汉邦问答 / 问答 / 问答详情

二分的类别变量需要建立几个变量

2023-06-08 07:36:43
CarieVinne

二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。

生物统计学论坛 在多重回归、Logistic回归模型中,自变量可以是连续型变量(interval variables),也可以是二项分类变量,和多分类变量。为了便于解释,对二项分类变量(如好坏、死活、发病不发病等)一般按0、1编码,一般0表示阴性或较轻情况,而1表示阳性或较严重情况。如果对二项分类变量按+1与-1编码,那么所得的logistic回归OR=exp(2beta),多重回归的beta同样增加一倍,容易造成错误的解释。因此建议尽量避免“+1”、“-1”编码形式。多分类变量又可分为有序(等级)或无序(也叫名义),如果是有序(ordinal)分类变量,一般可按对因变量影响由小到大的顺序编码为1、2、3、...,或按数据的自然大小,将它当作连续型变量处理。如果是无序的(nominal)分类变量,则需要采用哑变量(dummy variables)进行编码,下面以职业(J)为例加予以说明。 假如职业分类为工、农、商、学、兵5类,则可定义比分类数少1个,即5-1=4个哑变量

当两列变量均为二分变量时应计算哪一种相关

当两列变量均为二分变量时应计算φ相关。区分度是指项目对所测量的心理特性的区分程度或鉴别能力,也就是项目的效度。常以高分组与低分组在该项目得分的平均数的差异表示,或以该项目得分与测验总分的相关表示。确定区分度的方法确定区分度常用的是相关法,即以项目分数与效标分数(或测验总分)的相关作为项目区分度的指标,相关越高,区分能力越好。1、二列相关。二列相关适用于两个可以连续测量的变量,但其中有一个由于某种原因被分成两个类别。2、点二列相关。点二列相关适用于一个变量为连续变量,另一个变量为二分变量的资料。当一个变量是双峰分配时。尽管它并不是真正的二分变量,这种统计方法也适用。3、四分相关。四分相关适用于两个常态的连续变量均被人为二分的资料。如果一个题目分数被二分成通过不通过,效标成绩也被分成通过与不通过,这时就会得到四个类别,从而可组成一个四格表。计算四分相关最常用的是皮尔逊的余弦公式。4、φ相关。相关的统计方法适用于两个变量都是点分配的资料,即两个变量都是二分名义变量。5、积差相关又称积距相关,是当两个变量都是正态连续变量,两者之间呈线性关系时,表示这两个变量之间的相关。
2023-06-06 18:04:381

二分变量的调节变量结果怎么看

对于二分变量,假设其取值为T和F。对之建立预测模型,那么预测结果可以有以下三种表达方式:(1)预测结果为T(或预测结果为F);(2)预测结果为T,把握程度为p(或预测结果为F,把握程度为1-p);其中p为0到1之间的实数。(3)预测结果为取T的可能性为p。
2023-06-06 18:05:221

自变量是二分变量怎么做amos信效度检验

信效度检验的步骤是: 1.数据录入, 2.依次点击分析-标度(度量)-可靠性分析 ,信度分析。 3. 每个量表维度分别进行信度分析,选中专业了解度包含的5个题目,并且进行变量选择。 4. 在模型下拉选项中选中Alpha或者α,一般默认,这个是科隆巴赫系数。 5. 点击统计选项,然后勾选打钩的内容,并且点击继续勾选选项 6: 点击确定就得到了第一个维度(专业了解度)的信度分析结果。
2023-06-06 18:05:291

请教二分变量在因子分析和结构方程模型的处理

2023-06-06 18:05:362

一列数据为二分变量,计算这列数据的点二列相关,在spss怎么具体操作?

可以在卡方检验这里做
2023-06-06 18:05:431

spss怎么分析二分变量

1、首先,大家平时理解的变量是单纬的,而不是你说的多维的。因此,对spss而言,X1、X2、X3、Y1、Y2、Y3分别是6个变量。2、spss的相关性分析中可以分别统计这6个变量间的相关性。通过他们之间相关性的计算,你或许可以得到你所说的X与Y之间的相关性,但这种相关性只是你推测的定性描述而已,是不能定量描述的。3、主成分分析,目的是将分析对象的多个维度简化为少数几个维度,方便分析,这样做的前提是维度很多且其中的多个维度之间有较强的相关性。而不是你想象的可以把X1、X2、X3降维成一个变量,因为只有三个维度,已经很少了,这三个维度可以做降维分析的可能性几乎没有。4、回归分析,只有一个因变量,可以有多个自变量,最终算得因变量与自变量间的回归关系。估计你只是自己想象了一个例子,实际中一般是不会有这样的分析案例的。
2023-06-06 18:05:511

二分类变量能进行相关分析吗?

用SPSS进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的R的平方和,相减就是解释率。
2023-06-06 18:06:093

二分类变量回归属于

Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型。这里只讲二分类。  对于二分类的Logistic回归,因变量y只有“是、否”两个取值,记为1和0。这种值为0/1的二值品质型变量,我们称其为二分类变量。  假设在自变量x1,x2,u22ef,xpx1,x2,u22ef,xp作用下,y取“是”的概率是p,则取“否”的概率是1-p,研究的是当y取“是”发生的模率p与自变量x1,x2,u22ef,xpx1,x2,u22ef,xp的关系。
2023-06-06 18:06:161

二分类变量要做哑变量吗

如果是二分类变量不用设为哑变量。二分类变量是指只有两种结果的变量,通常用0和1表示,其中0表示否定或不具备某种特征,1表示肯定或具备某种特征。而01和12是两种不同的二分类变量。其中,01变量是指只包含0和1两种取值的二分类变量,表示两种互斥的状态。例如,在进行某个调查时,可以使用01变量来记录参与者是否吸烟,0表示不吸烟,1表示吸烟。而12变量则是指包含1和2两种取值的二分类变量,表示两种非互斥的状态。例如,在进行某个调查时,可以使用12变量来记录参与者的性别,1表示男性,2表示女性。由此可见,01和12的差别在于其所表示的状态是互斥的还是非互斥的。这种差别在统计学中非常重要,因为它涉及到了不同类型的变量和不同的统计方法。在实际应用中,需要根据需要选择适当的变量类型和统计方法,以便更好地处理数据并得到有意义的结果。变量概述:由于变量让你能够把程序中准备使用的每一段数据都赋给一个简短、易于记忆的名字,因此它们十分有用。变量可以保存程序运行时用户输入的数据(如使用InputBox函数在屏幕上显示一个对话框,然后把用户键入的文本保存到变量中)、特定运算的结果以及要在窗体上显示的一段数据等。简而言之,变量是用于跟踪几乎所有类型信息的简单工具。
2023-06-06 18:06:221

