黑桃花
当两列变量均为二分变量时应计算哪一种相关
当两列变量均为二分变量时应计算φ相关。区分度是指项目对所测量的心理特性的区分程度或鉴别能力,也就是项目的效度。常以高分组与低分组在该项目得分的平均数的差异表示,或以该项目得分与测验总分的相关表示。确定区分度的方法确定区分度常用的是相关法,即以项目分数与效标分数(或测验总分)的相关作为项目区分度的指标,相关越高,区分能力越好。1、二列相关。二列相关适用于两个可以连续测量的变量,但其中有一个由于某种原因被分成两个类别。2、点二列相关。点二列相关适用于一个变量为连续变量,另一个变量为二分变量的资料。当一个变量是双峰分配时。尽管它并不是真正的二分变量,这种统计方法也适用。3、四分相关。四分相关适用于两个常态的连续变量均被人为二分的资料。如果一个题目分数被二分成通过不通过,效标成绩也被分成通过与不通过,这时就会得到四个类别,从而可组成一个四格表。计算四分相关最常用的是皮尔逊的余弦公式。4、φ相关。相关的统计方法适用于两个变量都是点分配的资料,即两个变量都是二分名义变量。5、积差相关又称积距相关,是当两个变量都是正态连续变量,两者之间呈线性关系时,表示这两个变量之间的相关。2023-06-06 18:04:381
二分的类别变量需要建立几个变量
二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。生物统计学论坛 在多重回归、Logistic回归模型中,自变量可以是连续型变量(interval variables),也可以是二项分类变量,和多分类变量。为了便于解释,对二项分类变量(如好坏、死活、发病不发病等)一般按0、1编码,一般0表示阴性或较轻情况,而1表示阳性或较严重情况。如果对二项分类变量按+1与-1编码,那么所得的logistic回归OR=exp(2beta),多重回归的beta同样增加一倍,容易造成错误的解释。因此建议尽量避免“+1”、“-1”编码形式。多分类变量又可分为有序(等级)或无序(也叫名义),如果是有序(ordinal)分类变量,一般可按对因变量影响由小到大的顺序编码为1、2、3、...,或按数据的自然大小,将它当作连续型变量处理。如果是无序的(nominal)分类变量,则需要采用哑变量(dummy variables)进行编码,下面以职业(J)为例加予以说明。 假如职业分类为工、农、商、学、兵5类,则可定义比分类数少1个,即5-1=4个哑变量2023-06-06 18:05:161
二分变量的调节变量结果怎么看
对于二分变量,假设其取值为T和F。对之建立预测模型,那么预测结果可以有以下三种表达方式:(1)预测结果为T(或预测结果为F);(2)预测结果为T,把握程度为p(或预测结果为F,把握程度为1-p);其中p为0到1之间的实数。(3)预测结果为取T的可能性为p。2023-06-06 18:05:221
自变量是二分变量怎么做amos信效度检验
信效度检验的步骤是: 1.数据录入, 2.依次点击分析-标度(度量)-可靠性分析 ,信度分析。 3. 每个量表维度分别进行信度分析,选中专业了解度包含的5个题目,并且进行变量选择。 4. 在模型下拉选项中选中Alpha或者α,一般默认,这个是科隆巴赫系数。 5. 点击统计选项,然后勾选打钩的内容,并且点击继续勾选选项 6: 点击确定就得到了第一个维度(专业了解度)的信度分析结果。2023-06-06 18:05:291
请教二分变量在因子分析和结构方程模型的处理
。2023-06-06 18:05:362
一列数据为二分变量,计算这列数据的点二列相关,在spss怎么具体操作?
可以在卡方检验这里做2023-06-06 18:05:431
spss怎么分析二分变量
1、首先,大家平时理解的变量是单纬的,而不是你说的多维的。因此,对spss而言,X1、X2、X3、Y1、Y2、Y3分别是6个变量。2、spss的相关性分析中可以分别统计这6个变量间的相关性。通过他们之间相关性的计算,你或许可以得到你所说的X与Y之间的相关性,但这种相关性只是你推测的定性描述而已,是不能定量描述的。3、主成分分析,目的是将分析对象的多个维度简化为少数几个维度,方便分析,这样做的前提是维度很多且其中的多个维度之间有较强的相关性。而不是你想象的可以把X1、X2、X3降维成一个变量,因为只有三个维度,已经很少了,这三个维度可以做降维分析的可能性几乎没有。4、回归分析,只有一个因变量,可以有多个自变量,最终算得因变量与自变量间的回归关系。估计你只是自己想象了一个例子,实际中一般是不会有这样的分析案例的。2023-06-06 18:05:511
二分类变量能进行相关分析吗?
用SPSS进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的R的平方和,相减就是解释率。2023-06-06 18:06:093
二分类变量回归属于
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型。这里只讲二分类。 对于二分类的Logistic回归,因变量y只有“是、否”两个取值,记为1和0。这种值为0/1的二值品质型变量,我们称其为二分类变量。 假设在自变量x1,x2,u22ef,xpx1,x2,u22ef,xp作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量x1,x2,u22ef,xpx1,x2,u22ef,xp的关系。2023-06-06 18:06:161
二分类变量要做哑变量吗
如果是二分类变量不用设为哑变量。二分类变量是指只有两种结果的变量,通常用0和1表示,其中0表示否定或不具备某种特征,1表示肯定或具备某种特征。而01和12是两种不同的二分类变量。其中,01变量是指只包含0和1两种取值的二分类变量,表示两种互斥的状态。例如,在进行某个调查时,可以使用01变量来记录参与者是否吸烟,0表示不吸烟,1表示吸烟。而12变量则是指包含1和2两种取值的二分类变量,表示两种非互斥的状态。例如,在进行某个调查时,可以使用12变量来记录参与者的性别,1表示男性,2表示女性。由此可见,01和12的差别在于其所表示的状态是互斥的还是非互斥的。这种差别在统计学中非常重要,因为它涉及到了不同类型的变量和不同的统计方法。在实际应用中,需要根据需要选择适当的变量类型和统计方法,以便更好地处理数据并得到有意义的结果。变量概述:由于变量让你能够把程序中准备使用的每一段数据都赋给一个简短、易于记忆的名字,因此它们十分有用。变量可以保存程序运行时用户输入的数据(如使用InputBox函数在屏幕上显示一个对话框,然后把用户键入的文本保存到变量中)、特定运算的结果以及要在窗体上显示的一段数据等。简而言之,变量是用于跟踪几乎所有类型信息的简单工具。2023-06-06 18:06:221
【译】小样本的统计分析问题
有人认为,对于小样本,你就无法使用统计的。但,这是一个误解,一个 常见的误解 。对于小样本,我们也有适当的统计方法。 一个研究者的“小样本”,在另一个研究者看来则可能意味着“大样本”。本文中,小样本主要是指样本量在5-30个用户(可用性研究中常见的样本量,进一步阅读:http://www.measuringusability.com/blog/actual-users.php)。 值得注意的是,用户研究并不是出现小样本的唯一领域。其他具有较高操作成本的研究也会出现这个现象,比如fMRis和动物实验等。 尽管我们有相应的方式来处理小样本研究数据,但我们应该清晰地知道小样本的局限性:你很难看到很大的差异,很明显的效果。 这就像使用双筒望远镜进行天文观测一样:使用双筒望远镜,你可能无法看到行星、恒星、月亮和偶尔出现的彗星。但这并不以为着你就不能进行天文观测了。事实上,伽利略就是使用望远镜( 与今天相当的双筒望远镜相当 )发现了木星的卫星。 统计也是一样。仅仅因为你的样本不够大,并不能判断你能不能使用统计。再次强调, 小样本的关键限制是,你难以发现设计或措施的效果是否有差异。 幸运的是,在用户体验研究中,我们往往关心的是不同用户可能发现的不同问题:比如:导航的结构变化,搜索结果页面的改进等等。 下面是我们在小样本用户研究中的常见统计分析方法。 比较compare 如果您需要对比两个独立组别的完成率、完成时间,问卷评分等。有两种大样本或者小样的方法可以采用。具体适用与哪种方法,取决于数据的特征:连续的还是离散的。比较均值: 如果你的数据是连续的(不是二进制),比如任务完成时间、问卷评分等,你可以采用独立样本t检验。实践证明,它对于小样本也是适用的。 二分变量比较: 如果你的数据是二进制的(成功/失败,是/否),你可以采用N-1的卡方检验。当期望数目小于1时,使用Fisher精确检验往往有更好的表现。 置信区间Confidence Intervals 当你想从样本数据来推测整个用户群,你会想到生成一个置信区间(译者注:关于置信区间,可参阅: http://baike.baidu.com/view/409226.htm )。 尽管小样本的置信区会相当宽(通常为20-30个百分点),但是建立这样的区间总是有益的。例如:你想知道,用户在安装打印机前是否会去阅读“Read this first”文档。而测试中,8名用户中有6名用户没有去阅读。这时候我们可以推知:至少40%的用户很可能会这么做——这是一个相当大的比例。 置信区间的计算方法有三种,这取决于你数据是否是二进制、时间或者连续的。基于平均值的置信区间Confidence interval around a mean :如果你的数据是连续的(非二进制),如评定量表、以美元计算的订单金额,页面访问数等。那么,置信区间的计算可以基于t分布进行计算(当然,这需要考虑到样本量)。 基于任务时间的置信区间Confidence interval around task-time :任务时间的理论最小值为0秒(不多见),一些用户的任务时间可能是其他用户的10-20倍。对于这种不对称性,我们需要进行数据转换( log-transformed ),然后基于转换后的数据进行计算。待报告时再转换回来。 基于二进制的置信区间 Confidence interval around a binary measure :二进制的数据比如完成率或yes/no。这类置信区间的计算,可以采用校正后沃尔德检验法( Adjusted Wald interval )计算(这种方法对于所有样本规模均适用)。 点估计(均值)Point Estimates (The Best Averages ) 任何研究报告中,何为"最好"的平均时间或平均完成率的估计,应当取决于研究的目标。 请记住:即使是“最好”的均值估计,也依然不代表实际的平均值。 所以对于未知总体均值的估计而言,置信区间是更好的展示方法。 在可用性研究中,小样本的均值计算,比较适宜的有两个:任务时间和完成率。不同样本规模中更常见的则是量表评分(SUS评分等)。 完成率: 小样本的完成率,通常可能只有几个数值(译者注:可用性测试中,这一数字可能为5)。例如:有五个用户进行任务操作,其任务完成率只可能是:0%,20%,40%,60%,80%和100%几个数字中的某一个(100%也并不罕见)。基于小样本得出一个完美的成功率,可能并不恰当——因为它可能并不能揭示真实情况(测试结果优于真实情况)。 我们(指作者)对自己的小样本可用性测试数据,利用拉普拉斯估计(theLaPlace estimator)和简单比例(一般称为,最大似然估计,the Maximum Likelihood Estimator)进行了均值估计(参见:http://www.upassoc.org/upa_publications/jus/2006_may/lewis_small_sample_estimates.pdf )。 评定量表的均值问题: 量表是一个有趣的度量类型,它们大多是有限的区间(如:1-5,1-10等)除非你是 Spinal Tap (译者注:因翻译期间,该链接视频未能打开。故未译成中文)。我们发现,在小型或大型的样本中,均值最好是在中位数上(参阅:http://drjim.0catch.com/1993_MultipointScales_MeanAndMedianDifferencesAndObservedSignificanceLevels.pdf)。当然,我们有许多方式来报道评定量表的分数,比如 top-two boxes (直观理解,可参照NPS的计算规则)。 具体如何报告取决于你的灵敏度需要和组织要求。任务时间均值 :一个较长的任务时间可能让算术平均值产生扭曲,这时候中位数则是用来描述平均水平的更恰当的指标。样本数在25以上的,中位数对均值具有良好的代表性(进一步阅读:http://www.measuringusability.com/average-times.php)。 不幸的是,中位数往往不够准确,在样本数小于25的情况下,比平均值更加不准确。这时候,几何平均值往往具有更好的衡量意义(译者注:几何平均值受极端值的影响更小)。 【工具箱】 小样本计算器:http://www.measuringusability.com/wald.htm 任务时间置信区间计算: http://www.measuringusability.com/time_intervals.php 二分变量差异检验: http://www.measuringusability.com/ab-calc.php top-two boxes:https://www.measuringusability.com/blog/top-box.php 几何平均数计算器: http://www.ab126.com/goju/1710.html 数字帝国-统计计算器: http://zh.numberempire.com/statisticscalculator.php —————————————————————————————— 【译后记】译罢此文,深深感触:对于结果直接提供算术平均数就是耍流氓!而多数报告也确实只提供了算术平均数一种。 本文对于更严谨科学地分析和解读研究发现,具有重要的启发意义。 因时间和精力限制,译文难免存在谬误,欢迎批评指正。2023-06-06 18:06:401
聚类分析中有二分变量怎么处理
K-mean聚类方法 对聚类变量的要求 必须是连续型数据变量,就是你说的必须是12345这样的打分,或者是比如距离 重量 这种实际数据 你如果你有其他的分类变量数据 可以尝试用系统聚类方法,或者 2阶段聚类2023-06-06 18:06:511
自变量有两个连续和一个二分,因变量是等级变量,用什么方法处理数据?
