lgx=lg20×lg7+lg0.7×lg12=(1+lg2)·lg7+(lg7-1)·(-lg2)=lg7+lg2=14,∴x=14, 故原式=14.解题规律①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);(2)logab·logbc=logac;(3)logab=1logba(b>0,b≠1);(4)loganbm=mnlogab.解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数.解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,∴b=logcNlogca.∴logaN=logcNlogca.(2)由(1)logbc=logaclogab.所以 logab·logbc=logab·logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?解答已知log67=a,log34=b,∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32,由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.解题技巧利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧?8已知x,y,z∈R+,且3x=4y=6z.(1)求满足2x=py的p值;(2)求与p最接近的整数值;(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?解答(1)解法一3x=4y?log33x=log34y?x=ylog34?2x=2ylog34=ylog316,∴p=log316.解法二设3x=4y=m,取对数得:x·lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.由2y=py, 得 2lgmlg3=plgmlg4,∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39<log316<log327=3,∴2<p<3.又3-p=log327-log316=log32716,p-2=log316-log39=log3169,而2716<169,∴log32716<log3169,∴p-2>3-p.∴与p最接近的整数是3.解题思想①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?解答logma+b3=logm(a+b3)212=解题技巧①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+logmb),即logma+b3=12(logma+logmb).思维拓展发散1数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,∴lga∈〔0,1).我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;②有效数字相同的不同正数它们的常用对数的尾数相同,只是首数不同;③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.师生互动什么叫做科学记数法?N>0,lgN的首数和尾数与a×10n有什么联系?有效数字相同的不同正数其常用对数的什么相同?什么不同?2若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0?380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.解析①lg0.203 4=1?308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0?380 4)=-n-lga,其中n-9是首数,lga+0?380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:n-9=-(n+1)lga+0.380 4=1-lga?n=4,lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3计算:(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?解题方法认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2=-1+12log6(4+22+3·2-3)=-1+12log66=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4已知log2x=log3y=log5z<0,比较x,3y,5z的大小.解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.解答设log2x=log3y=log5z=m<0.则x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:(2)6=23=8,(33)6=32=9,所以2<33.又(2)10=25=32,(55)10=52=25,∴2>55.∴55<2<33. 又m<0,图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1?解题规律①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较?①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y<x<5z.潜能挑战测试1(1)将下列指数式化为对数式:①73=343;②14-2=16;③e-5=m.(2)将下列对数式化为指数式:①log128=-3;②lg10000=4;③ln3.5=p.2计算:(1)24+log23;(2)2723-log32;(3)2513log527+2log52.3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;(2)若lg3.127=a,求lg0.031 27.4已知a≠0,则下列各式中与log2a2总相等的是()A若logx+1(x+1)=1 ,则x的取值范围是()A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为()A若log63=0.673 1,log6x=-0.326 9, 则x为()A若log5〔log3(log2x)〕=0,则x=.98log87·log76·log65=.10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中 (Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠?,M?{x|x<0},求实数a的取值范围.16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x倍,则函数y=f(x)的解析式f(x)=.名师助你成长1.(1)①log7343=3.②log1416=-2.③lnm=-5.(2)①12-3=8.②104=10 000.③ep=3.5.2.(1)48点拨:先应用积的乘方,再用对数恒等式.(2)98点拨:应用商的乘方和对数恒等式.