【译】小样本的统计分析问题

有人认为,对于小样本,你就无法使用统计的。但,这是一个误解,一个 常见的误解 。对于小样本,我们也有适当的统计方法。 一个研究者的“小样本”,在另一个研究者看来则可能意味着“大样本”。本文中,小样本主要是指样本量在5-30个用户(可用性研究中常见的样本量,进一步阅读:http://www.measuringusability.com/blog/actual-users.php)。 值得注意的是,用户研究并不是出现小样本的唯一领域。其他具有较高操作成本的研究也会出现这个现象,比如fMRis和动物实验等。 尽管我们有相应的方式来处理小样本研究数据,但我们应该清晰地知道小样本的局限性:你很难看到很大的差异,很明显的效果。 这就像使用双筒望远镜进行天文观测一样:使用双筒望远镜,你可能无法看到行星、恒星、月亮和偶尔出现的彗星。但这并不以为着你就不能进行天文观测了。事实上,伽利略就是使用望远镜( 与今天相当的双筒望远镜相当 )发现了木星的卫星。 统计也是一样。仅仅因为你的样本不够大,并不能判断你能不能使用统计。再次强调, 小样本的关键限制是,你难以发现设计或措施的效果是否有差异。 幸运的是,在用户体验研究中,我们往往关心的是不同用户可能发现的不同问题:比如:导航的结构变化,搜索结果页面的改进等等。 下面是我们在小样本用户研究中的常见统计分析方法。 比较compare 如果您需要对比两个独立组别的完成率、完成时间,问卷评分等。有两种大样本或者小样的方法可以采用。具体适用与哪种方法,取决于数据的特征:连续的还是离散的。比较均值: 如果你的数据是连续的(不是二进制),比如任务完成时间、问卷评分等,你可以采用独立样本t检验。实践证明,它对于小样本也是适用的。 二分变量比较: 如果你的数据是二进制的(成功/失败,是/否),你可以采用N-1的卡方检验。当期望数目小于1时,使用Fisher精确检验往往有更好的表现。 置信区间Confidence Intervals 当你想从样本数据来推测整个用户群,你会想到生成一个置信区间(译者注:关于置信区间,可参阅: http://baike.baidu.com/view/409226.htm )。 尽管小样本的置信区会相当宽(通常为20-30个百分点),但是建立这样的区间总是有益的。例如:你想知道,用户在安装打印机前是否会去阅读“Read this first”文档。而测试中,8名用户中有6名用户没有去阅读。这时候我们可以推知:至少40%的用户很可能会这么做——这是一个相当大的比例。 置信区间的计算方法有三种,这取决于你数据是否是二进制、时间或者连续的。基于平均值的置信区间Confidence interval around a mean :如果你的数据是连续的(非二进制),如评定量表、以美元计算的订单金额,页面访问数等。那么,置信区间的计算可以基于t分布进行计算(当然,这需要考虑到样本量)。 基于任务时间的置信区间Confidence interval around task-time :任务时间的理论最小值为0秒(不多见),一些用户的任务时间可能是其他用户的10-20倍。对于这种不对称性,我们需要进行数据转换( log-transformed ),然后基于转换后的数据进行计算。待报告时再转换回来。 基于二进制的置信区间 Confidence interval around a binary measure :二进制的数据比如完成率或yes/no。这类置信区间的计算,可以采用校正后沃尔德检验法( Adjusted Wald interval )计算(这种方法对于所有样本规模均适用)。 点估计(均值)Point Estimates (The Best Averages ) 任何研究报告中,何为"最好"的平均时间或平均完成率的估计,应当取决于研究的目标。 请记住:即使是“最好”的均值估计,也依然不代表实际的平均值。 所以对于未知总体均值的估计而言,置信区间是更好的展示方法。 在可用性研究中,小样本的均值计算,比较适宜的有两个:任务时间和完成率。不同样本规模中更常见的则是量表评分(SUS评分等)。 完成率: 小样本的完成率,通常可能只有几个数值(译者注:可用性测试中,这一数字可能为5)。例如:有五个用户进行任务操作,其任务完成率只可能是:0%,20%,40%,60%,80%和100%几个数字中的某一个(100%也并不罕见)。基于小样本得出一个完美的成功率,可能并不恰当——因为它可能并不能揭示真实情况(测试结果优于真实情况)。 我们(指作者)对自己的小样本可用性测试数据,利用拉普拉斯估计(theLaPlace estimator)和简单比例(一般称为,最大似然估计,the Maximum Likelihood Estimator)进行了均值估计(参见:http://www.upassoc.org/upa_publications/jus/2006_may/lewis_small_sample_estimates.pdf )。 评定量表的均值问题: 量表是一个有趣的度量类型,它们大多是有限的区间(如:1-5,1-10等)除非你是 Spinal Tap (译者注:因翻译期间,该链接视频未能打开。故未译成中文)。我们发现,在小型或大型的样本中,均值最好是在中位数上(参阅:http://drjim.0catch.com/1993_MultipointScales_MeanAndMedianDifferencesAndObservedSignificanceLevels.pdf)。当然,我们有许多方式来报道评定量表的分数,比如 top-two boxes (直观理解,可参照NPS的计算规则)。 具体如何报告取决于你的灵敏度需要和组织要求。任务时间均值 :一个较长的任务时间可能让算术平均值产生扭曲,这时候中位数则是用来描述平均水平的更恰当的指标。样本数在25以上的,中位数对均值具有良好的代表性(进一步阅读:http://www.measuringusability.com/average-times.php)。 不幸的是,中位数往往不够准确,在样本数小于25的情况下,比平均值更加不准确。这时候,几何平均值往往具有更好的衡量意义(译者注:几何平均值受极端值的影响更小)。 【工具箱】 小样本计算器:http://www.measuringusability.com/wald.htm 任务时间置信区间计算: http://www.measuringusability.com/time_intervals.php 二分变量差异检验: http://www.measuringusability.com/ab-calc.php top-two boxes:https://www.measuringusability.com/blog/top-box.php 几何平均数计算器: http://www.ab126.com/goju/1710.html 数字帝国-统计计算器: http://zh.numberempire.com/statisticscalculator.php —————————————————————————————— 【译后记】译罢此文,深深感触:对于结果直接提供算术平均数就是耍流氓!而多数报告也确实只提供了算术平均数一种。 本文对于更严谨科学地分析和解读研究发现,具有重要的启发意义。 因时间和精力限制,译文难免存在谬误,欢迎批评指正。
2023-06-06 18:06:401

聚类分析中有二分变量怎么处理

K-mean聚类方法 对聚类变量的要求 必须是连续型数据变量,就是你说的必须是12345这样的打分,或者是比如距离 重量 这种实际数据 你如果你有其他的分类变量数据 可以尝试用系统聚类方法,或者 2阶段聚类
2023-06-06 18:06:511

自变量有两个连续和一个二分,因变量是等级变量,用什么方法处理数据?

统计学依据数据的计量尺度将数据划分为三类:定距型数据(Scale)、定序型数据(Ordinal)、定类型数据(Nominal)。定距型数据通常是指诸如身高、体重、血压等的连续型数据,也包括诸如人数、商品件数等离散型数据;定序型数据具有内在固有大小或高低顺序,但它又不同于定距型数据,一般可以数值或字符表示。如职称变量可以有低级、中级、高级三个取值,可以分别用1、2、3等表示,年龄段变量可以有老、中、青三个取值,分别用A B C表示等。这里,无论是数值型的1、2 、3 还是字符型的A B C ,都是有大小或高低顺序的,但数据之间却是不等距的。因为,低级和中级职称之间的差距与中级和高级职称之间的差距是不相等的;定类型数据是指没有内在固有大小或高低顺序,一般以数值或字符表示的分类数据。如性别变量中的男、女取值,可以分别用1、 2表示,民族变量中的各个民族,可以用‘汉"‘回"‘满"等字符表示等。这里,无论是数值型的1、 2 还是字符型的‘汉"‘回"‘满",都不存在内部固有的大小或高低顺序,而只是一种名义上的指代。我觉得教育年限应该设置成定距型数据(Scale)吧。因为,教育年限应该是一个连续的变量,它不存在内在的大小或高低顺序问题。
2023-06-06 18:07:001

二分类变量和连续变量相关分析不显著怎么调

二分类变量和连续变量相关分析不显著手动移除出共线性的自变量调。因为变量关系不显著,可以尽量引用更多关于变量关系的理论依据,手动移除出共线性的自变量调节增强相关性。所以二分类变量和连续变量相关分析不显著手动移除出共线性的自变量调。二分类变量是按照观察对象的某一特性或特点,将调查对象分为两组的变量。
2023-06-06 18:07:061

录入好的调查问卷,该如何进行数据分析?

SPSS数量掌握 我可以代分析的 且有多年给研究生分析数据的经验
2023-06-06 18:07:143

spss如何把一个多分类变量改为二分类变量?

在SPSS里面的重新编码即可。f变量=1,生成新变量为=1,其余为0。fi变量=2,生成新变量为=1,其余为0。解决spss数据的变量类型如何转换的步骤如下:1、将数据导入spss中后选择菜单栏中的【转换】下的【计算变量】选项。2、在【目标变量】中直接输入变量的名称。3、然后在【数字表达式】中输入值即可对新变量赋值了。4、可以对新变量添加逻辑条件与其他变量相互关联,选择【如果】选项。5、添加逻辑条件即可。6、最后点击确认即可。这样就解决了spss数据的变量类型如何转换的问题了。SPSSspss是统计产品与服务解决软件,SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。集数据录入、资料编辑、数据管理、统计分析、报表制作、图形绘制为一体。从理论上说,只要计算机硬盘和内存足够大,SPSS可以处理任意大小的数据文件。
2023-06-06 18:07:221

process不允许二分调节变量

process是不允许二分调节变量。讲解了自变量、因变量为显变量,调节变量为二分类变量时,用Mplus编写代码进行分析。自变量、因变量为潜变量时的代码与显变量的差不多。
2023-06-06 18:07:351

急问关于spss的问题,二分变量的回归分析的奇怪结果。

你对照组和实验组是用T检验还是卡方检验?你的二分变量是通过logistic回归分析还是一般回归分析?
2023-06-06 18:07:591

请问SPSS中怎样将多分类变量转换为二分类变量啊?