统计学依据数据的计量尺度将数据划分为三类:定距型数据(Scale)、定序型数据(Ordinal)、定类型数据(Nominal)。定距型数据通常是指诸如身高、体重、血压等的连续型数据,也包括诸如人数、商品件数等离散型数据;定序型数据具有内在固有大小或高低顺序,但它又不同于定距型数据,一般可以数值或字符表示。如职称变量可以有低级、中级、高级三个取值,可以分别用1、2、3等表示,年龄段变量可以有老、中、青三个取值,分别用A B C表示等。这里,无论是数值型的1、2 、3 还是字符型的A B C ,都是有大小或高低顺序的,但数据之间却是不等距的。因为,低级和中级职称之间的差距与中级和高级职称之间的差距是不相等的;定类型数据是指没有内在固有大小或高低顺序,一般以数值或字符表示的分类数据。如性别变量中的男、女取值,可以分别用1、 2表示,民族变量中的各个民族,可以用‘汉"‘回"‘满"等字符表示等。这里,无论是数值型的1、 2 还是字符型的‘汉"‘回"‘满",都不存在内部固有的大小或高低顺序,而只是一种名义上的指代。我觉得教育年限应该设置成定距型数据(Scale)吧。因为,教育年限应该是一个连续的变量,它不存在内在的大小或高低顺序问题。2023-06-06 18:07:001
二分类变量和连续变量相关分析不显著怎么调
二分类变量和连续变量相关分析不显著手动移除出共线性的自变量调。因为变量关系不显著,可以尽量引用更多关于变量关系的理论依据,手动移除出共线性的自变量调节增强相关性。所以二分类变量和连续变量相关分析不显著手动移除出共线性的自变量调。二分类变量是按照观察对象的某一特性或特点,将调查对象分为两组的变量。2023-06-06 18:07:061
录入好的调查问卷,该如何进行数据分析?
SPSS数量掌握 我可以代分析的 且有多年给研究生分析数据的经验2023-06-06 18:07:143
spss如何把一个多分类变量改为二分类变量?
在SPSS里面的重新编码即可。f变量=1,生成新变量为=1,其余为0。fi变量=2,生成新变量为=1,其余为0。解决spss数据的变量类型如何转换的步骤如下:1、将数据导入spss中后选择菜单栏中的【转换】下的【计算变量】选项。2、在【目标变量】中直接输入变量的名称。3、然后在【数字表达式】中输入值即可对新变量赋值了。4、可以对新变量添加逻辑条件与其他变量相互关联,选择【如果】选项。5、添加逻辑条件即可。6、最后点击确认即可。这样就解决了spss数据的变量类型如何转换的问题了。SPSSspss是统计产品与服务解决软件,SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。集数据录入、资料编辑、数据管理、统计分析、报表制作、图形绘制为一体。从理论上说,只要计算机硬盘和内存足够大,SPSS可以处理任意大小的数据文件。2023-06-06 18:07:221
process不允许二分调节变量
process是不允许二分调节变量。讲解了自变量、因变量为显变量,调节变量为二分类变量时,用Mplus编写代码进行分析。自变量、因变量为潜变量时的代码与显变量的差不多。2023-06-06 18:07:351
急问关于spss的问题,二分变量的回归分析的奇怪结果。
你对照组和实验组是用T检验还是卡方检验?你的二分变量是通过logistic回归分析还是一般回归分析?2023-06-06 18:07:591
请问SPSS中怎样将多分类变量转换为二分类变量啊?
较容易。比如,你想这样二分:4和5一组,1-3一组。点转换--计算新变量,就可以实现。下面有一个if按钮,可以点它,你尝试一下,很快会明白。2023-06-06 18:08:251
自变量连续变量,因变量二分类,单因素分析用什么方法
当自变量为连续变量,因变量为二分类变量时,可以使用t检验或方差分析中的方差齐性检验(Levene检验)来判断是否满足正态性和方差齐性假设。如果满足假设,可以使用t检验或方差分析;如果不满足假设,可以使用非参数的Mann-Whitney U检验或Kruskal-Wallis检验来进行单因素分析。其中,t检验适用于两个样本之间的比较,方差分析适用于三个及以上样本之间的比较。如果存在多个自变量,则可以使用多元logistic回归分析。关于为什么使用这些方法,主要是因为这些方法考虑了不同样本之间的差异,能够较好地反映不同自变量对因变量的影响程度。而在判断是否满足正态性和方差齐性假设时,可以通过图形和统计检验进行验证。如果数据不符合正态分布假设或方差不齐假设,则选择非参数方法进行分析,可以提高分析的可靠性和准确性。关于内容延伸,需要在实际分析过程中仔细检查数据的质量和性质,保证使用的方法合理有效,结果准确可靠。同时,需要充分理解各种方法的原理和适用条件,不同方法的比较和选择也需要根据实际情况进行判断和决策。2023-06-06 18:08:322
自变量为二分类变量 ,可以做bootstrap中介效应分析吗?
可以的啊,需要将自变量哑变量化,就是将自变量转化为0和1的虚拟变量,你这里可以将干预组设置为1,将对照组设置为0。剩余的分析步骤和连读变量是一样的。2023-06-06 18:08:391
process检验中介的时候自变量是二分类变量怎么处理?
分类变量做分析时通常需要设定哑变量,有N个分类变量就设定N-1个哑变量。二分类变量比较特殊,自己刚好就可以作为一个哑变量,所以不需要特殊的处理,按照连续变量处理即可,中介分析也是一样。2023-06-06 18:08:451
点二列相关是否能用于人为二分变量和连续变量
也就是说非正态的人为二分也是可以用点二列的咯2023-06-06 18:08:531
心理学统计中点二列相关和二列相关的区别
刚好复习到这一块,就来回答吧!点二列相关是其中一个变量一定得是真正的二分型变量。(是与否,男与女,生与死这类)而二列相关其中一列变量为人为划分的二分变量。(如 健康与不健康,及格和不及格这类)总的来说,如果不明确,就用点二列相关,在实际研究中,二列相关很少使用。(摘自现代心理与教育统计学 张厚粲著)2023-06-06 18:09:033
多元线性回归分析中,有一自变量为二分类变量,如(使用=1,未使用=2),在SPSS软件中如何设置此自变量?
录入1和22023-06-06 18:09:123
等级资料和二分类变量关系的应该用哪种统计学方法
比较指标对不同性别是否显示显著差异,一般使用方差分析,方差分析对应的统计量服从卡方分布。秩和检验是非参数统计,涉及到排序统计量的时候使用2023-06-06 18:09:321
怎样用spss进行点双列相关的分析?
SPSS里没有专门用于计算点二列相关的模块,但事实上点二列相关就等同于用Pearson相关计算一个连续变量和一个二分变量的相关,这与使用点二列相关的专有公式是等价的不过用的时候注意一下,二分变量就采用0,1计分操作程序就是:分析——相关——双变量,OK即可2023-06-06 18:09:411
您好,我要知道两个二分变量间的相关性,请问用的是四分相关法吗?在SPSS软件里面要怎样操作?
这个问法不好做相关分析2023-06-06 18:09:482
如何在SPSS中做二分类变量的复式条形图
SPSS 203个变量:Groups、hsCRP、X(值)图形Graphs->旧对话框Legacy Dialogs->条形图Bar复式条形图Clustered:,个案组摘要Summaries for groups of cases,定义Difine其他统计量(例如均值)Other Statistics,将X放入变量框Variable,Groups放类别轴Category Axis,hsCRP放定义聚类Difine clusteres by右上角,选项Options显示误差条形图Display error bars,置信区间Confidence Interval,继续,确定。2023-06-06 18:09:551
从统计学上如何分辨两组数据有明显差异?