(3)144点拨:应用对数运算性质和积的乘方.3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a4.C点拨:a≠0,a可能是负数,应用对数运算性质要注意对数都有意义.5.B点拨:底x+1>0且x+1≠1;真数x+1>0.6.A点拨:对ab=M取以M为底的对数.7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,所以log63+log61x=log63x=1.∴3x=6, x=12.8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.9.5点拨:log87·log76·log65=log85, 8log85=5.10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.11.设第n个营养级能获得100千焦的能量,依题意:106·10100n-1=100,化简得:107-n=102,利用同底幂相等,得7-n=2,或者两边取常用对数也得7-n=2.∴n=5,即第5个营养级能获能量100千焦.12?设3x=4y=6z=k,因为x,y,z∈R+,所以k>1.取以k为底的对数,得:x=1logk3,y=1logk4,z=1logk6.∴3x=3logk3=113logk3=1logk33,同理得:4y=1logk44,6z=1logk66.而33=1281,44=1264,66=1236,∴logk33>logk44>logk66.又k>1,33>44>66>1,∴logk33>logk44>logk66>0,∴3x<4y<6z.13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,即xlga+ylgb=ylga+xlgb=0.(※)两式相加,得x(lga+lgb)+y(lga+lgb)=0.即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.当lga+lgb=0时,代入xlga+ylgb=0,得:(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.∴x+y=0或x-y=0,∴x2=y2.14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).即b≠1,d≠1时,a-11-b=c-11-d.∴(a-1)(1-d)=(c-1)(1-b),∴(a-1)(d-1)=(b-1)(c-1).当b=1,c=1时显然成立.15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则ax2-2(a+1)x-1=10t(t>0).∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.①当a=0时,解集{x|x<-1}?{x|x<0};当a≠0时,M≠?且M?{x|x<0}.∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1<x2,则②当a>0时,M={x|x<x1,或x>x2},显然不是{x|x<0}的子集;③当a<0时,M={x|x1<x<x2}只要:a<0,Δ=4(a+1)2+8a>0,x1+x2=2(a+1)a<0,x1·x2=-2a>0.解得3-2<a<0,综上所求,a的取值范围是:3-2<a≤0.16.N=3.840×1011, lgN=11.584 3.17.设经过x年,成本降为原来的40%.则(1-10%)x=40%,两边取常用对数,得:x·lg(1-10%)=lg40% ,即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.所以经过10年成本降低为原来的40%.18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.2023-06-29 04:14:081
对数函数和指数函数图像的性质是怎样?底数越大函数图像越靠近哪里?对数函数和指数函数图
对数函数的图像都过(1,0)点,指数函数的图像都过(0,1)点;对数(指数)函数的底数大于1时为增函数,大于0而小于1时为减函数;对数函数的图像在y轴右侧,指数函数的图像在x轴上方;对数函数的图像在区间(1,正无穷)上,当底数大于1时底数越大图像越接近x轴,当底数小于1时底数越小越图像越接近x轴;2023-06-29 04:14:151
高一数学必修一 对数函数及其性质 在线等 急!急!
图像详见百度百科http://baike.baidu.com/view/331649.html?wtp=tt性质:定义域求解:对数函数y=loga x 的定义域是{x |x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需满足{x>0且x≠1} 。 {2x-1>0 =〉x>1/2且x≠1,即其定义域为 {x |x>1/2且x≠1}值域:实数集R 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数,并且上凸; 0<a<1时,在定义域上为单调减函数,并且下凹。 奇偶性:非奇非偶函数,或者称没有奇偶性。 周期性:不是周期函数 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正 底真异对数负2023-06-29 04:14:331
对数函数性质
对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1... 对数函数性质 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。 值域:实数集R,显然对数函数无界 定点:对数函数的函数图像恒过定点(1,0) 单调性:a>1时,在定义域上为单调增函数 0<a<1时,在定义域上为单调减函数 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 基本性质 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N) 4、log(a)(M÷N)=log(a)(M)-log(a)(N) 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 其他性质 1.换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 2.log(a)(b)=1/log(b)(a) 3.对数函数的图象都过(1,0)点。 4.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减。随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1。 ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1。 5.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称。2023-06-29 04:14:401
对数函数性质
两边取ln,然后就是关于lnX的一元二次方程了2023-06-29 04:14:493
高一数学函数及其表示
中 小学 教育网,网络高清课程,手机看课,学习更方便。2023-06-29 04:14:581
对数的定义域是什么?