较容易。比如,你想这样二分:4和5一组,1-3一组。点转换--计算新变量,就可以实现。下面有一个if按钮,可以点它,你尝试一下,很快会明白。
2023-06-06 18:08:251

自变量连续变量,因变量二分类,单因素分析用什么方法

当自变量为连续变量,因变量为二分类变量时,可以使用t检验或方差分析中的方差齐性检验(Levene检验)来判断是否满足正态性和方差齐性假设。如果满足假设,可以使用t检验或方差分析;如果不满足假设,可以使用非参数的Mann-Whitney U检验或Kruskal-Wallis检验来进行单因素分析。其中,t检验适用于两个样本之间的比较,方差分析适用于三个及以上样本之间的比较。如果存在多个自变量,则可以使用多元logistic回归分析。关于为什么使用这些方法,主要是因为这些方法考虑了不同样本之间的差异,能够较好地反映不同自变量对因变量的影响程度。而在判断是否满足正态性和方差齐性假设时,可以通过图形和统计检验进行验证。如果数据不符合正态分布假设或方差不齐假设,则选择非参数方法进行分析,可以提高分析的可靠性和准确性。关于内容延伸,需要在实际分析过程中仔细检查数据的质量和性质,保证使用的方法合理有效,结果准确可靠。同时,需要充分理解各种方法的原理和适用条件,不同方法的比较和选择也需要根据实际情况进行判断和决策。
2023-06-06 18:08:322

自变量为二分类变量 ,可以做bootstrap中介效应分析吗?

可以的啊,需要将自变量哑变量化,就是将自变量转化为0和1的虚拟变量,你这里可以将干预组设置为1,将对照组设置为0。剩余的分析步骤和连读变量是一样的。
2023-06-06 18:08:391

process检验中介的时候自变量是二分类变量怎么处理?

分类变量做分析时通常需要设定哑变量,有N个分类变量就设定N-1个哑变量。二分类变量比较特殊,自己刚好就可以作为一个哑变量,所以不需要特殊的处理,按照连续变量处理即可,中介分析也是一样。
2023-06-06 18:08:451

点二列相关是否能用于人为二分变量和连续变量

也就是说非正态的人为二分也是可以用点二列的咯
2023-06-06 18:08:531

心理学统计中点二列相关和二列相关的区别

刚好复习到这一块,就来回答吧!点二列相关是其中一个变量一定得是真正的二分型变量。(是与否,男与女,生与死这类)而二列相关其中一列变量为人为划分的二分变量。(如 健康与不健康,及格和不及格这类)总的来说,如果不明确,就用点二列相关,在实际研究中,二列相关很少使用。(摘自现代心理与教育统计学 张厚粲著)
2023-06-06 18:09:033

多元线性回归分析中,有一自变量为二分类变量,如(使用=1,未使用=2),在SPSS软件中如何设置此自变量?

录入1和2
2023-06-06 18:09:123

等级资料和二分类变量关系的应该用哪种统计学方法

比较指标对不同性别是否显示显著差异,一般使用方差分析,方差分析对应的统计量服从卡方分布。秩和检验是非参数统计,涉及到排序统计量的时候使用
2023-06-06 18:09:321

怎样用spss进行点双列相关的分析?

SPSS里没有专门用于计算点二列相关的模块,但事实上点二列相关就等同于用Pearson相关计算一个连续变量和一个二分变量的相关,这与使用点二列相关的专有公式是等价的不过用的时候注意一下,二分变量就采用0,1计分操作程序就是:分析——相关——双变量,OK即可
2023-06-06 18:09:411

您好,我要知道两个二分变量间的相关性,请问用的是四分相关法吗?在SPSS软件里面要怎样操作?

这个问法不好做相关分析
2023-06-06 18:09:482

如何在SPSS中做二分类变量的复式条形图

SPSS 203个变量:Groups、hsCRP、X(值)图形Graphs->旧对话框Legacy Dialogs->条形图Bar复式条形图Clustered:,个案组摘要Summaries for groups of cases,定义Difine其他统计量(例如均值)Other Statistics,将X放入变量框Variable,Groups放类别轴Category Axis,hsCRP放定义聚类Difine clusteres by右上角,选项Options显示误差条形图Display error bars,置信区间Confidence Interval,继续,确定。
2023-06-06 18:09:551

从统计学上如何分辨两组数据有明显差异?

在数据分析过程中,你可能会经常遇到一个问题,比如你统计了上个月和这个月的活跃度平均值,你发现这个月的平均值比上个月有增长,但是这个增长是足够大,是本质的变化呢,或者只是随机的波动呢?你应该不应该向领导和同事报喜呢?是沾沾自喜还是真的有了重大突破,值得发奖金呢?这个时候就需要用到统计检验。下面就介绍几组适合不同数据的统计检验方法。 一 T检验,用于 正态分布 的参数检验 检验两组独立样本 平均值 是否相同, 只用于连续变量 主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 只适用于连续变量,在一定区间内可以任意取值的 变量 叫 连续变量 ,其数值是 连续 不断的,相邻两个数值可作无限分割。简单粗暴的说,就是某个变量可以保留小数点后几位。比如,高考成绩。 一般我们接触数值都是连续变量,而且正态分布,因此T检验是非常常用的一种参数检验的方法。 1.独立样本T检验(Independent Sample T Test) 检测两个对象或者两种事务在同一时间的平均收入、平均得分、平均工资、平均利润、平均奖金等异同。 比如,有一组男生高考成绩,36个样本;有一组女生高考成绩,42个样本。 这两组数据是不同对象(不同性别组),在同一个时间高考成绩。我们想了解男生女生的平均成绩是否相同。 此时可采用独立样本T检验来分辨两组数据(视为两个子总体)的均值是否相同。 2.配对样本T-test(配对样本T检验) 检测同一对象或者同一事务在两种条件的平均收入、平均得分、平均工资、平均利润、平均奖金等异同。 比如,我们开头提出的问题。我们有某个APP上个月每天的日活跃度,还有某个APP这个月每天的日活跃度。我们想知道这两个月APP平均日活跃度是否相同。这样的情况就可以用配对样本T检验 如果通过统计检验,发现平均日活跃度下降了,但是平均值和上个月没有明显的不同,就没有必要太沮丧,说明这个波动还在比较正常的范围。如果这个月日活跃度平均值和上个月有明显的差异,而且低于上个月,那么就需要特别注意运营或者产品设计了。如果有明显差异,而且还是高于上个月的,就可以向领导同事报喜了。 二 非参数检验 ,检验两组或者多组样本分布是否相同,适用于 所有类型变量 非参数检验是不必假设样本呈现何种分布。如果已知道样本呈现何种分布就用对应的参数检验;如果不确定样本是否正态分布,也可以采用参数检验。 非参数检验适用于以下所有类型的变量。 (1)定类数据,或称类别数据,如性别、材料类型和付款方式,非黑即白;(2)定序数值,数据有几个离散值,1,2,3,这些值大小是有意义的,但是大小差距是没有意义;(3)定距数据,从非正太分布的数据重抽取的区间数据,也就是连续性变量。 比较常用的比较两组独立样本之间的非参数检验有: (1)检验两个 相关 样本(两组抽样)分布没有差异(来自同一个总体) 注意检验的样本之间有相关关系或者 A. Wilcoxon Signed Ranks检验 以秩检验为主,检验差异的方向和大小,比较全面,优先推荐这种检验。 B. Sign检验,检验正负差异次数 C. McNemar,侧重检验是否有差异 (2)检验k个 相关 样本(两组抽样)分布没有差异(来自同一个总体) A.Friedman检验,秩检验,同时计算卡方,tie B.Kendall检验,秩检验 C.Cochran的Q检验,只适用于二分变量,即k组样本都是0和1两种编码 (3)检验两组 独立 样本(两组抽样)是否来自同一个总体 推荐K-S(Kolmogorov Smirnov)检验 (4)检验k个独立样本是否来自统一整体 推荐Kruskal-WAllis检验 三 简而言之 如果你的两组或者多组变量是定距连续变量,那采用T检验就可以。 如果你变量不是定距变量,或者,定距变量明显不符合正态分布,才考虑使用非参数检验。
2023-06-06 18:10:021