在数据分析过程中,你可能会经常遇到一个问题,比如你统计了上个月和这个月的活跃度平均值,你发现这个月的平均值比上个月有增长,但是这个增长是足够大,是本质的变化呢,或者只是随机的波动呢?你应该不应该向领导和同事报喜呢?是沾沾自喜还是真的有了重大突破,值得发奖金呢?这个时候就需要用到统计检验。下面就介绍几组适合不同数据的统计检验方法。 一 T检验,用于 正态分布 的参数检验 检验两组独立样本 平均值 是否相同, 只用于连续变量 主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 只适用于连续变量,在一定区间内可以任意取值的 变量 叫 连续变量 ,其数值是 连续 不断的,相邻两个数值可作无限分割。简单粗暴的说,就是某个变量可以保留小数点后几位。比如,高考成绩。 一般我们接触数值都是连续变量,而且正态分布,因此T检验是非常常用的一种参数检验的方法。 1.独立样本T检验(Independent Sample T Test) 检测两个对象或者两种事务在同一时间的平均收入、平均得分、平均工资、平均利润、平均奖金等异同。 比如,有一组男生高考成绩,36个样本;有一组女生高考成绩,42个样本。 这两组数据是不同对象(不同性别组),在同一个时间高考成绩。我们想了解男生女生的平均成绩是否相同。 此时可采用独立样本T检验来分辨两组数据(视为两个子总体)的均值是否相同。 2.配对样本T-test(配对样本T检验) 检测同一对象或者同一事务在两种条件的平均收入、平均得分、平均工资、平均利润、平均奖金等异同。 比如,我们开头提出的问题。我们有某个APP上个月每天的日活跃度,还有某个APP这个月每天的日活跃度。我们想知道这两个月APP平均日活跃度是否相同。这样的情况就可以用配对样本T检验 如果通过统计检验,发现平均日活跃度下降了,但是平均值和上个月没有明显的不同,就没有必要太沮丧,说明这个波动还在比较正常的范围。如果这个月日活跃度平均值和上个月有明显的差异,而且低于上个月,那么就需要特别注意运营或者产品设计了。如果有明显差异,而且还是高于上个月的,就可以向领导同事报喜了。 二 非参数检验 ,检验两组或者多组样本分布是否相同,适用于 所有类型变量 非参数检验是不必假设样本呈现何种分布。如果已知道样本呈现何种分布就用对应的参数检验;如果不确定样本是否正态分布,也可以采用参数检验。 非参数检验适用于以下所有类型的变量。 (1)定类数据,或称类别数据,如性别、材料类型和付款方式,非黑即白;(2)定序数值,数据有几个离散值,1,2,3,这些值大小是有意义的,但是大小差距是没有意义;(3)定距数据,从非正太分布的数据重抽取的区间数据,也就是连续性变量。 比较常用的比较两组独立样本之间的非参数检验有: (1)检验两个 相关 样本(两组抽样)分布没有差异(来自同一个总体) 注意检验的样本之间有相关关系或者 A. Wilcoxon Signed Ranks检验 以秩检验为主,检验差异的方向和大小,比较全面,优先推荐这种检验。 B. Sign检验,检验正负差异次数 C. McNemar,侧重检验是否有差异 (2)检验k个 相关 样本(两组抽样)分布没有差异(来自同一个总体) A.Friedman检验,秩检验,同时计算卡方,tie B.Kendall检验,秩检验 C.Cochran的Q检验,只适用于二分变量,即k组样本都是0和1两种编码 (3)检验两组 独立 样本(两组抽样)是否来自同一个总体 推荐K-S(Kolmogorov Smirnov)检验 (4)检验k个独立样本是否来自统一整体 推荐Kruskal-WAllis检验 三 简而言之 如果你的两组或者多组变量是定距连续变量,那采用T检验就可以。 如果你变量不是定距变量,或者,定距变量明显不符合正态分布,才考虑使用非参数检验。2023-06-06 18:10:021
计量经济学中ols一阶拟合完以后残差不为正态分布
残差正态性是一个非常强的假定,往往现实中难以满足。它存在主要是为了保证回归系数进行统计推断能顺利利用t、f等分布进行检验而已。回归系数的无偏性或者一致性不会收到分布的影响。所以这并不是什么大问题,在大样本下,残差一般都能满足渐进正态性。而在实际操作中,通常给被解释变量用log()进行处理,也都基本可以逼近正态。OLS估计中,最重要的还是要处理内生性和异方差。只要保证解释变量与残差不相关(无内生性),以及解释变量与残差的方差不相关(无异方差),系数的一致性能保证,同时假设推断的合理性也能得到满足,结论才是可靠。结论是:不用特意处理,用log(y)代替被解释变量。2023-06-06 18:10:182
点二系列相关是不是直接看person相关系数就可以
一、基本内涵 点二系列相关(pomit-biserial correlation)研究的是一个连续变量与一个二分类变量间的相关关系,事实上,二分类由于只有两个数值,数值之间的差距反映出的也是一种等距关系,即二分类变量可以看做一种连续变量,也就是说,点二系列相关其实可以看做是Pearson相关分析的特殊情况。二、适用范围 点二系列相关(pomit-biserial correlation)用于一个二分类变量和一个服从正态分布的连续变量间的相关关系研究。2023-06-06 18:10:242
二分类变量和连续性变量是什么意思?
1,二分类变量分为真正的二分变量和人为的二分变量两种。2,变量按变量值是否连续可分为连续变量与离散变量两种。二分类变量:1,二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。2,常见的二分类变量包括:OR (Odds Ratio) 值,RR (Risk Ratio) 值,RD (Risk Difference) 值。3,二分类变量也可以包括有序数据。有序数据(Ordinal data),其结局为多个分类的其中一种(如疾病严重程度),或者为累积的得分。连续变量:1,在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。2,符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。3,连续变量与离散变量的简单区别方法,连续变量时一直叠加上去的,增长量可以划分为固定的单位,即,1,2,3..........2023-06-06 18:10:441
及格与不及格是真正二分变量还是人为二分变量?
如果是搜集数据是百分制分数,但在计算时将其按照某一标准分为及格和不及格,则为人为二分变量。1、二分类变量分为真正的二分变量和人为的二分变量两种。2、变量按变量值是否连续可分为连续变量与离散变量两种。二分类变量:1、二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。2、常见的二分类变量包括:OR (Odds Ratio) 值,RR (Risk Ratio) 值,RD (Risk Difference) 值。3、二分类变量也可以包括有序数据。有序数据(Ordinal data),其结局为多个分类的其中一种(如疾病严重程度),或者为累积的得分。变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析。若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析(资料是根据临床数据得出)。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。2023-06-06 18:11:011
年级高低是人为的二分变量吗?
不是吧,人为二分变量本身就要是一个连续型的测量数据,年级的高低不是连续型的2023-06-06 18:11:232
二分变量、多分变量、配对样本的概念
分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。连续性变量:在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。2023-06-06 18:11:291
二分类变量和连续变量的相关性分析该用什么分析
分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。连续性变量:在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。2023-06-06 18:11:371
二分生什么意思是什么
您好: 您问的问题属于《心理与数理统计学》的范畴。有关这个问题,我大致说明一下,如果在我说明的过程中,您依旧有不明白的地方,请参照《心理与数理统计学》解答您心中的疑惑。 一、通常,有些变量的测量结果只有两种类别,譬如男性与女性、房东与房客、成功与失败、及格与不及格、生或死等等。这种按事物的某一性质划分的只有两类结果的变量,称为二分变量。 二、二分变量又分为真正的二分变量和人为的二分变量两种。真正的二分变量也称为离散型二分变量,前面我所举出的一些例子都是离散型二分变量。所谓人为的二分变量,是指该变量本身是一个连续型的测量数据,两种结果之间本来是一个连续统一体,但被某种人为规定的标准划分为两个类别。在这种情况下,一个测量结果很明显地要么属于这个类别,要么属于另一个类别,两种类别之间一般也不会被看做是连续的。有时一个变量是双峰分布,也可划分为二分称名变量,如文盲与非文盲,可规定一个界限,文盲指识字极少的人,其余的人为非文盲,就识字量来说可能形成双峰分布形态。 祝好!2023-06-06 18:11:451
【译】小样本的统计分析问题
有人认为,对于小样本,你就无法使用统计的。但,这是一个误解,一个 常见的误解 。对于小样本,我们也有适当的统计方法。 一个研究者的“小样本”,在另一个研究者看来则可能意味着“大样本”。本文中,小样本主要是指样本量在5-30个用户(可用性研究中常见的样本量,进一步阅读:http://www.measuringusability.com/blog/actual-users.php)。 值得注意的是,用户研究并不是出现小样本的唯一领域。其他具有较高操作成本的研究也会出现这个现象,比如fMRis和动物实验等。 尽管我们有相应的方式来处理小样本研究数据,但我们应该清晰地知道小样本的局限性:你很难看到很大的差异,很明显的效果。 这就像使用双筒望远镜进行天文观测一样:使用双筒望远镜,你可能无法看到行星、恒星、月亮和偶尔出现的彗星。但这并不以为着你就不能进行天文观测了。事实上,伽利略就是使用望远镜( 与今天相当的双筒望远镜相当 )发现了木星的卫星。 统计也是一样。仅仅因为你的样本不够大,并不能判断你能不能使用统计。再次强调, 小样本的关键限制是,你难以发现设计或措施的效果是否有差异。 幸运的是,在用户体验研究中,我们往往关心的是不同用户可能发现的不同问题:比如:导航的结构变化,搜索结果页面的改进等等。 下面是我们在小样本用户研究中的常见统计分析方法。 比较compare 如果您需要对比两个独立组别的完成率、完成时间,问卷评分等。有两种大样本或者小样的方法可以采用。具体适用与哪种方法,取决于数据的特征:连续的还是离散的。比较均值: 如果你的数据是连续的(不是二进制),比如任务完成时间、问卷评分等,你可以采用独立样本t检验。实践证明,它对于小样本也是适用的。 二分变量比较: 如果你的数据是二进制的(成功/失败,是/否),你可以采用N-1的卡方检验。当期望数目小于1时,使用Fisher精确检验往往有更好的表现。 置信区间Confidence Intervals 当你想从样本数据来推测整个用户群,你会想到生成一个置信区间(译者注:关于置信区间,可参阅: http://baike.baidu.com/view/409226.htm )。 尽管小样本的置信区会相当宽(通常为20-30个百分点),但是建立这样的区间总是有益的。例如:你想知道,用户在安装打印机前是否会去阅读“Read this first”文档。而测试中,8名用户中有6名用户没有去阅读。这时候我们可以推知:至少40%的用户很可能会这么做——这是一个相当大的比例。 置信区间的计算方法有三种,这取决于你数据是否是二进制、时间或者连续的。基于平均值的置信区间Confidence interval around a mean :如果你的数据是连续的(非二进制),如评定量表、以美元计算的订单金额,页面访问数等。那么,置信区间的计算可以基于t分布进行计算(当然,这需要考虑到样本量)。 基于任务时间的置信区间Confidence interval around task-time :任务时间的理论最小值为0秒(不多见),一些用户的任务时间可能是其他用户的10-20倍。对于这种不对称性,我们需要进行数据转换( log-transformed ),然后基于转换后的数据进行计算。待报告时再转换回来。 基于二进制的置信区间 Confidence interval around a binary measure :二进制的数据比如完成率或yes/no。这类置信区间的计算,可以采用校正后沃尔德检验法( Adjusted Wald interval )计算(这种方法对于所有样本规模均适用)。 点估计(均值)Point Estimates (The Best Averages ) 任何研究报告中,何为"最好"的平均时间或平均完成率的估计,应当取决于研究的目标。 请记住:即使是“最好”的均值估计,也依然不代表实际的平均值。 所以对于未知总体均值的估计而言,置信区间是更好的展示方法。 在可用性研究中,小样本的均值计算,比较适宜的有两个:任务时间和完成率。不同样本规模中更常见的则是量表评分(SUS评分等)。 完成率: 小样本的完成率,通常可能只有几个数值(译者注:可用性测试中,这一数字可能为5)。例如:有五个用户进行任务操作,其任务完成率只可能是:0%,20%,40%,60%,80%和100%几个数字中的某一个(100%也并不罕见)。基于小样本得出一个完美的成功率,可能并不恰当——因为它可能并不能揭示真实情况(测试结果优于真实情况)。 我们(指作者)对自己的小样本可用性测试数据,利用拉普拉斯估计(theLaPlace estimator)和简单比例(一般称为,最大似然估计,the Maximum Likelihood Estimator)进行了均值估计(参见:http://www.upassoc.org/upa_publications/jus/2006_may/lewis_small_sample_estimates.pdf )。 评定量表的均值问题: 量表是一个有趣的度量类型,它们大多是有限的区间(如:1-5,1-10等)除非你是 Spinal Tap (译者注:因翻译期间,该链接视频未能打开。故未译成中文)。我们发现,在小型或大型的样本中,均值最好是在中位数上(参阅:http://drjim.0catch.com/1993_MultipointScales_MeanAndMedianDifferencesAndObservedSignificanceLevels.pdf)。当然,我们有许多方式来报道评定量表的分数,比如 top-two boxes (直观理解,可参照NPS的计算规则)。 具体如何报告取决于你的灵敏度需要和组织要求。任务时间均值 :一个较长的任务时间可能让算术平均值产生扭曲,这时候中位数则是用来描述平均水平的更恰当的指标。样本数在25以上的,中位数对均值具有良好的代表性(进一步阅读:http://www.measuringusability.com/average-times.php)。 不幸的是,中位数往往不够准确,在样本数小于25的情况下,比平均值更加不准确。这时候,几何平均值往往具有更好的衡量意义(译者注:几何平均值受极端值的影响更小)。 【工具箱】 小样本计算器:http://www.measuringusability.com/wald.htm 任务时间置信区间计算: http://www.measuringusability.com/time_intervals.php 二分变量差异检验: http://www.measuringusability.com/ab-calc.php top-two boxes:https://www.measuringusability.com/blog/top-box.php 几何平均数计算器: http://www.ab126.com/goju/1710.html 数字帝国-统计计算器: http://zh.numberempire.com/statisticscalculator.php —————————————————————————————— 【译后记】译罢此文,深深感触:对于结果直接提供算术平均数就是耍流氓!而多数报告也确实只提供了算术平均数一种。 本文对于更严谨科学地分析和解读研究发现,具有重要的启发意义。 因时间和精力限制,译文难免存在谬误,欢迎批评指正。2023-06-06 18:12:031
录入好的调查问卷,该如何进行数据分析?