对数的定义域:x∈(0,+∞),值域:y∈R。对数函数是函数的一类,所以讨论对数函数的性质就是讨论函数的性质。从函数性质开始:函数的第一个性质就是单调性,但函数的单调性是由底数a决定的,当a>1时,对数函数就是单调递增函数,当0。函数的其他性质就是奇偶性,周期性,对称性,但对数函数都不具备,所以在此就不做讨论了。对数函数特有的性质就是所有的对数函数必过一个点(0,1),即当x=0时,即y=1。产生历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。2023-06-29 04:15:401
对数基本性质
对数(logarithm)是对求幂的逆运算,一个数字的对数是必须产生另一个固定数字(基数)的指数。对数的符号log出自logarithm,如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数对数符号以a为底N的对数记作。对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。3、对数的定义如果,即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。称以无理数e(e=2.71828...)为底的对数称为自然对数(natural logarithm),并记为ln。零没有对数。在实数范围内,负数无对数。在复数范围内,负数是有对数的。事实上,当,,则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。4、对数函数定义函数叫做对数函数(logarithmic function),其中x是自变量。对数函数的定义域是。函数基本性质1、过定点,即x=1时,y=0。2、当时,在上是减函数;当时,在上是增函数。复变函数,e是自然对数的底,i是虚数单位。它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”。的推导:因为在的展开式中把x换成±ix.所以将公式里的x换成-x,得到:,然后采用两式相加减的方法得到:,.这两个也叫做欧拉公式。将中的x取作π就得到:.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。2023-06-29 04:15:541
对数函数的性质及运算
性质y=loga(x)(1)定义域x>0(2)值域R(3)a>1,在定义域内是增函数,0<a<1,在定义域内是减函数(4)过定点(1,0)(5)是非奇非偶函数对数函数没有啥运算对数有运算法则loga(M)+loga(N)=loga(MN)loga(M)-loga(N)=loga(M-N)nloga(M)=loga(M^n)2023-06-29 04:16:103
lg100为什么等于2?
lg100是以10为底,100的对数,等价于10^x=100。解得:x=2,所以lg100=2。将以10为底的对数叫做常用对数(common logarithm),并把log(10) N 记为 lg N。对数函数基本性质:1、过定点(1,0),即x=1时,y=0。2、当 0<a<1 时,在(0,+∞)上是减函数;当a>1时,在(0,+∞)上是增函数。3、对数函数是非奇非偶函数(无论增函数还是减函数都一样),它的反函数指数函数同样也是非奇非偶函数。2023-06-29 04:16:171
怎么证?对数函数应该有这个性质!
前提还要f(x)连续 令g(x)=f(e^x)则g(x+y)=g(x)+g(y)于是g(x)=g(1)xf(x)=f(e)lnx2023-06-29 04:16:461
对数函数性质问题
你现在这是复合函数了,即F(g(x))=loga x^2 其中g(x)=x^2,复合函数的话就不能光考虑其中对数函数的性质了,而要综合考虑,因为x^2恒大于等于0,而对数函数的定义域是大于0,所以x不等于0就是最后的定义域。我的解释,希望你能理解2023-06-29 04:16:542
对数函数的性质?急需!!!
log以4为底9的对数 = log以2为底3的对数这不就是个性质嘛 可以底数真数同时开根号 或者同时平方2023-06-29 04:17:011
对数函数求导公式有哪些
对数函数是高中数学的重点之一,那么对数函数求导公式是什么呢?快来和我一起看看吧。下面是由我为大家整理的“对数函数求导公式有哪些”,仅供参考,欢迎大家阅读。 对数函数求导公式 对数求导的公式:(logax)"=1/(xlna)。一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0。并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。 对数与指数之间的关系 当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x, log(a^k)(M^n)=(n/k)log(a)(M)(n属于R), 换底公式(很重要) log(a)(N)=log(b)(N)/log(b)(a)=lnN/lna=lgN/lga, ln自然对数以e为底e为无限不循环小数(通常情况下只取e=2.71828), lg常用对数以10为底。 拓展阅读:对数函数的性质与定义 函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量。下面是对数函数的性质与定义,希望对考生复习有帮助。 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。2023-06-29 04:17:101
对数函数的特点?基本性质?