计量经济学中ols一阶拟合完以后残差不为正态分布

残差正态性是一个非常强的假定,往往现实中难以满足。它存在主要是为了保证回归系数进行统计推断能顺利利用t、f等分布进行检验而已。回归系数的无偏性或者一致性不会收到分布的影响。所以这并不是什么大问题,在大样本下,残差一般都能满足渐进正态性。而在实际操作中,通常给被解释变量用log()进行处理,也都基本可以逼近正态。OLS估计中,最重要的还是要处理内生性和异方差。只要保证解释变量与残差不相关(无内生性),以及解释变量与残差的方差不相关(无异方差),系数的一致性能保证,同时假设推断的合理性也能得到满足,结论才是可靠。结论是:不用特意处理,用log(y)代替被解释变量。
2023-06-06 18:10:182

点二系列相关是不是直接看person相关系数就可以

一、基本内涵 点二系列相关(pomit-biserial correlation)研究的是一个连续变量与一个二分类变量间的相关关系,事实上,二分类由于只有两个数值,数值之间的差距反映出的也是一种等距关系,即二分类变量可以看做一种连续变量,也就是说,点二系列相关其实可以看做是Pearson相关分析的特殊情况。二、适用范围 点二系列相关(pomit-biserial correlation)用于一个二分类变量和一个服从正态分布的连续变量间的相关关系研究。
2023-06-06 18:10:242

二分类变量和连续性变量是什么意思?

1,二分类变量分为真正的二分变量和人为的二分变量两种。2,变量按变量值是否连续可分为连续变量与离散变量两种。二分类变量:1,二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。2,常见的二分类变量包括:OR (Odds Ratio) 值,RR (Risk Ratio) 值,RD (Risk Difference) 值。3,二分类变量也可以包括有序数据。有序数据(Ordinal data),其结局为多个分类的其中一种(如疾病严重程度),或者为累积的得分。连续变量:1,在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。2,符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。3,连续变量与离散变量的简单区别方法,连续变量时一直叠加上去的,增长量可以划分为固定的单位,即,1,2,3..........
2023-06-06 18:10:441

及格与不及格是真正二分变量还是人为二分变量?

如果是搜集数据是百分制分数,但在计算时将其按照某一标准分为及格和不及格,则为人为二分变量。1、二分类变量分为真正的二分变量和人为的二分变量两种。2、变量按变量值是否连续可分为连续变量与离散变量两种。二分类变量:1、二分类变量即为那些结局只有两种可能性的变量,如有效与否,心梗,心血管不良事件,死亡等,一般将发生事件的人数除以样本量总数得到的事件发生率作为结局考察。2、常见的二分类变量包括:OR (Odds Ratio) 值,RR (Risk Ratio) 值,RD (Risk Difference) 值。3、二分类变量也可以包括有序数据。有序数据(Ordinal data),其结局为多个分类的其中一种(如疾病严重程度),或者为累积的得分。变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析。若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析(资料是根据临床数据得出)。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。
2023-06-06 18:11:011

年级高低是人为的二分变量吗?

不是吧,人为二分变量本身就要是一个连续型的测量数据,年级的高低不是连续型的
2023-06-06 18:11:232

二分变量、多分变量、配对样本的概念

分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。连续性变量:在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。
2023-06-06 18:11:291

二分类变量和连续变量的相关性分析该用什么分析

分类变量是指地理位置、人口统计等方面的变量,其作用是将调查响应者分群。描述变量是描述某一个客户群与其他客户群的区别。大部分分类变量也就是描述变量。连续性变量:在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种。在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。
2023-06-06 18:11:371

二分生什么意思是什么

您好: 您问的问题属于《心理与数理统计学》的范畴。有关这个问题,我大致说明一下,如果在我说明的过程中,您依旧有不明白的地方,请参照《心理与数理统计学》解答您心中的疑惑。 一、通常,有些变量的测量结果只有两种类别,譬如男性与女性、房东与房客、成功与失败、及格与不及格、生或死等等。这种按事物的某一性质划分的只有两类结果的变量,称为二分变量。 二、二分变量又分为真正的二分变量和人为的二分变量两种。真正的二分变量也称为离散型二分变量,前面我所举出的一些例子都是离散型二分变量。所谓人为的二分变量,是指该变量本身是一个连续型的测量数据,两种结果之间本来是一个连续统一体,但被某种人为规定的标准划分为两个类别。在这种情况下,一个测量结果很明显地要么属于这个类别,要么属于另一个类别,两种类别之间一般也不会被看做是连续的。有时一个变量是双峰分布,也可划分为二分称名变量,如文盲与非文盲,可规定一个界限,文盲指识字极少的人,其余的人为非文盲,就识字量来说可能形成双峰分布形态。 祝好!
2023-06-06 18:11:451

【译】小样本的统计分析问题

有人认为,对于小样本,你就无法使用统计的。但,这是一个误解,一个 常见的误解 。对于小样本,我们也有适当的统计方法。 一个研究者的“小样本”,在另一个研究者看来则可能意味着“大样本”。本文中,小样本主要是指样本量在5-30个用户(可用性研究中常见的样本量,进一步阅读:http://www.measuringusability.com/blog/actual-users.php)。 值得注意的是,用户研究并不是出现小样本的唯一领域。其他具有较高操作成本的研究也会出现这个现象,比如fMRis和动物实验等。 尽管我们有相应的方式来处理小样本研究数据,但我们应该清晰地知道小样本的局限性:你很难看到很大的差异,很明显的效果。 这就像使用双筒望远镜进行天文观测一样:使用双筒望远镜,你可能无法看到行星、恒星、月亮和偶尔出现的彗星。但这并不以为着你就不能进行天文观测了。事实上,伽利略就是使用望远镜( 与今天相当的双筒望远镜相当 )发现了木星的卫星。 统计也是一样。仅仅因为你的样本不够大,并不能判断你能不能使用统计。再次强调, 小样本的关键限制是,你难以发现设计或措施的效果是否有差异。 幸运的是,在用户体验研究中,我们往往关心的是不同用户可能发现的不同问题:比如:导航的结构变化,搜索结果页面的改进等等。 下面是我们在小样本用户研究中的常见统计分析方法。 比较compare 如果您需要对比两个独立组别的完成率、完成时间,问卷评分等。有两种大样本或者小样的方法可以采用。具体适用与哪种方法,取决于数据的特征:连续的还是离散的。比较均值: 如果你的数据是连续的(不是二进制),比如任务完成时间、问卷评分等,你可以采用独立样本t检验。实践证明,它对于小样本也是适用的。 二分变量比较: 如果你的数据是二进制的(成功/失败,是/否),你可以采用N-1的卡方检验。当期望数目小于1时,使用Fisher精确检验往往有更好的表现。 置信区间Confidence Intervals 当你想从样本数据来推测整个用户群,你会想到生成一个置信区间(译者注:关于置信区间,可参阅: http://baike.baidu.com/view/409226.htm )。 尽管小样本的置信区会相当宽(通常为20-30个百分点),但是建立这样的区间总是有益的。例如:你想知道,用户在安装打印机前是否会去阅读“Read this first”文档。而测试中,8名用户中有6名用户没有去阅读。这时候我们可以推知:至少40%的用户很可能会这么做——这是一个相当大的比例。 置信区间的计算方法有三种,这取决于你数据是否是二进制、时间或者连续的。基于平均值的置信区间Confidence interval around a mean :如果你的数据是连续的(非二进制),如评定量表、以美元计算的订单金额,页面访问数等。那么,置信区间的计算可以基于t分布进行计算(当然,这需要考虑到样本量)。 基于任务时间的置信区间Confidence interval around task-time :任务时间的理论最小值为0秒(不多见),一些用户的任务时间可能是其他用户的10-20倍。对于这种不对称性,我们需要进行数据转换( log-transformed ),然后基于转换后的数据进行计算。待报告时再转换回来。 基于二进制的置信区间 Confidence interval around a binary measure :二进制的数据比如完成率或yes/no。这类置信区间的计算,可以采用校正后沃尔德检验法( Adjusted Wald interval )计算(这种方法对于所有样本规模均适用)。 点估计(均值)Point Estimates (The Best Averages ) 任何研究报告中,何为"最好"的平均时间或平均完成率的估计,应当取决于研究的目标。 请记住:即使是“最好”的均值估计,也依然不代表实际的平均值。 所以对于未知总体均值的估计而言,置信区间是更好的展示方法。 在可用性研究中,小样本的均值计算,比较适宜的有两个:任务时间和完成率。不同样本规模中更常见的则是量表评分(SUS评分等)。 完成率: 小样本的完成率,通常可能只有几个数值(译者注:可用性测试中,这一数字可能为5)。例如:有五个用户进行任务操作,其任务完成率只可能是:0%,20%,40%,60%,80%和100%几个数字中的某一个(100%也并不罕见)。基于小样本得出一个完美的成功率,可能并不恰当——因为它可能并不能揭示真实情况(测试结果优于真实情况)。 我们(指作者)对自己的小样本可用性测试数据,利用拉普拉斯估计(theLaPlace estimator)和简单比例(一般称为,最大似然估计,the Maximum Likelihood Estimator)进行了均值估计(参见:http://www.upassoc.org/upa_publications/jus/2006_may/lewis_small_sample_estimates.pdf )。 评定量表的均值问题: 量表是一个有趣的度量类型,它们大多是有限的区间(如:1-5,1-10等)除非你是 Spinal Tap (译者注:因翻译期间,该链接视频未能打开。故未译成中文)。我们发现,在小型或大型的样本中,均值最好是在中位数上(参阅:http://drjim.0catch.com/1993_MultipointScales_MeanAndMedianDifferencesAndObservedSignificanceLevels.pdf)。当然,我们有许多方式来报道评定量表的分数,比如 top-two boxes (直观理解,可参照NPS的计算规则)。 具体如何报告取决于你的灵敏度需要和组织要求。任务时间均值 :一个较长的任务时间可能让算术平均值产生扭曲,这时候中位数则是用来描述平均水平的更恰当的指标。样本数在25以上的,中位数对均值具有良好的代表性(进一步阅读:http://www.measuringusability.com/average-times.php)。 不幸的是,中位数往往不够准确,在样本数小于25的情况下,比平均值更加不准确。这时候,几何平均值往往具有更好的衡量意义(译者注:几何平均值受极端值的影响更小)。 【工具箱】 小样本计算器:http://www.measuringusability.com/wald.htm 任务时间置信区间计算: http://www.measuringusability.com/time_intervals.php 二分变量差异检验: http://www.measuringusability.com/ab-calc.php top-two boxes:https://www.measuringusability.com/blog/top-box.php 几何平均数计算器: http://www.ab126.com/goju/1710.html 数字帝国-统计计算器: http://zh.numberempire.com/statisticscalculator.php —————————————————————————————— 【译后记】译罢此文,深深感触:对于结果直接提供算术平均数就是耍流氓!而多数报告也确实只提供了算术平均数一种。 本文对于更严谨科学地分析和解读研究发现,具有重要的启发意义。 因时间和精力限制,译文难免存在谬误,欢迎批评指正。
2023-06-06 18:12:031