录入好的调查问卷,该如何进行数据分析? SPSS分析调查问卷数据的方法 当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍. Spss处理: 第一步:定义变量 大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类). 我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为: 1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59 那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。 以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明. 1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可. 2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例: 请问您通常获取新闻的方式有哪些( ) 1 报纸 2 杂志 3 电视 4 收音机 5 网络 在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可. 使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。 到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了. 第二步:数据录入 Spss数据录入有很多方式,大致有一下几种: 1.读取SPSS格式的数据 2.读取Excel等格式的数据 3.读取文本数据(Fixed和Delimiter) 4.读取数据库格式数据(分如下两步) (1)配置ODBC (2)在SPSS中通过ODBC和数据库进行 但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下. 1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案. 2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的). 3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据. 在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了. 第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法. 1.作图分析: 在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分:: (1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。 (2)Interactive:交互式统计图。 (3)Map:统计地图。 (4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有: 条图 散点图 线图 直方图 饼图 面积图 箱式图 正态Q-Q图 正态P-P图 质量控制图 Pareto图 自回归曲线图 高低图 交互相关图 序列图 频谱图 误差线图 作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好. 2.数值分析: SPSS 数值统计分析过程均在Analyze菜单中,包括: (1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。 Descriptive Statistics包括的统计功能有: Frequencies(频数分析):作用:了解变量的取值分布情况 Descriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理 Explore(探索分析):功能:考察数据的奇异性和分布特征 Crosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系 Reports包括的统计功能有: OLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。 Case Summaries(观测量列表):察看或打印所需要的变量值 Report Summaries in Row:行形式输出报告 Report Summaries in Columns:列形式输出报告 (2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。 以下是进行均值比较及检验的过程: MEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合 T test 过程:对样本进行T检验的过程 单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。 独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异) 配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果) one-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。 (3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决 (4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种: 1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。 2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系 3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远 (5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic:二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling最优编码回归;其中最常用的为前面三个. (6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。 非参数检验的过程有以下几个: 1.Chi-Square test 卡方检验 2.Binomial test 二项分布检验 3.Runs test 游程检验 4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验 5.2 independent Samples Test 两个独立样本检验 6.K independent Samples Test K个独立样本检验 7.2 related Samples Test 两个相关样本检验 8.K related Samples Test 两个相关样本检验 (7)、Data Reduction(因子分析) (8)、Classify(聚类与判别)等等 以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果. 第四步:结果保存 我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制﹑粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果. 总结: 以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用. SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二 注意定义不同的数据类型Type 各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: 1 单选题:答案只能有一个选项 例一 当前贵组织机构是否设有面向组织的职业生涯规划系统? A有 B 正在开创 C没有 D曾经有过但已中断 编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。 录入:录入选项对应值,如选C则录入3 2 多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。 (1)方法一(二分法): 例二 贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示 考虑在内。 A月薪员工 B日薪员工 C钟点工 编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。 录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。 (2)方法二: 例三 你认为开展保持党员先进性教育活动的最重要的目标是那三项: 1( ) 2 ( ) 3( ) A、提高党员素质 B、加强基层组织 C、坚持发扬民主 D、激发创业热情 E、服务人民群众 F、促进各项工作 编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2”B,“3” C,“4” D,“5” E,“6” F 录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。 注:能用方法二编码的多选题也能用方法编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。 3 排序题: 对选项重要性进行排序 例四 您购买商品时在 ①品牌 ②流行 ③质量 ④实用 ⑤价格 中对它们的关注程度先后顺序是(请填代号重新排列) 第一位 第二位 第三位 第四位 第五位 编码:定义五个变量,分别可以代表第一位 第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格 录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。 4 选择排序题: 例五 把例三中的问题改为“你认为开展保持党员先进性教育活动的最重 的目标是那三项,并按重要性从高到低排序”,选项不变。 编码:以ABCDEF6个选项分别对应定义6个变量,每个变量的Value都做同样的如下定义:“1” 未选,“2” 排第一,“3” 排第二,“4” 排第三。 录入:以变量的Value值录入。比如三个括号里分别选的是 ECF,则该题的6个变量的值应该分别录入:1(代表A选项未选)、1、 3(代表C选项排在第二)、1、2、4。 注:该方法是对多选题和排序题的方法结合的一种方法,对一般排序题(例四)也同样适用,只是两者用的分析方法不同(例四用频数分析、例五用描述分析),输出结果从不同的侧面反映问题的重要性(前一种方法从位次从变量的频数看排序,后一种方法从变量出发看排序)。 5 开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分 例六 你的年龄(实岁):______ 编码:一个变量,不定义Value值 录入:即录入被调查者实际填入的数值。 6开放性文字题: 如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。 三 问卷一般性分析 下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例,以下提到的菜单项均在Analyze主菜单下 1频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。 适用范围:单选题(例一),排序题(例四),多选题的方法二(例三) 频数分析也是问卷分析中最常用的方法。 实现: Descriptive statistics……Frequencies 2 描述分析:Descriptives:过程可以计算单变量的描述统计量。这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。 适用范围:选择并排序题(例五)、开放性数值题(例六)。 实现: Descriptive statistics……Descriptives,需要的统计量点击按钮Statistics…中选择 3 多重反应下的频次分析: 适用范围:多选题的二分法(例二) 实现:第一步在Multiple Response……Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。第二步在Multiple Response……Frequencies中做频数分析。 4 交叉频数分析:解决对多变量的各水平组合的频数分析的问题 适用范围:,适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。 实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。第二步选择Descriptive statistics……Crosstabs 四 简单图形描述介绍 在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。现在把常用图简单介绍如下 1饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的部分对总体的比例关系的统计图。频数分析的结果宜用饼图表示。 2曲线图:是用线段的升降来说明数据变动情况的一种统计图。它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。 