2023-06-29 04:17:193
对数函数图像及性质
对数函数图像及性质首先是知识梳理:知识点一对数函数的概念知识点二 对数函数图像及性质知识点三反函数。反思与感悟 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式。对数函数性质对数函数是函数的一类,所以讨论对数函数的性质就是讨论函数的性质,讨论对数函数以前先要说出对数函数的定义域:x∈(0,+∞) 值域:y∈R然后才开始讨论对数函数的性质,从函数性质开始:函数的第一个性质就是单调性,但函数的单调性是由底数a决定的,当a>1时,对数函数就是单调递增函数,当0<a<1时,对数函数就是单调递减函数。函数的其他性质就是奇偶性,周期性,对称性,但对数函数都不具备,所以在此就不做讨论了。对数函数特有的性质就是所有的对数函数必过一个点(0,1),即当x=0时,即y=1。2023-06-29 04:17:321
对数函数的应用和性质
1、一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。2、对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。3、一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。4、其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。5、“log”是拉丁文logarithm(对数)的缩写。2023-06-29 04:17:531
求教对数的性质及其证明(
对数的概念 英语名词:logarithms 如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。 log(a)(b)函数叫做对数函数。对数函数中b的定义域是b>0,零和负数没有对数;a的定义域是a>0且a≠1。[编辑本段]对数的性质及推导定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)基本性质: 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=log(a)(M)/n推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)]=a^[log(a)(M)]×a^[log(a)(N)]=(M)*(N) 由指数的性质 a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)]=a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)]=a^{[log(a)(M)]-[log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N)=log(a)(M)-log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)]={a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)]=a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导: 设e^x=b^m,e^y=a^n 则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n) 得:log(a^n)(b^m)=ln(b^m)÷ln(a^n) 由基本性质4可得 log(a^n)(b^m)=[m×ln(b)]÷[n×ln(a)]=(m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式 log(a^n)(b^m)=m÷n×[log(a)(b)]--------------------------------------------(性质及推导完)[编辑本段]函数图象 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当0<a<1时,图象上函数显示为(0,+∞)单减.随着a的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=1. ②当a>1时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称.[编辑本段]其他性质 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下: N=a^[log(a)(N)] a=b^[log(b)(a)] 综合两式可得 N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]} 所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a)公式二:log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数 log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)×log(b)(a)=1 在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg10^2=2,lg4000=lg(10^3×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代。2023-06-29 04:18:011
对数函数的概念及性质
一. 基本知识指数函数和对数函数是高中九个基本函数中重要的两个。同其他函数一样,还是要求掌握好函数的定义,三要素,图象和性质。指数函数是y=常数的x次方,x在指数的位置,底数大于0,且不为1。其图象为讲义气的义,过定点(0,1),底数大于1,为一撇,底数大于0小于1为一捺。当底数为一对倒数时,图象关于y轴对称。对数函数是y=以a为底x的对数,底数大于0且不为1,真数x大于0。其图象为躺着的讲义气的义,过定点(1,0)。底数为一对倒数时图象关于x轴对称。不管是指数函数还是对数函数,底数大于1为增函数,底数大于0小于1为减函数。指数函数和对数函数二. 基本题型求定义域和值域。求定义域注意三点:偶次根号下的式子大于等于0,分母不为0,真数大于0。过定点问题。比大小:1)利用单调性比;2)利用媒介法比大小,常用的媒介有0和1。复合函数题型:1)分解;2)一一研究;3)综合解决问题。2023-06-29 04:18:141
对数函数有那些性质呢?