录入好的调查问卷,该如何进行数据分析?

录入好的调查问卷,该如何进行数据分析? SPSS分析调查问卷数据的方法 当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍. Spss处理: 第一步:定义变量 大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类). 我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为: 1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59 那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。 以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明. 1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可. 2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例: 请问您通常获取新闻的方式有哪些( ) 1 报纸 2 杂志 3 电视 4 收音机 5 网络 在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可. 使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。 到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了. 第二步:数据录入 Spss数据录入有很多方式,大致有一下几种: 1.读取SPSS格式的数据 2.读取Excel等格式的数据 3.读取文本数据(Fixed和Delimiter) 4.读取数据库格式数据(分如下两步) (1)配置ODBC (2)在SPSS中通过ODBC和数据库进行 但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下. 1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案. 2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的). 3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据. 在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了. 第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法. 1.作图分析: 在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分:: (1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。 (2)Interactive:交互式统计图。 (3)Map:统计地图。 (4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有: 条图 散点图 线图 直方图 饼图 面积图 箱式图 正态Q-Q图 正态P-P图 质量控制图 Pareto图 自回归曲线图 高低图 交互相关图 序列图 频谱图 误差线图 作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好. 2.数值分析: SPSS 数值统计分析过程均在Analyze菜单中,包括: (1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。 Descriptive Statistics包括的统计功能有: Frequencies(频数分析):作用:了解变量的取值分布情况 Descriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理 Explore(探索分析):功能:考察数据的奇异性和分布特征 Crosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系 Reports包括的统计功能有: OLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。 Case Summaries(观测量列表):察看或打印所需要的变量值 Report Summaries in Row:行形式输出报告 Report Summaries in Columns:列形式输出报告 (2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。 以下是进行均值比较及检验的过程: MEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合 T test 过程:对样本进行T检验的过程 单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。 独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异) 配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果) one-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。 (3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决 (4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种: 1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。 2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系 3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远 (5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic:二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling最优编码回归;其中最常用的为前面三个. (6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。 非参数检验的过程有以下几个: 1.Chi-Square test 卡方检验 2.Binomial test 二项分布检验 3.Runs test 游程检验 4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验 5.2 independent Samples Test 两个独立样本检验 6.K independent Samples Test K个独立样本检验 7.2 related Samples Test 两个相关样本检验 8.K related Samples Test 两个相关样本检验 (7)、Data Reduction(因子分析) (8)、Classify(聚类与判别)等等 以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果. 第四步:结果保存 我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制﹑粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果. 总结: 以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用. SPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二 注意定义不同的数据类型Type 各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: 1 单选题:答案只能有一个选项 例一 当前贵组织机构是否设有面向组织的职业生涯规划系统? A有 B 正在开创 C没有 D曾经有过但已中断 编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。 录入:录入选项对应值,如选C则录入3 2 多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。 (1)方法一(二分法): 例二 贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示 考虑在内。 A月薪员工 B日薪员工 C钟点工 编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。 录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。 (2)方法二: 例三 你认为开展保持党员先进性教育活动的最重要的目标是那三项: 1( ) 2 ( ) 3( ) A、提高党员素质 B、加强基层组织 C、坚持发扬民主 D、激发创业热情 E、服务人民群众 F、促进各项工作 编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2”B,“3” C,“4” D,“5” E,“6” F 录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。 注:能用方法二编码的多选题也能用方法编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。 3 排序题: 对选项重要性进行排序 例四 您购买商品时在 ①品牌 ②流行 ③质量 ④实用 ⑤价格 中对它们的关注程度先后顺序是(请填代号重新排列) 第一位 第二位 第三位 第四位 第五位 编码:定义五个变量,分别可以代表第一位 第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格 录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。 4 选择排序题: 例五 把例三中的问题改为“你认为开展保持党员先进性教育活动的最重 的目标是那三项,并按重要性从高到低排序”,选项不变。 编码:以ABCDEF6个选项分别对应定义6个变量,每个变量的Value都做同样的如下定义:“1” 未选,“2” 排第一,“3” 排第二,“4” 排第三。 录入:以变量的Value值录入。比如三个括号里分别选的是 ECF,则该题的6个变量的值应该分别录入:1(代表A选项未选)、1、 3(代表C选项排在第二)、1、2、4。 注:该方法是对多选题和排序题的方法结合的一种方法,对一般排序题(例四)也同样适用,只是两者用的分析方法不同(例四用频数分析、例五用描述分析),输出结果从不同的侧面反映问题的重要性(前一种方法从位次从变量的频数看排序,后一种方法从变量出发看排序)。 5 开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分 例六 你的年龄(实岁):______ 编码:一个变量,不定义Value值 录入:即录入被调查者实际填入的数值。 6开放性文字题: 如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。 三 问卷一般性分析 下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例,以下提到的菜单项均在Analyze主菜单下 1频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。 适用范围:单选题(例一),排序题(例四),多选题的方法二(例三) 频数分析也是问卷分析中最常用的方法。 实现: Descriptive statistics……Frequencies 2 描述分析:Descriptives:过程可以计算单变量的描述统计量。这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。 适用范围:选择并排序题(例五)、开放性数值题(例六)。 实现: Descriptive statistics……Descriptives,需要的统计量点击按钮Statistics…中选择 3 多重反应下的频次分析: 适用范围:多选题的二分法(例二) 实现:第一步在Multiple Response……Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。第二步在Multiple Response……Frequencies中做频数分析。 4 交叉频数分析:解决对多变量的各水平组合的频数分析的问题 适用范围:,适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。 实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。第二步选择Descriptive statistics……Crosstabs 四 简单图形描述介绍 在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。现在把常用图简单介绍如下 1饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的部分对总体的比例关系的统计图。频数分析的结果宜用饼图表示。 2曲线图:是用线段的升降来说明数据变动情况的一种统计图。它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。 3面积图:用线段下的阴影面积来强调现象变化的统计图。 4条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。 五 问卷深入分析 除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍: 1聚类分析 样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。比如按消费特征对被调查者的进行聚类。 2 相关分析 相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。 其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法 3均值的比较与检验 (1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。比如可以按性别变量分为男和女来研究二者收入是否存在差距。 (2)T 检验: 独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。 如果样本不独立则要用配对t检验。比如研究参加职业培训后 工作效率是否提高。 4 回归分析 问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。比如,研究对某商品的消费受收入的影响程度。 如何用spss对调查问卷进行数据分析 问卷调查表 可以进行很多种统计分析的,包含描述性分析,信度,效度分析,差异性分析,相关性分析,回归分析等等 怎么对调查问卷进行数据分析 分析方法太多了 我替别人做这类的数据分析蛮多的 用Excel对60份调查问卷进行数据分析 把你问卷发一份过来413186190@QQ.COM 如何做调查问卷数据分析 首先你可以计算每个部门每个工作职责满意不满意度,然后看那个业务在这个部门中不满意度最高,满意度最高,需要加强哪一个业务,需要表扬哪一个业务;然后部门之间进行比较,看看哪个部门满意度最高,哪个部门满意度最低,需要表扬需要批评的都知道了。 调查问卷数据分析,急用 数据分析最重要的思维就是,不断确定业务中两组变量之间的关系,用以解释业务。 收入、转化、用户规模、用户活跃等,我们称为现象。而只有通过数据量化的现象,我们才能精准感知。所以,数据是用来描述现象的,是被量化的现象。 如何看数据分析,又该如何进行数据分析? 关于数据,有两种常见的情况。从腾讯出来的一个朋友曾告诉我“腾讯的数据太多,都不知道怎么看”,而另一个在创业公司工作的朋友告诉我“老板为了省开发资源,数据给的少得可怜”。这两种情况都有点走极端,那么,怎样看数据比较合理呢?答案是:需要想清楚3个问题。 1、我为什么要看数据? 看数据的理由有很多,有不少PM看数据纯粹为了在吵架中能占上风,也有的人是为了炫技,还有一些人是因为老板要他们这样做。但我认为,看数据最好的理由是“你真的渴望持续改进自己的产品,而数据能给你客观的建议 ”。如果你没有这个渴望,觉得“我已经做的很好了,没有几个人能比我做得更好”,不但可以不看数据,连用户都可以不要。 2、数据的由哪些成分组成?这些成分每天/周/月都发生了什么变化? 分析数据的构成可以更精确的知道是哪些产品、运营方案发挥作用,数据的变化可以知道某个方案起了多大的作用。 拿PV来说,分析PV的地域结构,可以知道适合的推广渠道;分析用户的年龄结构可以知道活动策划偏向什么主题;分析用户的职业结构可以知道用户的使用习惯。 3、这些数据为什么发生了这些变化? 分析数据为什么变化,可以找到关键的原因,或者洞悉用户真正的需求,最终形成产品的改进。 用SILL量表问卷调查后, 如何用SPSS进行数据分析 免费的?建议先输入数据,然后按照教程练习以后自行分析吧 如果给钱,楼上估计应该会帮你分析的很好。 不过也有可能你人品大爆发,他不收你钱 艾森克人格问卷如何录入spss进行数据分析 首先要清楚spss数据分析软件,对于数据格式的要求。 通常用spss软件进行数据分析时,数据格式要求是横向一行为一份问卷,一列对应问卷中的一个题目,所以有多少份问卷,最终录完后就有多少行,而问卷中有多少个题目,最终就有多少列。 其次在录的时候 可以在excel中录,也可以直接在spss中录入,因为格式是完全一样的,如果对excel很熟悉,就可以现在excel中录,录完再通过spss直接可以打开excel数据就好了。 如何进行数据分析 数据分析是以现有网站的内容为基础,展示用户喜欢的内容,降低网站的跳出率增加网站黏性,具体步骤如下: 1、分析pv、uv、ip、跳出率和平均访问时长 通常情况下uv要大于ip,pv是uv的倍数关系,而pv:uv多少合适呢?要看同行业的平均数据,比如一个知识性网站,pv:uv的比例接近10:1,而如果是企业站,可能3:1或者4:1。 跳出率越高说明网站内容质量越差,平均访问时长也体现网站的内容质量。时长越长说明网站内容质量越高、内链系统越好。 2、分析来源、地域和搜索引擎 从来源分析可以评测外链和推广效果,可以选择效果更好的推广和外链方式,节省时间。地域分析可以帮我我们做地域关键词,搜索引擎分析用于明白用户的搜索习惯。 3、受访页面、着陆页和搜索词 分析受访页面可以看出推广、外链以及内链效果,分析搜索词可以得出现在内容排名效果。 受访页面主要来自于外链、推广链接、排名页面和内链布局。受访页面越高的网页说明展示次数越多,被用户看到的概率越大。 着陆页分数据纯碎的体现外链、推广链接和排名的效果,如果没有关键词排名,可以直接评测推广、外链的效果。 可以通过搜索词得知那些关键词给我们带来了流量,以及访问的页面是哪些,访问页的跳出率是多少,是不是应该推广这个页面帮助它提升排名。 4、分析页面点击图和页面上下游 页面点击图,可以根据页面点击图调整网站首页布局。颜色越深的内容放置的位置越靠近左上角,颜色越浅的内容位置越靠近右下角。点击很少或者没有点击的内容可以从首页移除,或者放置在栏目页。 页面上下游是体现用户浏览网页的轨迹,从上下游的数据可以统计布局的内链用户点击最多的文章是哪一篇,以及哪些页面的跳出率高。页面上下游数据最能说明内链布局效果。 注意:数据分析的魅力是常人无法感受的,如果你的网站在中后期还是凭证感觉做,那么你就相当于盲人摸象,你的网站排名只能看运气了。
2023-06-06 18:12:121

变量的分类

变量主要是用来描述事物特征,那么按照描述的粗劣,有以下两种划分方法:按基本描述划分定性变量 :也称为名称变量、品质变量、分类变量,总之就是描述事物特性的变量,目的是将事物区分成互不相容的不同组别,变量值多为文字或符号,在分析时,需要转化为特定含义的数字。定性变量可以再细分为:无序分类变量:取值之间没有顺序差别,仅做分类,又可分为二分类变量和多分类变量二分类变量是指将全部数据分成两个类别,如男、女,对、错,阴、阳等,二分类变量是一种特殊的分类变量,有其特有的分析方法。多分类变量是指两个以上类别,如血型分为A、B、AB、0。定量变量:也称为数值型变量,是描述事物数字信息的变量,变量值就是数字,如长度、重量、产量、人口、速度和温度。定量变量可以再细分,连续型变量:在一定区间内可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。如身高、绳子的长度等。离散型变量:值只能用自然数或整数单位计算,其数值是间断的,相邻两个数值之间不再有其他数值,这种变量的取值一般使用计数方法取得。
2023-06-06 18:12:191