3面积图:用线段下的阴影面积来强调现象变化的统计图。 4条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。 五 问卷深入分析 除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍: 1聚类分析 样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。比如按消费特征对被调查者的进行聚类。 2 相关分析 相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。 其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法 3均值的比较与检验 (1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。比如可以按性别变量分为男和女来研究二者收入是否存在差距。 (2)T 检验: 独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。 如果样本不独立则要用配对t检验。比如研究参加职业培训后 工作效率是否提高。 4 回归分析 问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。比如,研究对某商品的消费受收入的影响程度。 如何用spss对调查问卷进行数据分析 问卷调查表 可以进行很多种统计分析的,包含描述性分析,信度,效度分析,差异性分析,相关性分析,回归分析等等 怎么对调查问卷进行数据分析 分析方法太多了 我替别人做这类的数据分析蛮多的 用Excel对60份调查问卷进行数据分析 把你问卷发一份过来413186190@QQ.COM 如何做调查问卷数据分析 首先你可以计算每个部门每个工作职责满意不满意度,然后看那个业务在这个部门中不满意度最高,满意度最高,需要加强哪一个业务,需要表扬哪一个业务;然后部门之间进行比较,看看哪个部门满意度最高,哪个部门满意度最低,需要表扬需要批评的都知道了。 调查问卷数据分析,急用 数据分析最重要的思维就是,不断确定业务中两组变量之间的关系,用以解释业务。 收入、转化、用户规模、用户活跃等,我们称为现象。而只有通过数据量化的现象,我们才能精准感知。所以,数据是用来描述现象的,是被量化的现象。 如何看数据分析,又该如何进行数据分析? 关于数据,有两种常见的情况。从腾讯出来的一个朋友曾告诉我“腾讯的数据太多,都不知道怎么看”,而另一个在创业公司工作的朋友告诉我“老板为了省开发资源,数据给的少得可怜”。这两种情况都有点走极端,那么,怎样看数据比较合理呢?答案是:需要想清楚3个问题。 1、我为什么要看数据? 看数据的理由有很多,有不少PM看数据纯粹为了在吵架中能占上风,也有的人是为了炫技,还有一些人是因为老板要他们这样做。但我认为,看数据最好的理由是“你真的渴望持续改进自己的产品,而数据能给你客观的建议 ”。如果你没有这个渴望,觉得“我已经做的很好了,没有几个人能比我做得更好”,不但可以不看数据,连用户都可以不要。 2、数据的由哪些成分组成?这些成分每天/周/月都发生了什么变化? 分析数据的构成可以更精确的知道是哪些产品、运营方案发挥作用,数据的变化可以知道某个方案起了多大的作用。 拿PV来说,分析PV的地域结构,可以知道适合的推广渠道;分析用户的年龄结构可以知道活动策划偏向什么主题;分析用户的职业结构可以知道用户的使用习惯。 3、这些数据为什么发生了这些变化? 分析数据为什么变化,可以找到关键的原因,或者洞悉用户真正的需求,最终形成产品的改进。 用SILL量表问卷调查后, 如何用SPSS进行数据分析 免费的?建议先输入数据,然后按照教程练习以后自行分析吧 如果给钱,楼上估计应该会帮你分析的很好。 不过也有可能你人品大爆发,他不收你钱 艾森克人格问卷如何录入spss进行数据分析 首先要清楚spss数据分析软件,对于数据格式的要求。 通常用spss软件进行数据分析时,数据格式要求是横向一行为一份问卷,一列对应问卷中的一个题目,所以有多少份问卷,最终录完后就有多少行,而问卷中有多少个题目,最终就有多少列。 其次在录的时候 可以在excel中录,也可以直接在spss中录入,因为格式是完全一样的,如果对excel很熟悉,就可以现在excel中录,录完再通过spss直接可以打开excel数据就好了。 如何进行数据分析 数据分析是以现有网站的内容为基础,展示用户喜欢的内容,降低网站的跳出率增加网站黏性,具体步骤如下: 1、分析pv、uv、ip、跳出率和平均访问时长 通常情况下uv要大于ip,pv是uv的倍数关系,而pv:uv多少合适呢?要看同行业的平均数据,比如一个知识性网站,pv:uv的比例接近10:1,而如果是企业站,可能3:1或者4:1。 跳出率越高说明网站内容质量越差,平均访问时长也体现网站的内容质量。时长越长说明网站内容质量越高、内链系统越好。 2、分析来源、地域和搜索引擎 从来源分析可以评测外链和推广效果,可以选择效果更好的推广和外链方式,节省时间。地域分析可以帮我我们做地域关键词,搜索引擎分析用于明白用户的搜索习惯。 3、受访页面、着陆页和搜索词 分析受访页面可以看出推广、外链以及内链效果,分析搜索词可以得出现在内容排名效果。 受访页面主要来自于外链、推广链接、排名页面和内链布局。受访页面越高的网页说明展示次数越多,被用户看到的概率越大。 着陆页分数据纯碎的体现外链、推广链接和排名的效果,如果没有关键词排名,可以直接评测推广、外链的效果。 可以通过搜索词得知那些关键词给我们带来了流量,以及访问的页面是哪些,访问页的跳出率是多少,是不是应该推广这个页面帮助它提升排名。 4、分析页面点击图和页面上下游 页面点击图,可以根据页面点击图调整网站首页布局。颜色越深的内容放置的位置越靠近左上角,颜色越浅的内容位置越靠近右下角。点击很少或者没有点击的内容可以从首页移除,或者放置在栏目页。 页面上下游是体现用户浏览网页的轨迹,从上下游的数据可以统计布局的内链用户点击最多的文章是哪一篇,以及哪些页面的跳出率高。页面上下游数据最能说明内链布局效果。 注意:数据分析的魅力是常人无法感受的,如果你的网站在中后期还是凭证感觉做,那么你就相当于盲人摸象,你的网站排名只能看运气了。2023-06-06 18:12:121
变量的分类
变量主要是用来描述事物特征,那么按照描述的粗劣,有以下两种划分方法:按基本描述划分定性变量 :也称为名称变量、品质变量、分类变量,总之就是描述事物特性的变量,目的是将事物区分成互不相容的不同组别,变量值多为文字或符号,在分析时,需要转化为特定含义的数字。定性变量可以再细分为:无序分类变量:取值之间没有顺序差别,仅做分类,又可分为二分类变量和多分类变量二分类变量是指将全部数据分成两个类别,如男、女,对、错,阴、阳等,二分类变量是一种特殊的分类变量,有其特有的分析方法。多分类变量是指两个以上类别,如血型分为A、B、AB、0。定量变量:也称为数值型变量,是描述事物数字信息的变量,变量值就是数字,如长度、重量、产量、人口、速度和温度。定量变量可以再细分,连续型变量:在一定区间内可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。如身高、绳子的长度等。离散型变量:值只能用自然数或整数单位计算,其数值是间断的,相邻两个数值之间不再有其他数值,这种变量的取值一般使用计数方法取得。2023-06-06 18:12:191
请问用个案排秩后得到两组数据,想要做回归分析的话应该用正态得分做还是用数据的秩做
2023-06-06 18:12:391
效度的类型
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。内容效度(content-related validity)一、什么是内容效度内容效度指的是测验题目对有关内容或行为取样的适用性,从而确定测验是否是所欲测量的行为领域的代表性取样。二、内容效度的评估方法1.专家判断法; 2.统计分析法(评分者信度复本信度折半信度再测法); 3.经验推测法 (实验检验)三、内容效度的特性内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。构想效度(construct-related validity)一、什么是构想效度指测验能够测量到理论上的构想或特质的程度,即测验的结果是否能证实或解释某一理论的假设、术语或构想,解释的程度如何。二、构想效度的估计方法1.对测验本身的分析(用内容效度来验证构想效度)2.测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法3.效标效度的研究证明4.实验法和观察法证实三、效标效度(criterion-related validity)一什么是效标效度效标效度又称实证效度,反映的是测验预测个体在某种情境下行为表现的有效性程度。根据效标资料是否与测验分数同时获得,又可分为同时效度(实际士气高和士气低的人在士气测验中的得分一致性。)和预测效度两类。一个好的效标必须具备以下条件:①效标必须能最有效地反映测验的目标,即效标测量本身必须有效;②效标必须具有较高的信度,稳定可靠,不随时间等因素而变化;③效标可以客观地加以测量,可用数据或等级来表示;④效标测量的方法简单,省时省力,经济实用。二、效标效度的评估方法1.相关法:效度系数是最常用的效度指标,尤其是效标效度。它是以皮尔逊积差相关系数来表示的,主要反映测验分数与效标测量的相关。当测验成绩是连续变量,而效标资料是二分变量时,计算效度系数可用点二列相关公式或二列相关公式;当测验分数为连续变量,效标资料为等级评定时,可用贾斯朋多系列相关公式计算。2.区分法:是检验测验分数能否有效地区分由效标所定义的团体的一种方法。算出t值后,便可知道分数的差异是否显著。若差异显著,说明该测验能够有效地区分由效标定义的团体,否则,测验是无效的。重叠百分比可以通过计算每一组内得分超过(或低于)另一组平均数的人数百分比得出;另外,还可以计算两组分布的共同区的百分比。重叠量越大,说明两组分数差异越小,即测验的效度越差。3.命中率法:是当测验用来做取舍的依据时,用其正确决定的比例作为效度指标的一种方法。命中率的计算有两种方法,一是计算总命中率,另一种是计算正命中率。4、预期表法:是一种双向表格,预测分数排在表的左边,效标排在表的顶端。从左下至右上对角线上各百分数字越大,而其它的百分数字越小,表示测验的效标效度越高 ;反之,数字越分散,则效度越低。2023-06-06 18:12:483
spss最小二乘法回归分析是怎么样的?
spss最小二乘法回归分析1、统计量:对于每个模型:标准和非标准回归系数、复R、R2、调整R2、估计的标准误、方差分析表、预测值和残差。此外,还有用于每个回归系数的95%的置信区间,以及参数估计的相关性和协方差矩阵。2、数据:因变量和自变量必须是定量的。分类变量(例如宗教、专业或居住地)需要重新编码为二分类(哑元)变量或其他类型的对比变量。内生解释变量应是定量变量(非分类变量)。数据分析如果确信没有任何预测变量与因变量中的误差相关,则可使用“线性回归”过程。如果您的数据违反了假设之一(例如,正态性假设或恒定方差假设),则尝试转换数据。如果您的数据不线性相关,且转换也没有帮助,则使用“曲线估计”过程中的备用模型。如果因变量是二分变量,例如指示特定的销售是否已完成,则请使用“Logistic回归”过程。如果您的数据不独立(例如,如果您在多个条件下观察同一个人),请使用Advanced Models选项中的“重复度量”过程。2023-06-06 18:13:521
录入好的调查问卷,该如何进行数据分析?
SPSS分析调查问卷数据的方法x0dx0ax0dx0a当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量_数据录入_统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.x0dx0aSpss处理: x0dx0a第一步:定义变量 x0dx0a大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).x0dx0a我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:x0dx0a1.请问你的年龄属于下面哪一个年龄段( )?x0dx0a A:20—29 B:30—39 C:40—49 D:50--59x0dx0a那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。x0dx0a以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.x0dx0a1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.x0dx0a2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:x0dx0a请问您通常获取新闻的方式有哪些( )x0dx0a1 报纸 2 杂志 3 电视 4 收音机 5 网络x0dx0a在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.x0dx0a使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。x0dx0a到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.x0dx0a第二步:数据录入 x0dx0aSpss数据录入有很多方式,大致有一下几种:x0dx0a1.读取SPSS格式的数据x0dx0a2.读取Excel等格式的数据x0dx0a3.读取文本数据(Fixed和Delimiter)x0dx0a4.