对数函数有函数性质和运算性质。函数性质:定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}值域:实数集R,显然对数函数无界。定点:函数图像恒过定点(1,0)。单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数。奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。两句经典话:底真同对数正,底真异对数负。解释如下:也就是说:若y=logab(其中a>0,a≠1,b>0)当0<a<1,0<b<1时,y=logab>0;当a>1,b>1时,y=logab>0;当0<a<1,b>1时,y=logab<0;当a>1,0<b<1时,y=logab<0。指数函数的求导:e的定义:e=lim(x→∞)(1+1/x)x=2.718281828...设a>0,a!=1----(loga(x))"=lim(Δx→0)((loga(x+Δx)-loga(x))/Δx)=lim(Δx→0)(1/x*x/Δx*loga((x+Δx)/x))=lim(Δx→0)(1/x*loga((1+Δx/x)x/Δx))=1/x*lim(Δx→0)(loga((1+Δx/x)x/Δx))=1/x*loga(lim(Δx→0)(1+Δx/x)x/Δx)=1/x*loga(e)特殊地,当a=e时,(loga(x))"=(lnx)"=1/x。----设y=ax两边取对数lny=xlna两边对求x导y"/y=lnay"=ylna=a^xlna特殊地,当a=e时,y"=(ax)"=(ex)"=e^lnex=ex。运算性质:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)2023-06-29 04:18:394
对数函数有那些性质呢?
对数函数有函数性质和运算性质。函数性质:定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}值域:实数集R,显然对数函数无界。定点:函数图像恒过定点(1,0)。单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数。奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。两句经典话:底真同对数正,底真异对数负。解释如下:也就是说:若y=logab(其中a>0,a≠1,b>0)当0<a<1,0<b<1时,y=logab>0;当a>1,b>1时,y=logab>0;当0<a<1,b>1时,y=logab<0;当a>1,0<b<1时,y=logab<0。指数函数的求导:e的定义:e=lim(x→∞)(1+1/x)x=2.718281828...设a>0,a!=1----(loga(x))"=lim(Δx→0)((loga(x+Δx)-loga(x))/Δx)=lim(Δx→0)(1/x*x/Δx*loga((x+Δx)/x))=lim(Δx→0)(1/x*loga((1+Δx/x)x/Δx))=1/x*lim(Δx→0)(loga((1+Δx/x)x/Δx))=1/x*loga(lim(Δx→0)(1+Δx/x)x/Δx)=1/x*loga(e)特殊地,当a=e时,(loga(x))"=(lnx)"=1/x。----设y=ax两边取对数lny=xlna两边对求x导y"/y=lnay"=ylna=a^xlna特殊地,当a=e时,y"=(ax)"=(ex)"=e^lnex=ex。运算性质:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)2023-06-29 04:19:084
对数函数性质是什么?
对数函数性质是:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1。定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}。值域:实数集R,显然对数函数无界定点:对数函数的函数图像恒过定点(1,0)单调性:a>1时,在定义域上为单调增函数0<a<1时,在定义域上为单调减函数奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1基本性质:1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N)4、log(a)(M÷N)=log(a)(M)-log(a)(N)5、log(a)(M^n)=nlog(a)(M)6、log(a^n)M=1/nlog(a)(M)2023-06-29 04:19:441
对数函数的性质
对数函数有函数性质和运算性质。函数性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界。定点:函数图像恒过定点(1,0)。单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数。奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。两句经典话:底真同对数正,底真异对数负。解释如下:也就是说:若y=logab (其中a>0,a≠1,b>0)当0<a<1, 0<b0;当a>1, b>1时,y=logab>0;当0<a1时,y=logab<0;当a>1, 0<b<1时,y=logab<0。指数函数的求导:e的定义:e=lim(x→∞)(1+1/x)x=2.718281828...设a>0,a!=1----(log a(x))"=lim(Δx→0)((log a(x+Δx)-log a(x))/Δx)=lim(Δx→0)(1/x*x/Δx*log a((x+Δx)/x))=lim(Δx→0)(1/x*log a((1+Δx/x)x/Δx))=1/x*lim(Δx→0)(log a((1+Δx/x)x/Δx))=1/x*log a(lim(Δx→0)(1+Δx/x)x/Δx)=1/x*log a(e)特殊地,当a=e时,(log a(x))"=(ln x)"=1/x。----设y=ax两边取对数ln y=xln a两边对求x导y"/y=ln ay"=yln a=a^xln a特殊地,当a=e时,y"=(ax)"=(ex)"=e^ln ex=ex。运算性质:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)2023-06-29 04:19:581
ln函数的性质是什么?