请问用个案排秩后得到两组数据,想要做回归分析的话应该用正态得分做还是用数据的秩做

2023-06-06 18:12:391

效度的类型

效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。内容效度(content-related validity)一、什么是内容效度内容效度指的是测验题目对有关内容或行为取样的适用性,从而确定测验是否是所欲测量的行为领域的代表性取样。二、内容效度的评估方法1.专家判断法; 2.统计分析法(评分者信度复本信度折半信度再测法); 3.经验推测法 (实验检验)三、内容效度的特性内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。构想效度(construct-related validity)一、什么是构想效度指测验能够测量到理论上的构想或特质的程度,即测验的结果是否能证实或解释某一理论的假设、术语或构想,解释的程度如何。二、构想效度的估计方法1.对测验本身的分析(用内容效度来验证构想效度)2.测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法3.效标效度的研究证明4.实验法和观察法证实三、效标效度(criterion-related validity)一什么是效标效度效标效度又称实证效度,反映的是测验预测个体在某种情境下行为表现的有效性程度。根据效标资料是否与测验分数同时获得,又可分为同时效度(实际士气高和士气低的人在士气测验中的得分一致性。)和预测效度两类。一个好的效标必须具备以下条件:①效标必须能最有效地反映测验的目标,即效标测量本身必须有效;②效标必须具有较高的信度,稳定可靠,不随时间等因素而变化;③效标可以客观地加以测量,可用数据或等级来表示;④效标测量的方法简单,省时省力,经济实用。二、效标效度的评估方法1.相关法:效度系数是最常用的效度指标,尤其是效标效度。它是以皮尔逊积差相关系数来表示的,主要反映测验分数与效标测量的相关。当测验成绩是连续变量,而效标资料是二分变量时,计算效度系数可用点二列相关公式或二列相关公式;当测验分数为连续变量,效标资料为等级评定时,可用贾斯朋多系列相关公式计算。2.区分法:是检验测验分数能否有效地区分由效标所定义的团体的一种方法。算出t值后,便可知道分数的差异是否显著。若差异显著,说明该测验能够有效地区分由效标定义的团体,否则,测验是无效的。重叠百分比可以通过计算每一组内得分超过(或低于)另一组平均数的人数百分比得出;另外,还可以计算两组分布的共同区的百分比。重叠量越大,说明两组分数差异越小,即测验的效度越差。3.命中率法:是当测验用来做取舍的依据时,用其正确决定的比例作为效度指标的一种方法。命中率的计算有两种方法,一是计算总命中率,另一种是计算正命中率。4、预期表法:是一种双向表格,预测分数排在表的左边,效标排在表的顶端。从左下至右上对角线上各百分数字越大,而其它的百分数字越小,表示测验的效标效度越高 ;反之,数字越分散,则效度越低。
2023-06-06 18:12:483

spss最小二乘法回归分析是怎么样的?

spss最小二乘法回归分析1、统计量:对于每个模型:标准和非标准回归系数、复R、R2、调整R2、估计的标准误、方差分析表、预测值和残差。此外,还有用于每个回归系数的95%的置信区间,以及参数估计的相关性和协方差矩阵。2、数据:因变量和自变量必须是定量的。分类变量(例如宗教、专业或居住地)需要重新编码为二分类(哑元)变量或其他类型的对比变量。内生解释变量应是定量变量(非分类变量)。数据分析如果确信没有任何预测变量与因变量中的误差相关,则可使用“线性回归”过程。如果您的数据违反了假设之一(例如,正态性假设或恒定方差假设),则尝试转换数据。如果您的数据不线性相关,且转换也没有帮助,则使用“曲线估计”过程中的备用模型。如果因变量是二分变量,例如指示特定的销售是否已完成,则请使用“Logistic回归”过程。如果您的数据不独立(例如,如果您在多个条件下观察同一个人),请使用Advanced Models选项中的“重复度量”过程。
2023-06-06 18:13:521

录入好的调查问卷,该如何进行数据分析?