读取数据库格式数据(分如下两步)x0dx0a(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行x0dx0a但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.x0dx0a1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.x0dx0a2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5??.的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).x0dx0a3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.x0dx0a在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.x0dx0a第三步:统计分析 x0dx0a有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法.x0dx0a1.作图分析:x0dx0a在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分::x0dx0a(1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。x0dx0a(2)Interactive:交互式统计图。x0dx0a(3)Map:统计地图。x0dx0a(4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有:x0dx0a条图x0dx0a散点图x0dx0a线图x0dx0a直方图x0dx0a饼图x0dx0a面积图x0dx0a箱式图x0dx0a正态Q-Q图x0dx0a正态P-P图x0dx0a质量控制图x0dx0aPareto图x0dx0a自回归曲线图x0dx0a高低图x0dx0a交互相关图x0dx0a序列图x0dx0a频谱图x0dx0a误差线图x0dx0a作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好.x0dx0a2.数值分析:x0dx0aSPSS 数值统计分析过程均在Analyze菜单中,包括:x0dx0a(1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。x0dx0aDescriptive Statistics包括的统计功能有: x0dx0aFrequencies(频数分析):作用:了解变量的取值分布情况x0dx0aDescriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理x0dx0aExplore(探索分析):功能:考察数据的奇异性和分布特征x0dx0aCrosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系x0dx0aReports包括的统计功能有: x0dx0aOLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。x0dx0aCase Summaries(观测量列表):察看或打印所需要的变量值x0dx0aReport Summaries in Row:行形式输出报告x0dx0aReport Summaries in Columns:列形式输出报告x0dx0a(2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。x0dx0a以下是进行均值比较及检验的过程:x0dx0aMEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合x0dx0aT test 过程:对样本进行T检验的过程x0dx0a单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。x0dx0a独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异)x0dx0a配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果)x0dx0aone-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。x0dx0a(3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决x0dx0a(4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种:x0dx0a1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。x0dx0a2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系x0dx0a3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远x0dx0a(5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic:二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling最优编码回归;其中最常用的为前面三个.x0dx0a(6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。x0dx0a非参数检验的过程有以下几个:x0dx0a1.Chi-Square test 卡方检验x0dx0a2.Binomial test 二项分布检验x0dx0a3.Runs test 游程检验x0dx0a4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验x0dx0a5.2 independent Samples Test 两个独立样本检验x0dx0a6.K independent Samples Test K个独立样本检验x0dx0a7.2 related Samples Test 两个相关样本检验x0dx0a8.K related Samples Test 两个相关样本检验x0dx0a(7)、Data Reduction(因子分析)x0dx0a(8)、Classify(聚类与判别)等等x0dx0a以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果.x0dx0a第四步:结果保存 x0dx0a 我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制_粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果.x0dx0a总结: x0dx0a以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用.x0dx0aSPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二 注意定义不同的数据类型Typex0dx0a各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: x0dx0a1 单选题:答案只能有一个选项x0dx0a例一 当前贵组织机构是否设有面向组织的职业生涯规划系统? x0dx0aA有 B 正在开创 C没有 D曾经有过但已中断x0dx0a编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。x0dx0a录入:录入选项对应值,如选C则录入3x0dx0a2 多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。x0dx0a(1)方法一(二分法):x0dx0a例二 贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示x0dx0a考虑在内。x0dx0aA月薪员工 B日薪员工 C钟点工x0dx0a编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。x0dx0a录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。x0dx0a(2)方法二:x0dx0a例三 你认为开展保持党员先进性教育活动的最重要的目标是那三项:x0dx0a1( ) 2 ( ) 3( )x0dx0aA、提高党员素质 B、加强基层组织 C、坚持发扬民主x0dx0aD、激发创业热情 E、服务人民群众 F、促进各项工作x0dx0a编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2”B,“3” C,“4” D,“5” E,“6” Fx0dx0a录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。x0dx0a注:能用方法二编码的多选题也能用方法编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。x0dx0a3 排序题: 对选项重要性进行排序x0dx0a例四 您购买商品时在 ①品牌 ②流行 ③质量 ④实用 ⑤价格 中对它们的关注程度先后顺序是(请填代号重新排列) x0dx0a第一位 第二位 第三位 第四位 第五位x0dx0a编码:定义五个变量,分别可以代表第一位 第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格x0dx0a录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。x0dx0a4 选择排序题:x0dx0a例五 把例三中的问题改为“你认为开展保持党员先进性教育活动的最重x0dx0a的目标是那三项,并按重要性从高到低排序”,选项不变。x0dx0a编码:以ABCDEF6个选项分别对应定义6个变量,每个变量的Value都做同样的如下定义:“1” 未选,“2” 排第一,“3” 排第二,“4” 排第三。x0dx0a录入:以变量的Value值录入。比如三个括号里分别选的是 ECF,则该题的6个变量的值应该分别录入:1(代表A选项未选)、1、 3(代表C选项排在第二)、1、2、4。x0dx0a注:该方法是对多选题和排序题的方法结合的一种方法,对一般排序题(例四)也同样适用,只是两者用的分析方法不同(例四用频数分析、例五用描述分析),输出结果从不同的侧面反映问题的重要性(前一种方法从位次从变量的频数看排序,后一种方法从变量出发看排序)。x0dx0a5 开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分x0dx0a例六 你的年龄(实岁):______x0dx0a编码:一个变量,不定义Value值x0dx0a录入:即录入被调查者实际填入的数值。 x0dx0a6开放性文字题:x0dx0a如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。x0dx0a三 问卷一般性分析x0dx0a下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例,以下提到的菜单项均在Analyze主菜单下x0dx0a1频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。x0dx0a适用范围:单选题(例一),排序题(例四),多选题的方法二(例三)x0dx0a频数分析也是问卷分析中最常用的方法。x0dx0a实现: Descriptive statistics??Frequencies x0dx0a2 描述分析:Descriptives:过程可以计算单变量的描述统计量。这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。x0dx0a适用范围:选择并排序题(例五)、开放性数值题(例六)。x0dx0a实现: Descriptive statistics??Descriptives,需要的统计量点击按钮Statistics?中选择x0dx0a3 多重反应下的频次分析:x0dx0a适用范围:多选题的二分法(例二)x0dx0a实现:第一步在Multiple Response??Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。第二步在Multiple Response??Frequencies中做频数分析。x0dx0a4 交叉频数分析:解决对多变量的各水平组合的频数分析的问题x0dx0a适用范围:,适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。x0dx0a实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。第二步选择Descriptive statistics??Crosstabs x0dx0ax0dx0a四 简单图形描述介绍x0dx0a在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。现在把常用图简单介绍如下x0dx0a1饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的部分对总体的比例关系的统计图。频数分析的结果宜用饼图表示。x0dx0a2曲线图:是用线段的升降来说明数据变动情况的一种统计图。它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。x0dx0a3面积图:用线段下的阴影面积来强调现象变化的统计图。x0dx0a4条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。x0dx0ax0dx0ax0dx0a五 问卷深入分析x0dx0a除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍:x0dx0a1聚类分析x0dx0a样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。比如按消费特征对被调查者的进行聚类。x0dx0a2 相关分析x0dx0a相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。x0dx0a其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法x0dx0a3均值的比较与检验x0dx0a(1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。比如可以按性别变量分为男和女来研究二者收入是否存在差距。x0dx0a(2)T 检验:x0dx0a独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。x0dx0a如果样本不独立则要用配对t检验。比如研究参加职业培训后 工作效率是否提高。x0dx0a4 回归分析x0dx0a问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。比如,研究对某商品的消费受收入的影响程度。2023-06-06 18:14:051