ln对数函数的性质是:对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。对数函数的运算公式当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N)。(2)log(a)(M/N)=log(a)(M)-log(a)(N)。(3)log(a)(M^n)=nlog(a)(M)(n∈R)。(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。(6)a^(log(b)n)=n^(log(b)a)。(7)对数恒等式:a^log(a)N=N。2023-06-29 04:20:041
对数的运算性质
对数的运算性质:对数函数过定点(1,0),即x=1时,y=0。当0<a<1时,在(0,+∞)上是减函数;当a>1时,在(0,+∞)上是增函数。 对数函数运算性质 一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。 底数则要>0且≠1 真数>0 并且,在比较两个函数值时: 如果底数一样,真数越大,函数值越大。(a>1时) 如果底数一样,真数越小,函数值越大。(0<a<1时) 对数函数的运算公式 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M)(n∈R) (4)log(a^n)(M)=(1/n)log(a)(M)(n∈R) (5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) (6)a^(log(b)n)=n^(log(b)a) 设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a) (7)对数恒等式:a^log(a)N=N; log(a)a^b=b,证明:设a^log(a)N=X,log(a)N=log(a)X,N=X (8)由幂的对数的运算性质可得(推导公式) 1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M 2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M 3.log(a^n)M^n=log(a)M, log(a^n)M^m=(m/n)log(a)M 4.log(以n次根号下的a为底)(以n次根号下的M为真数)=log(a)M log(以n次根号下的a为底)(以m次根号下的M为真数)=(n/m)log(a)M 5.log(a)b×log(b)c×log(c)a=12023-06-29 04:20:211
对数函数的性质 都有什么特点
1、对数函数性质:值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数。 2、0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数,周期性:不是周期函数。 p=""> </a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数,周期性:不是周期函数。>2023-06-29 04:20:391
对数函数的公式有?及其性质.
对数的定义和运算性质 一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数. 底数则要大于0且不为1 对数的运算性质: 当a>0且a≠1时,M>0,N>0,那么: (1)log(a)(MN)=log(a)(M)+log(a)(N); (2)log(a)(M/N)=log(a)(M)-log(a)(N); (3)log(a)(M^n)=nlog(a)(M) (n∈R) (4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1) 对数与指数之间的关系 当a>0且a≠1时,a^x=N x=㏒(a)N 对数函数的常用简略表达方式: (1)log(a)(b)=log(a)(b) (2)常用对数:lg(b)=log(10)(b) (3)自然对数:ln(b)=log(e)(b) e=2.718281828...通常情况下只取e=2.71828 对数函数的定义 对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y.因此指数函数里对于a的规定(a>0且a≠1),同样适用于对数函数. 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数. [编辑本段]性质 定义域:(0,+∞)值域:实数集R 定点:函数图像恒过定点(1,0). 单调性:a>1时,在定义域上为单调增函数,并且上凸; 02023-06-29 04:20:451
对数函数图像及性质
对数函数图像及性质如下:1、值域:实数集R,显然对数函数无界。2、定点:函数图像恒过定点(1,0)。3、单调性:a>1时,在定义域上为单调增函数。4、奇偶性:非奇非偶函数。5、周期性:不是周期函数。6、零点:x=1。对数函数表达方式:(1)常用对数:lg(b)=log10b(10为底数)。(2)自然对数:ln(b)=logeb(e为底数)。e为无限不循环小数,通常情况下只取e=2.71828。对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。2023-06-29 04:20:521
对数的运算性质