SPSS分析调查问卷数据的方法x0dx0ax0dx0a当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量_数据录入_统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.x0dx0aSpss处理: x0dx0a第一步:定义变量 x0dx0a大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).x0dx0a我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:x0dx0a1.请问你的年龄属于下面哪一个年龄段( )?x0dx0a A:20—29 B:30—39 C:40—49 D:50--59x0dx0a那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。x0dx0a以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.x0dx0a1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.x0dx0a2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:x0dx0a请问您通常获取新闻的方式有哪些( )x0dx0a1 报纸 2 杂志 3 电视 4 收音机 5 网络x0dx0a在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.x0dx0a使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。x0dx0a到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.x0dx0a第二步:数据录入 x0dx0aSpss数据录入有很多方式,大致有一下几种:x0dx0a1.读取SPSS格式的数据x0dx0a2.读取Excel等格式的数据x0dx0a3.读取文本数据(Fixed和Delimiter)x0dx0a4.读取数据库格式数据(分如下两步)x0dx0a(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行x0dx0a但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.x0dx0a1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.x0dx0a2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5??.的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).x0dx0a3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.x0dx0a在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.x0dx0a第三步:统计分析 x0dx0a有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法.x0dx0a1.作图分析:x0dx0a在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分::x0dx0a(1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。x0dx0a(2)Interactive:交互式统计图。x0dx0a(3)Map:统计地图。x0dx0a(4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有:x0dx0a条图x0dx0a散点图x0dx0a线图x0dx0a直方图x0dx0a饼图x0dx0a面积图x0dx0a箱式图x0dx0a正态Q-Q图x0dx0a正态P-P图x0dx0a质量控制图x0dx0aPareto图x0dx0a自回归曲线图x0dx0a高低图x0dx0a交互相关图x0dx0a序列图x0dx0a频谱图x0dx0a误差线图x0dx0a作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好.x0dx0a2.数值分析:x0dx0aSPSS 数值统计分析过程均在Analyze菜单中,包括:x0dx0a(1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。x0dx0aDescriptive Statistics包括的统计功能有: x0dx0aFrequencies(频数分析):作用:了解变量的取值分布情况x0dx0aDescriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理x0dx0aExplore(探索分析):功能:考察数据的奇异性和分布特征x0dx0aCrosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系x0dx0aReports包括的统计功能有: x0dx0aOLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。x0dx0aCase Summaries(观测量列表):察看或打印所需要的变量值x0dx0aReport Summaries in Row:行形式输出报告x0dx0aReport Summaries in Columns:列形式输出报告x0dx0a(2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。x0dx0a以下是进行均值比较及检验的过程:x0dx0aMEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合x0dx0aT test 过程:对样本进行T检验的过程x0dx0a单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。x0dx0a独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异)x0dx0a配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果)x0dx0aone-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。x0dx0a(3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决x0dx0a(4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种:x0dx0a1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。x0dx0a2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系x0dx0a3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远x0dx0a(5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic:二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling最优编码回归;其中最常用的为前面三个.x0dx0a(6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。x0dx0a非参数检验的过程有以下几个:x0dx0a1.Chi-Square test 卡方检验x0dx0a2.Binomial test 二项分布检验x0dx0a3.Runs test 游程检验x0dx0a4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验x0dx0a5.2 independent Samples Test 两个独立样本检验x0dx0a6.K independent Samples Test K个独立样本检验x0dx0a7.2 related Samples Test 两个相关样本检验x0dx0a8.K related Samples Test 两个相关样本检验x0dx0a(7)、Data Reduction(因子分析)x0dx0a(8)、Classify(聚类与判别)等等x0dx0a以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果.x0dx0a第四步:结果保存 x0dx0a 我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制_粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果.x0dx0a总结: x0dx0a以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用.x0dx0aSPSS的问卷分析中一份问卷是一个案,首先要根据问卷问题的不同定义变量。定义变量值得注意的两点:一区分变量的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal是指定类;二 注意定义不同的数据类型Typex0dx0a各色各样的问卷题目的类型大致可以分为单选、多选、排序、开放题目四种类型,他们的变量的定义和处理的方法各有不同,我们详细举例介绍如下: x0dx0a1 单选题:答案只能有一个选项x0dx0a例一 当前贵组织机构是否设有面向组织的职业生涯规划系统? x0dx0aA有 B 正在开创 C没有 D曾经有过但已中断x0dx0a编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。