父爱是什么作文比如父爱是山
是自己感到父爱的严厉时比如父爱是山2023-06-06 18:14:154
《我缺少了父爱》作文600字
我是一只小鸟,而爸爸的爱是天空,我飞翔在父爱的关怀中。我是一条小鱼,而爸爸的爱是海洋,我游弋在父爱的温馨中。 我的爸爸是一名普通的教师,但在我眼里却是世界上最伟大的爸爸。 记得有一年严冬,我上学少穿了一件棉袄,冻得我直哆嗦,我搓着手心里后悔没听妈妈的话。这时听吴微微说:“马凤岐,你爸爸来了!”我走出教室,只见爸爸微笑着,手里拿着一件棉袄,说“来,穿上吧”。我穿上棉袄,身上暖和了,心里更是暖洋洋的,爸爸说“以后要注意啊”。我笑着使劲地点了点头。回到家里,妈妈听说我上学少穿了一件棉袄,狠狠的训斥了我一顿,正要打我,爸爸笑着走过来,说“小孩子不懂事,算了吧。”我感激的看着爸爸,爸爸用宽容教育了我。 还有一次,我在外面闯了祸还对妈妈撒慌,妈妈的批评让我脸红,我流下了悔恨的泪水。爸爸见了急忙给我擦干眼泪,给我讲道理,并对妈妈说:“打骂孩子不是最好的教育方法,要给他们讲道理。毕竟还是小孩子嘛。”爸爸有给我讲了好多道理,让我心悦诚服的认了错。 我一天天长大,知道了要感恩父母。我会父母劳累的时候递上一杯热茶;吃完了饭,爸爸妈妈休息,我来洗碗。 我有一个好爸爸,他让我知道了什么是爱。我在爱中成长,心中亮着一盏感恩的灯,照亮我的人生路! 父亲 记得前些天,你告诉我;一个15岁的女孩被埋在废墟里,女孩的父亲独自一人用了11个小时救出了女孩,女孩被救出后,紧紧地和父亲抱在一起。说的第一句话是:“爸爸,以后我再也不和你吵架了。”原来,在地震之前,父女俩儿吵了一架,所以…… 听了这个故事,我震撼了,我感动了,一股感激之情涌上心头。 记得: 我一岁时,你抱着我,讲故事给我听。我报答你,在睡梦中开心地笑了。 我二岁时,开口说的第一句话是:“电灯”,你无比的兴奋。我报答你,重复地说着“电灯”。 我三岁时,你牵着我,扶着我,教我学走路。你放开我的小手,看着我蹒跚的脚步,欣慰的笑了。我报答你,反复练习,终于,学会了走路。 我四岁时,很怕吃药。那次,因为不吃药,你打了我,手印印在了我屁股上,我哭得好伤心。你心疼了,买了一个变形金刚送给我。我报答你,开心的笑了,却好久都不和你说话。 我五岁时,上了幼儿园的小班。你牵着我去学校,路上你说“要乖乖的听话,和小朋友们团结友爱。”我报答你,常常受老师表扬,说我很听话。 我七岁时,上了小学一年级,你让我自己去学校,告诉我认真学习,广交朋友。你怕我跟不上,可我陪我复习。我报答你,复习是总想逃避,总想玩耍。 父爱如山,女儿是这山中的草;父爱如海,女儿是这海中的鱼。 人们都说:“母爱是无私的,父爱是无言的。”也许很多人和我一样,在深深体会到母爱的同时,却忽略了无言的父爱。 感恩,一个熟悉的字眼,却又不是一个热门的话题。怀着一颗感恩的心,去感谢对你有恩的人。 母亲确实伟大,小小的一个动作,母亲就能发现异样,记在自己心头的也是母亲。父亲总是默默奉献,却不会说自己是多么伟大,多么神奇。平时看到的,感受到的,也就是母亲特别关心你,而父亲总是不太理会,可谁知道?父亲已经把这件事放在心头啦。 我看过一则故事,内容是这样的:一个男孩,因为崴到脚,回家了。路上,几个朋友送他,在刚要到门口时,爸爸出来了,说有事,要出去。对那男孩说:“记得上药,我出去一趟。”之后,就走了。男孩哭了,说爸爸对他冷漠,不关心他。可是,他们几个谁也没有看到,在那个转角,父亲的目光停留在儿子身上,目送他回家…… 爱是一种责任,感恩是一种智慧,人类自古就会感恩,感恩更是中华民族的传统美德。对你有恩的,哪怕轻于鸿毛的恩情,也不该忘记。更何况是父爱,母爱之如此伟大的生育及养育之情呢?残阳如血,被夕阳拉长的父亲的背影,显得衰老了许多。我度过的十二个春夏秋冬都没发现这一点。如今,看到这一点后的我,哭了,我不知道,十二年里,父亲总是为了我而奔波,忙碌。即使到老,也不一定换的回儿女对父亲如此。 小时候的闹人,父母都顶过来了。如此的辛苦,辛劳,换做外人,又怎能对你如此的呵护呢?如果有一天,失去了对你如此呵护至极的两个人,感恩,肯定就在脑海里浮现了,后悔自己没有关心过父母。所以,从现在起,感恩就城我生命里的一部分,一个不能缺少的话题,一个不能让父母劳累的提示。 父爱也是无私的!也是无价的!因为父亲的爱不是像山一样的大,而是远远超过了所有的山…… 我是一只小鸟,而爸爸的爱是天空,我飞翔在父爱的关怀中。我是一条小鱼,而爸爸的爱是海洋,我游弋在父爱的温馨中。 我的爸爸是一名普通的教师,但在我眼里却是世界上最伟大的爸爸。 记得有一年严冬,我上学少穿了一件棉袄,冻得我直哆嗦,我搓着手心里后悔没听妈妈的话。这时听吴微微说:“马凤岐,你爸爸来了!”我走出教室,只见爸爸微笑着,手里拿着一件棉袄,说“来,穿上吧”。我穿上棉袄,身上暖和了,心里更是暖洋洋的,爸爸说“以后要注意啊”。我笑着使劲地点了点头。回到家里,妈妈听说我上学少穿了一件棉袄,狠狠的训斥了我一顿,正要打我,爸爸笑着走过来,说“小孩子不懂事,算了吧。”我感激的看着爸爸,爸爸用宽容教育了我。 还有一次,我在外面闯了祸还对妈妈撒慌,妈妈的批评让我脸红,我流下了悔恨的泪水。爸爸见了急忙给我擦干眼泪,给我讲道理,并对妈妈说:“打骂孩子不是最好的教育方法,要给他们讲道理。毕竟还是小孩子嘛。”爸爸有给我讲了好多道理,让我心悦诚服的认了错。 我一天天长大,知道了要感恩父母。我会父母劳累的时候递上一杯热茶;吃完了饭,爸爸妈妈休息,我来洗碗。 我有一个好爸爸,他让我知道了什么是爱。我在爱中成长,心中亮着一盏感恩的灯,照亮我的人生路!2023-06-06 18:14:221
适当造句-用适当造句
(1) 儿子不听话可以 适当 的打打,要不就显不出老子的威严,台湾问题就是如此。 (2) 适当 的悲伤可以表示感情的深切,过度的伤心却可以证明智慧的欠缺。 (3) 做人要有自己的脾气, 适当 放高姿态,所谓温柔,不过是看用在谁身上。 (4) 以 适当 的娱乐调节工作过度后的疲劳,是非常有益的事情。罗曼?罗兰 (5) 脑力心力,要放在 适当 的地方,莫贪多而纷乱,要常常集中思想。裴斯泰洛齐 (6) 在一个企业中,员工有 适当 不满或者牢骚,是健全的象征。如果一个企业里的员工鸦雀无声,很可能就是“哀莫大于心死”的写照。 (7) 适当 的悲哀可以表示感情的深切,过度的伤心却可以证明智慧的欠缺。莎士比亚 (8) 适当 地闭嘴,是一种道德,甚至是一种骄傲。 (9) 审慎也是一门艺术,是能够把握 适当 的时间做出迅速的决定,但是这不是议而不决、停滞不前的借口。 (10) 不要显得很坚强。 适当 地用眼泪,但不能滥用。 (11) 用粗俗但并非不 适当 的定义来说,工程学是一种艺术,这用一元钱所能办好的事情,笨拙的人用两元才能勉强办好。 (12) 在 适当 的时机,把机会让给别人,这是个明智的投资。 (13) 太阳花有很强的生命力,只要有土壤阳光和 适当 的水分,它就能迅速地生长。把一根茎折断,再种在土里,多浇水,让它晒晒太阳,很快又能长出一株。 (14) 真正的读书使瞌睡者醒来,给未定目标者选择 适当 的目标。正当的书籍指示人以正道,使其避免误入歧途。卡耐基 (15) 在生命的不 适当 时机,受到超过承受能力的打击,猫可以怕鼠,英雄也可能变成懦夫。 (16) 只有具备真才实学,既了解自己的力量又善于 适当 而谨慎地使用自己力量的人,才能在世俗事务中获得成功。歌德 (17) 我一向认为儿童的潜能是不可限量的,只要有 适当 的刺激,他们就能有令人刮目相看的表现。 (18) 快乐生活的秘诀,就在于 适当 的工作。 (19) 了解神圣永恒的事物,可 适当 地称为‘智慧",对俗事的了解只不过是‘知识"罢了。 (20) 适当 的时候,必须连儿女妻子都要舍弃。 (21) 抓住时机首先要掌握准确的最新资讯,而能否掌握时机是看你能否在 适当 的时候发力,走在竞争对手之前。时机的背后最重要的因素,就是知己知彼。 (22) 没有人愿意和总是虚伪、圆滑的人打交道,但是一味的诚实,却也容易伤害人。所以,生意人讲究的是大诚实,即在 适当 的时候,对适当人,说适当的话。如果坦率无忌是一种伤害,那么,请选择机智的“谎言”。 (23) 经营者必须对任何事的成败负责。所以,他既要充分授权,又要随时听到报告,给予 适当 指导。 (24) 当一个人看清自己的航行路线是多么迂回曲折的,他最好依靠自己的良心作为领航员。而知道在 适当 的时候自动管束自己的人,人才能获得真正的心态平衡,也才可能拥有幸福的家。 (25) 推销必须有耐心,不断地拜访,以免操之过急,亦不可掉以轻心,必须从容不迫,察颜观色,并在 适当 时机促成交易。 (26) 生活、工作、学习倘使都能自动,则教育之收效定能事半功倍。所以我们特别注意自动力之培养,使它关注于全部的生活工作学习之中。自动是自学的行动,而不是自发的行动。自觉的行动,需要 适当 的培养而后可以实现。陶行知 (27) 研究必须充分地占有材料,分析它的各种发展形式,探寻这些形式的内在联系。只有这项工作完成以后,现实的运动才能 适当 地叙述出来。 (28) 教师在学校中并不是要给儿童强加某种概念,或形成某种习惯,而是作为集体的一个成员来选择对于儿童起作用的影响,并帮助儿童对这些影响作出 适当 的反应。 (29) 做导师的人自己便当具有良好的教养,随人、随时、随地,都有 适当 的举止与礼貌。 (30) 假如自负,虚荣心或愤怒使儿童失去了恐怖,或者使他不听恐怖心的劝告,这种心理便应该采取 适当 的方法消除掉,应该使他稍稍考虑一下,降低火气,三思而后行,看看眼前的事值不值得冒险。约翰?洛克 (31) 社交的起因在于人们生活的单调和空虚。社交的需要驱使他们来到一起,但各自具有的许多令人厌憎的品行又驱使他们分开。终于,他们找到了能彼此容忍的 适当 距离,那就是礼貌。叔本华 (32) 在组织行军时,并没有什么非常大的困难足以使军队的迅速前进和准确到达同军队的 适当 集中发生矛盾。 (33) “骄傲”两个字我有点怀疑。凡是有点干劲的,有点能力的,他总是相信自己,是有点主见的人。越有主见的人,越有自信。这个并不坏。真是有点骄傲,如果放到 适当 岗位,他自己就会谦虚起来的,要不然他就混不下去。 (34) 教师在学校中并不是要给儿童强加某种概念,或形成某种习惯,而是作为集体的一个成员来选择对于儿童起着作用的影响,并帮助儿童对这些影响作出 适当 的反应。 (35) 对犯错误的同学,要做 适当 的批评。 (36) 适当 安排娱乐。这是消除心理压力的最好方法,娱乐的方式和内容并不重要,最重要的是要达到心情舒畅。 (37) 人们只能理解他们记得住的东西。人的脑子有各种局限性,不可能掌握延伸得太长的东西。因此 适当 的细分可以促进理解。 (38) 一个人在 适当 的时期可以染上爱情,就像传染上麻疹一样,然后也会像麻疹病人一样,靠一贴牛油和蜂蜜的合剂,在婚姻的怀抱里舒舒服服地渡过难关,从此不再传染上。约翰?高尔斯华绥 (39) 当 适当 的气质与适当的智力结构相结合时,你就会得到理性的行为。 (40) 不 适当 的美丽会给自己招来耻辱。伊索 (41) 战争虽在陆、海、空三个方面进行,但这三个方面却不是彼此分离的。如果这三个方面的力量不能有效地结合和采用协同行动以打击一个经过 适当 选择的共同目标,它们的最大潜力就不能得到发挥。 (42) 在 适当 的时候去做事,可节省时间;背道而行往往会徒劳无功。弗兰西斯?培根 (43) 骄傲两个字,我有点怀疑,凡是有点干劲的,有点能力的,他总是相信自己,是有点主见的人;越有主见的人,越有自信,这个并不坏,真是有点骄傲;如果放到 适当 的位置,他自己就会谦虚起来,要不然他就混不下去了。 (44) 在紧张的环境下, 适当 地放松一下,对身心对学习都有很大的帮助。 (45) 适当 开展课外活动,有利于同学们的身心健康。 (46) 带孩子去旅游,去爬山,去逛公园,去看电影,这都是夸奖孩子最 适当 的方式。 (47) 美有三个要素:第一是一种完整或完美,凡是不完整的东西就是丑的;其次是 适当 的比例或和谐;第三是鲜明,所以鲜明的颜色是公认为美的。 (48) 所谓教育目的就是训练儿童使他们对于自己的能力,自已的环境能够运用得非常 适当 。 (49) 我认为凡人都应该就自己的聪明才力找个 适当 的地方去活动。 (50) 学会让自己安静,把思维沉浸下来,慢慢降低对事物的欲望。把自我经常归零,每天都是新的起点,没有年龄的限制,只要你对事物的欲望 适当 的降低,会赢得更多的求胜机会。 (51) 每次交战中总有一个决定点,只要战争原理得到 适当 的应用,它就比其他点更能赢得胜利。所以,必须力求把力量集中用在这个点上。 (52) 教师不是简单地从事于训练一个人,而是从事于 适当 的社会生活的形成。每个教师应当认识到他的职业的尊严;他是社会的公仆,专门从事于维持正常的社会秩序并谋求正确的社会生长。 (53) 生活、工作、学习倘使都能自动,则教育之收效定能事半功倍。