对数的运算性质:对数函数过定点(1,0),即x=1时,y=0。当0<a<1时,在(0,+∞)上是减函数;当a>1时,在(0,+∞)上是增函数。对数函数运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)对数函数的运算公式当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M)(n∈R)(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)(6)a^(log(b)n)=n^(log(b)a)设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)(7)对数恒等式:a^log(a)N=N;log(a)a^b=b,证明:设a^log(a)N=X,log(a)N=log(a)X,N=X(8)由幂的对数的运算性质可得(推导公式)1.log(a)M^(1/n)=(1/n)log(a)M,log(a)M^(-1/n)=(-1/n)log(a)M2.log(a)M^(m/n)=(m/n)log(a)M,log(a)M^(-m/n)=(-m/n)log(a)M3.log(a^n)M^n=log(a)M, log(a^n)M^m=(m/n)log(a)M4.log(以n次根号下的a为底)(以n次根号下的M为真数)=log(a)Mlog(以n次根号下的a为底)(以m次根号下的M为真数)=(n/m)log(a)M5.log(a)b×log(b)c×log(c)a=12023-06-29 04:21:141
对数函数的底数是什么,有什么性质?
以log2 x,lnx,lgx为例,它们的底数2<e<10;当x>0时log2 x>lnx>lgx换言之:对同一个自变量x0(>0)而言,图像越远离Y轴的正方向的函数的函数值越小。扩展资料:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。参考资料来源:百度百科-对数函数2023-06-29 04:21:391
对数函数的运算性质
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)当a>0且a≠1时,M>0,N>0,那么: 推导:设所以两边取对数,则有即又因为所以2023-06-29 04:21:451
对数函数运算性质 是怎么得出来的?
请你多看下对数函数的定义举个例子吧,假设lna=b则根据定义,我们可以知道e^b=a因为e^m*e^n=e^(m+n)所以ln(mn)=lnm+lnn相信你指数函数的性质一定很了解,由于指数函数与对数函数互为反函数,所以你可以根据指数函数的性质来推导出对数函数的性质。刚开始学对部分函数的运算性质不是很了解,等你学的更多了,站在与现在不同的高度看待问题了,这些东西就自然而然的明白了。2023-06-29 04:22:051
高中数学,指数函数,对数函数怎么区别,它们分别有什么特征或者说性质
帮你搜了下,希望对你有帮助。1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=573. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=NlogaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=NlogaN=b.(2)①12-4=16.②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值 解答解法一∵logax=4,logay=5, ∴x=a4,y=a5, ∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得 logaA=loga(x512y-13) =512logax-13logay=512×4-13×5=0, ∴A=1. 解题技巧 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围. 解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数? 解答∵x>0,y>0,x·y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2·lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20·12lg0.7的值. 解析(1)25=52,50=5×10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20·12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2 =2lg5+lg2·(1+lg5)+(lg2)2 =lg5·(2+lg2)+lg2+(lg2)2 =lg102·(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b<0, ∴ab=1( 舍去). ∴ab=4, ∴log2a-log2b=log2ab=log24=2. (4)设x=7lg20·12lg0.7,则 lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)·lg7+(lg7-1)·(-lg2) =lg7+lg2=14, ∴x=14, 故原式=14. 解题规律 ①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3). ②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).62023-06-29 04:22:131
对数的运算性质是什么?
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大(a>1时)。如果底数一样,真数越小,函数值越大(0<a<1时)。对数函数的运算公式当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N)。(2)log(a)(M/N)=log(a)(M)-log(a)(N)。(3)log(a)(M^n)=nlog(a)(M)(n∈R)。(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)。(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。(6)a^(log(b)n)=n^(log(b)a)。(7)对数恒等式:a^log(a)N=N。2023-06-29 04:22:191