所以我们特别注意自动力之培养,使它关注于全部的生活工作学习之中。自动是自觉的行动,而不是自发的行动。自觉的行动,需要 适当 的培养而后可以实现。陶行知 (54) 永远的虚无没什么所谓,如果你为之穿着 适当 的话。 (55) 树活一张皮,人活一张脸:给别人面子,识破别点破,面子上好过。顾全面子,给人铺台阶,在批评中加点糖,“背后鞠躬”更有效。善待别人的尴尬, 适当 满足别人的虚荣心,死敌也要留面子。保面子即保自尊不将错就错。 (56) 人就像寒冬里的刺猬,互相靠得太近,会觉得刺痛;彼此离得太远,却又会感觉寒冷;人是必须保持 适当 的距离过活。 (57) 在紧张的复习考试期间要注意 适当 的休息。 (58) 鸡蛋因 适当 的温度而变化为鸡,但温度不能使石头变为鸡。 (59) 保持健康的秘密就是 适当 地节制食物、饮料、睡眠和爱情。 (60) 当一个人看清自己的航行路线是多么迂回曲折的,他最好依靠自己的良心作为领航员。而知道在 适当 的时候自动管束自己的人,人才能获得真正的心态平衡,也才可能拥有幸福的家。互相宽容的朋友一定百年同舟。 (61) 分散兵力是战争中的一个最大过失,但像使用所有其他通则一样, 适当 地使用这个真理要比只是认识这个真理重要得多。 (62) 适当 地用理智控制住爱情,有利无弊;发狂似地滥施爱情,有弊无利。 (63) 读书可以铲除一切心理上的障碍,正如 适当 的运动能够矫治身体上某些疾病一般。 (64) 爱物质, 适当 地。永远知道精神更重要。比那些名表、名牌、时装,更加美丽的是你自己。再精致的妆容也比不上健康纯真的微笑。 (65) 强使你的辎重或重炮进入一条隘径,而隘径的彼端又非你所有,这是违反战争惯例的;因为,万一要撤退,这些辎重便会使你困扰,且势将损失。他们应留在后面有 适当 保护的地点,非至隘径的彼端为你所占有时不能移动。 (66) 外因是变化的条件,内因是变化的根据,外因通过内因而起作用。鸡蛋因得 适当 的温度而变化为小鸡,但温度不能使石头变为鸡子,因为二者的根据是不同的。毛泽东 (67) 如果需要支持这两个版本,那么就需要 适当 的时间进行打包和测试。 (68) 许多大学毕业生找不到 适当 的工作,一时感到前途渺茫。 (69) 工头应该经常深入到工人们之中,不提出无稽的要求。他应该了解他们中的道德准则和精神(/45369),在 适当 的时候鼓励他们。这和兵法的原则是一样的。 (70) 过了十八岁,谁还会为一朵云一阵风一枝玫瑰一句絮语而笑。都是牙膏筒里的假笑, 适当 的时候挤一些出来应用。亦舒 (71) 说话周到比雄辩好,措词 适当 比恭维好。 (72) 适当 是一门艺术,只有蠢人才把首饰挂在脚背上。 (73) 一个有责任的人对父母、儿女真爱的表现乃在他对这个温馨、幸福的家庭有万全的准备。有 适当 的保险是一种道德责任,也是国民该担负起的义务。 (74) 使人感到轻松,有的用延长休息法,有的用劳动法,两者 适当 结合,人才会感到轻松。 (75) 一个有责任的人对父母、儿女真爱的表现是对这个温馨、幸福的家庭有万全的准备,保持 适当 的寿险,是一种道德责任,也是国民该负起的义务。 (76) 任何人都会发怒,那很容易。但是对 适当 的人发怒、发到适当的程度,在适当的时候,为适当的理由并且以适当的方式发怒。 (77) 我认为一种 适当 的教育,只要保持下去,便会使一国中的人性得到改造,而具有健全性格的人受到这种教育又变成更好的人。 (78) 酒是一种不含防腐剂的生命之水。它的生命周期由青年期、成熟期、老年期和死亡几部分组成。如果未被给予 适当 的尊重,它将病弱和消亡。 (79) 停车之前想一想,选择地点要 适当 。 (80) 可能更重要的问题是:“我是否对真正重要的事情,安排了 适当 的时间?”。 (81) 适当 的休息,是健身的主要秘诀。 (82) 适当 的悲衰可以表示感情的深切,过度的伤心却可以证明智慧的欠缺。莎士比亚 (83) 一个人的生命究竟有多大意义,这有什么标准可以衡量吗?提出一个绝对的标准当然很困难;但是,大体上看一个人对待生命的态度是否严肃认真,看他对待劳动、工作等等的态度如何,也就不难对这个人的存在意义做出 适当 的估计了。 (84) 适当 地使用排比句,可以增强文章的气势。 (85) 生命是不确定的,我们惟有分分秒秒地把握,把每一个日子都当成一个快乐而充实的节日。生命是宝贵的,因为我们每个人都只有一次,但正是由于它的宝贵,我们更应当在 适当 时毫不犹豫地舍生取义,使生命这一块被烧热的锻铁淬出更耀眼的火光。 (86) “神童”和“天才”,如果没有 适当 的环境和不断努力,就不能成才,甚至堕落为庸人。维纳 (87) 假使我们希望所办教育与现代的社会生活发生一种密切的关系,给学生一种 适当 的训练,使他们在社会中间成为有用的人,自重的人,则需要研究种种社会变迁。 (88) 一个有责任感的人对父母、妻子、儿女珍爱的表现乃在于他对这个温馨、幸福的家庭有完全的准备。保持 适当 的寿险,是一种道德责任,也是国民负起的义务。 (89) 使人感到甜,有的用加糖法,有的用吃苦法。单用加糖法不行,甜过了份,常在甜中,就不以甜为甜了。总吃苦也不行,必要的时侯也应该 适当 加一点糖。 (90) 只有具备真才实学,既了解自己的力量又善于 适当 而谨慎地使用自己力量的人,才能在世俗中获得成功。 (91) 恐惧和贪婪这两种传染性极强的灾难的偶然爆发会永远在投资界出现。这些流行病的发作时间难以预料,由它们引起的市场精神错乱无论是持续时间还是传染程度同样难以预料。因此我们永远无法预测任何一种灾难的降临或离开,我们的目标应该是 适当 的:我们只是要在别人贪婪时恐惧,而在别人恐惧时贪婪。 (92) 我们说话、做事都要掌握 适当 的分寸。 (93) 他找不到 适当 的词语去形容她的美。 (94) 你要确实的掌握每一个问题的核心,将工作分段,并且 适当 的分配时间。 (95) 人其实都要到相对真理中去寻找真理, 适当 用自我安慰的方法去获得幸福。谁如果追求绝对的幸福,谁如果不会抑制自己的贪欲,谁就真正跌进了痛苦的深渊。 (96) 只有做出伟大事业的,或是教人怎样做出伟大事业的,或是用 适当 的庄严风格来描述这些大事业的人们才配得上“伟大人物”这个称呼。但是只有使生活变成更幸福的,提高人类生活中纯洁的享受和安乐的,或是为未来的更持久、更纯洁的幸福生活铺平道路的事业才配得上称为伟大事业。 (97) 万物的和平在于秩序的平衡,秩序就是把平等和不平等的事物安排在各自 适当 的位置上。奥古斯丁 (98) 适当 地用理智控制住爱情,有利无弊,发疯似的滥施爱情,有弊无利。普劳图斯 (99) 学生 适当 地参加劳动,既可以锻炼身体,又能培养吃苦精神。 (100) 不管是身处上坡还是下坡, 适当 的时候一定要懂得让自己停下来,驻足回望是为了更好的迈进。 (101) 如果我们想要预见数学的将来, 适当 的途径是研究这门学科的历史和现状。 (102) 造句时可 适当 地使用关联词语。 (103) 国家将在 适当 的时候普及高中义务教育。 (104) 父子之间要相亲相爱,君臣之间要有 适当 规则,夫妇之间要有内外之别,长幼之间要有尊卑秩序,朋友之间要有诚信。 (105) 适当 的悲衰可以表示感情的深切,过度的伤心却可以智慧的欠缺。 (106) 敌人的判断时常比朋友的判断更 适当 些,更有用些。 (107) 做导师的人自己更当具有良好的教养,随人、随时、随地都有 适当 的举止和礼貌。 (108) 生命在于运动,也在于静养。养生宜动,养心宜静,动静 适当 ,形神共养,培元固本,才能使身心健康。 (109) 对一个有 适当 工作的人而言,快乐来自于工作,有如花朵结果前拥有的彩色花瓣。 (110) 吃饭七成饱,穿戴 适当 少,耐点饥和寒,益寿又延年。这就应验了,千古之名言:“若要身体安,三分饥和寒”。 (111) 尊重他人的、有责任感的孩子,产生于爱和管教 适当 结合的家庭中。 (112) 有一天,时间会吹散一切,所有的猜疑,所有的迷惑,以及所有的不安都将隐去,直至一尘不染。而那些封存在岁月里的窑酿,也会在 适当 之时开启,于某个风清月朗的日子,淡淡品尝。白落梅 (113) 适当 地发扬自己的长处,具体地纠正自己的短处。 (114) 饮食方面, 适当 地补充维生素B6可减少皮脂的分泌,平时宜多吃些水果、蔬菜和鱼类。 (115) 一个人的成功和挫折可能着眼于一个偶然因素或某一个重大决定而改变了人生。人生中做的任何事都不是徒劳的,三十岁要相信积累的力量。所以一个稳定有发展的工作、几个深交的朋友、持续运动的好习惯、甚至是几道拿手好菜,这些积累都会在 适当 的时候发挥作用。 (116) 女性应当从30岁以后就注意骨骼保健。除 适当 补钙,还要适当运动,比如利用健身房专门训练不同部位肌肉的器械,训练肌肉力量,从而预防骨骼衰老。 (117) 可以的,若遇着 适当 的人对它说法,如生公说法,顽石点头。 (118) 冬季多锻炼,耐寒意志坚。冬泳治病、健身和抗衰,增强体质效果明显;跳绳运动简易又方便,还能增强血液循环;体育卫生要注意, 适当 锻炼身体健。 (119) 建议完善立法对见义勇为的行为进行宣传和 适当 的保护,以激励更多的人见义勇为,提升社会道德水平。 (120) 要感觉到它们,只须稍微孤独一点就够了,孤独到正好能够在 适当 的时机摆脱那个可能是真实的事情就够了。2023-06-06 18:14:261
浏览怎么造句子
造句指懂得并使用字词,按照一定的句法规则造出字词通顺、意思完整、符合逻辑的句子。依据现代语文学科特征,可延伸为写段、作文的基础,是学生写好作文的基本功。造句来源清俞樾《春在堂随笔》卷八:“其用意,其造句,均以纤巧胜。”夏_尊叶圣陶《文心雕龙》四:“造句也共同斟酌,由乐华用铅笔记录下来。”下面为您提供关于【浏览怎么造句子】内容,供您参考。1、他看报纸时总是先浏览一下各版的主要内容,然后再选择有价值的、自己感兴趣的内容仔细阅读。2、他浏览了一下作业,没发现错误。3、但是如何才能保证网站浏览者仔细查看网站内容,而不是走马观花似地浏览呢?4、爸爸读报,总是先浏览一下各版的标题,然后再仔细阅读重要新闻。5、这个地方山明水秀,人文荟萃,是个值得浏览的好去处。6、他趁着开车前的一个钟头,把这一本小说一目十行地浏览了一遍。7、如希望了解更多第三辑气象万千的详情,请浏览以下网页。8、这是需要精读的文章,怎可不求甚解,随意浏览?9、不要只是走马观花的浏览购买合同。地产合同是又长又密的,你需要知道自己的承诺和义务。10、我喜欢浏览娱乐类的杂志。11、您提出的问题,我的答案已经给出,请您浏览一遍。12、只知道课文世界上有无数关闭着的门。每一扇门里,都有一个你不了解的世界。求知和阅世的过程,就是打开这些门的过程。打开这些门,走过去,浏览新鲜的景物,探求未知的天地,这是一件激动人心的事情,也是一个乐趣无穷的过程。一个不想打开门探寻的人,只能是一个精神上贫困衰弱的人,只能在门外无聊的徘徊。当别人为大自然和人世间奇妙的景象惊奇迷醉时,他却在沉睡。13、当你在网上浏览不健康网站遭到网吧老板的劝阻时。14、点击我的百度用户名,查询用户资料或浏览我的百度空间即可见,考试必过。15、我立刻起来,揉揉蒙胧的睡眼,走进总理的办公室。总理招呼我坐在他的写字台对面,要我陪他审阅我整理的记录稿,其实是备资询的意思。他一句一句地审阅,看完一句就用笔在那一句后面画一个小圆圈。他不是浏览一遍就算了,而是一边看一边思索,有时停笔想一想,有时问我一量句。夜很静,经过相当长的时间总理才审阅完,把稿子交给了我。16、一个人久了,对爱情会越挑剔;一个人久了,会变的比恋爱时候成熟;一个人久了,会常常浏览星座运程;一个人久了,朋友会越重要;一个人久了,会越来越喜欢听歌;一个人久了,电话会常常忘记带;一个人久了,对节日大多没啥期待。17、可以直接插网线的,有那个接口,插上以后用遥控器选择网络模式就可以浏览相应的网页和看电影了,如果是智能电视就可以浏览所有的网页,如果不是,就只能看他里面的电影了。18、去贴吧里面发个帖。。。然后再去浏览。。。19、在我浏览过的书的太阳系里,学校里读的书像地球,而校外读的书则是太阳。20、走遍赤县神州,浏览过无数名山大川,我觉得还是自己的家乡好。句子是语言运用的基本单位,它由词或词组构成,能表达一个完整的意思,如告诉别人一件事,提出一个问题,表示要求或制止,表示某种感慨。它的句尾应该用上句号、问号或感叹号。造句的方法一般有以下几种:1、在分析并理解词义的基础上加以说明。如用“瞻仰”造句,可以这样造:“我站在广场上瞻仰革命烈士纪念碑。”因为“瞻仰”是怀着敬意抬头向上看。2、用形容词造句,可以对人物的动作、神态或事物的形状进行具体的描写。如用“鸦雀无声”造句:“教室里鸦雀无声,再也没有人说笑嬉闹,再也没有人随意走动,甚至连大气都不敢出了。”这就把“鸦雀无声”写具体了。3、有的形容词造句可以用一对反义词或用褒义词贬义词的组合来进行,强烈的对比能起到较好的表达作用。如用“光荣”造句:“讲卫生是光荣的,不讲卫生是可耻的。”用“光荣”与“可耻”作对比,强调了讲卫生是一种美德。4、用比拟词造句,可以借助联想、想象使句子生动。如用“仿佛”造句:“今天冷极了,风刮在脸上仿佛刀割一样。”5、用关联词造句,必须注意词语的合理搭配。比如用“尽管??可是??”造句:“尽管今天天气很糟,但是大家都没有迟到。”这就需要在平时学习中,把关联词的几种类型分清并记住。6、先把要造句的词扩展成词组,然后再把句子补充完整。如用“增添”造句,可以先把“增添”组成“增添设备”、“增添信心”或“增添力量”,然后再造句就方便多了。随着信息新媒体的发展,网络已经成为继报纸、收音机、电视之后的主流媒体,并有将其整合的趋势。网民数量的激增使得网络话题的热议和网络语言迅速成为流行语。出现了很多新现象:网络造句——当某一新闻事件在网络迅速流传之后,新闻事件中的某一具有代表性的词语,在网友们的推广下,成为造句的主体,并迅速在网络流行展开。比如李刚事件中,我爸叫李刚成为流行语,以它进行的造句活动在网络铺开。例如:窗前明月光,我爸是李刚;给我一个李刚,我能撑起整个地球等。而在360与腾讯的3Q网络大战之后,一句“我很艰难的做出决定”也迅速流行。这类造句的特征主要是将已有的诗句、文章等进行改变而成。2023-06-06 18:14:081
用公顷或平方千米造句子
我家有4(公顷或平方千米)的玉米地2023-06-06 18:14:022