x0dx0a录入:录入选项对应值,如选C则录入3x0dx0a2 多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。x0dx0a(1)方法一(二分法):x0dx0a例二 贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示x0dx0a考虑在内。x0dx0aA月薪员工 B日薪员工 C钟点工x0dx0a编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。x0dx0a录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。x0dx0a(2)方法二:x0dx0a例三 你认为开展保持党员先进性教育活动的最重要的目标是那三项:x0dx0a1( ) 2 ( ) 3( )x0dx0aA、提高党员素质 B、加强基层组织 C、坚持发扬民主x0dx0aD、激发创业热情 E、服务人民群众 F、促进各项工作x0dx0a编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2”B,“3” C,“4” D,“5” E,“6” Fx0dx0a录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。x0dx0a注:能用方法二编码的多选题也能用方法编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。x0dx0a3 排序题: 对选项重要性进行排序x0dx0a例四 您购买商品时在 ①品牌 ②流行 ③质量 ④实用 ⑤价格 中对它们的关注程度先后顺序是(请填代号重新排列) x0dx0a第一位 第二位 第三位 第四位 第五位x0dx0a编码:定义五个变量,分别可以代表第一位 第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格x0dx0a录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。x0dx0a4 选择排序题:x0dx0a例五 把例三中的问题改为“你认为开展保持党员先进性教育活动的最重x0dx0a的目标是那三项,并按重要性从高到低排序”,选项不变。x0dx0a编码:以ABCDEF6个选项分别对应定义6个变量,每个变量的Value都做同样的如下定义:“1” 未选,“2” 排第一,“3” 排第二,“4” 排第三。x0dx0a录入:以变量的Value值录入。比如三个括号里分别选的是 ECF,则该题的6个变量的值应该分别录入:1(代表A选项未选)、1、 3(代表C选项排在第二)、1、2、4。x0dx0a注:该方法是对多选题和排序题的方法结合的一种方法,对一般排序题(例四)也同样适用,只是两者用的分析方法不同(例四用频数分析、例五用描述分析),输出结果从不同的侧面反映问题的重要性(前一种方法从位次从变量的频数看排序,后一种方法从变量出发看排序)。x0dx0a5 开放性数值题和量表题:这类题目要求被调查者自己填入数值,或者打分x0dx0a例六 你的年龄(实岁):______x0dx0a编码:一个变量,不定义Value值x0dx0a录入:即录入被调查者实际填入的数值。 x0dx0a6开放性文字题:x0dx0a如果可能的话可以按照含义相似的答案进行编码,转换成为封闭式选项进行分析。如果答案内容较为丰富、不容易归类的,应对这类问题直接做定性分析。x0dx0a三 问卷一般性分析x0dx0a下面具体介绍SPSS中问卷的一般处理方法,操作以版本spss13.0为例,以下提到的菜单项均在Analyze主菜单下x0dx0a1频数分析:Frequencies过程可以做单变量的频数分布表;显示数据文件中由用户指定的变量的特定值发生的频数;获得某些描述统计量和描述数值范围的统计量。x0dx0a适用范围:单选题(例一),排序题(例四),多选题的方法二(例三)x0dx0a频数分析也是问卷分析中最常用的方法。x0dx0a实现: Descriptive statistics??Frequencies x0dx0a2 描述分析:Descriptives:过程可以计算单变量的描述统计量。这些述统计量有平均值、算术和、标准差,最大值、最小值、方差、范围和平均数标准误等。x0dx0a适用范围:选择并排序题(例五)、开放性数值题(例六)。x0dx0a实现: Descriptive statistics??Descriptives,需要的统计量点击按钮Statistics?中选择x0dx0a3 多重反应下的频次分析:x0dx0a适用范围:多选题的二分法(例二)x0dx0a实现:第一步在Multiple Response??Define Sets把一道多选问题中定义了的所有变量集合在一起,给新的集合变量取名,在Dichotomies Counted value中输入1。第二步在Multiple Response??Frequencies中做频数分析。x0dx0a4 交叉频数分析:解决对多变量的各水平组合的频数分析的问题x0dx0a适用范围:,适用于由两个或两个以上变量进行交叉分类形成的列联表,对变量之间的关联性进行分析。比如要知道不同工作性质的人上班使用交通工具的情况,可以通过交叉分析得到一个二维频数表则一目了然。x0dx0a实现:第一步根据分析的目的来确定交叉分析的选项,确定控制变量和解释变量(如上例中不同工作性质的人是控制变量,使用交通工具是解释变量)。第二步选择Descriptive statistics??Crosstabs x0dx0ax0dx0a四 简单图形描述介绍x0dx0a在做上述频数分析、描述分析等分析时就可以直接做出图形,简单方便,同时也可以另外作图。SPSS的作图功能在菜单Graphs下,功能强大,图形清晰优美。现在把常用图简单介绍如下x0dx0a1饼图:又称圆图,是以圆的面积代表被研究对象的总体,按各构成部分占总体比重的大小把圆面积分割成若干扇形,用以表示现象的部分对总体的比例关系的统计图。频数分析的结果宜用饼图表示。x0dx0a2曲线图:是用线段的升降来说明数据变动情况的一种统计图。它主要表示现象在时间上的变化趋势、现象的分配情况和2个现象的依存关系等。x0dx0a3面积图:用线段下的阴影面积来强调现象变化的统计图。x0dx0a4条形图:利用相同宽度条形的长短或高低表现统计数据大小及变化的统计图。x0dx0ax0dx0ax0dx0a五 问卷深入分析x0dx0a除了以上简单的分析,spss强大的功能还可以对问卷进行深入分析,比如常用的有聚类分析、交叉分析、因子分析、均值比分析(参数检验)、相关分析、回归分析等。因为涉及到很专业的统计知识,下面只将个人觉得比较有用的方法的适用范围和分析目的简单做介绍:x0dx0a1聚类分析x0dx0a样本聚类,可以将被调查者分类,并按照这些属性计算各类的比例,以便明确研究所关心的群体。比如按消费特征对被调查者的进行聚类。x0dx0a2 相关分析x0dx0a相关分析是针对两变量或者多变量之间是否存在相关关系的分析方法,要根据变量不同特征选择不同的相关性的度量方式。问卷分析中的多数用的变量都属于分类变量,要采用斯皮尔曼相关系数。x0dx0a其中可以用卡方检验,其是对两变量之间是否具有显著性影响的分析方法x0dx0a3均值的比较与检验x0dx0a(1)Means过程:对指定变量综合描述分析,分组计算计算均值再比较。比如可以按性别变量分为男和女来研究二者收入是否存在差距。x0dx0a(2)T 检验:x0dx0a独立样本t检验用于不相关的样本是否开来自具有相同均值的总体的检验。比如,研究购买该产品的顾客和不购买的顾客的收入是否有明显差异。x0dx0a如果样本不独立则要用配对t检验。比如研究参加职业培训后 工作效率是否提高。x0dx0a4 回归分析x0dx0a问卷分析中的回归分析常采用的是用离散回归模型,一般是逻辑斯蒂模型,解释一个变量对另一变量的影响具体有多大。比如,研究对某商品的消费受收入的影响程度。
2023-06-06 18:14:051

spss中如何录入数据?游程检验分析题会是什么样的?

2023-06-06 18:14:141

我做了一项小实验作文300字左右

  科学实验是帮助我们探索真理的途径,我们可以在动手的过程中找到乐趣并且学到知识。下面是由我为大家整理的“我做了一项小实验作文300字左右”,仅供参考,欢迎大家阅读。   我做了一项小实验作文300字左右【一】   听说瓶子可以吞进去,比自己还要大的鸡蛋,我想这怎么可能呢?我想亲自做实验,因为“亲身下河知深浅,亲口尝梨知酸甜。”   我们需要先准备本子和笔,方便记录过程,在拿来提前蒸好的鸡蛋、玻璃瓶、棉花和打火机,在使用打火机时注意安全。   一开始我用打火机点燃棉花团,把燃烧着的棉花团放进瓶子里,紧接着把鸡蛋竖着放到瓶口,我目不转睛的盯着鸡蛋,顿时家里鸦雀无声,每个人的呼吸也可以听到。过了一会儿,鸡蛋还呆呆的站在那里,纹丝不动,我突然想起来,鸡蛋是要剥壳的。之后我又重新开始,把剥好的鸡蛋放到瓶口,而且要严丝合缝,我屏息凝神的观察着,慢慢的鸡蛋一点一点的往下走,最后“啪”一声,鸡蛋掉进了瓶子里。我欢呼雀跃地跳了起来:“我成功了!我的实验成功了!”   我做了一项小实验作文300字左右【二】   在科学课上,我们做过许多有趣的小实验。在这些小实验当中,我最喜欢的是:“做一个指南针”。   做指南针需要准备一根钢针和一块磁铁。我先把磁铁在钢针上沿一个方向摩擦,重复做20-30次。接着用指南针来检测磁针的南北极:与红色那端相互吸引,则是南极;与红色那端相互排斥,则是北极。然后让磁针自由转动,辨认南北方向。最后,让我们来画一个方位盘吧!在一张纸上写上:东、南、西、北四个方向,把磁针放在方位盘上,在磁针停止转动后,南北方向就一清二楚了。   做完这项小实验,我的脑袋里又冒出了一个念头:用一个磁力强的小磁铁来指南北,比自制的磁针更好吧!于是我把一块小磁铁悬挂起来,与小磁针比赛,我发现小磁铁真的比小磁针强。   做完这两项小实验,我既高兴又激动。一回到家,我马上就把这两项小实验的来龙去脉讲给妈妈听。   这真是一项有趣的小实验呀!   我做了一项小实验作文300字左右【三】   今天,老师布置了“让鸡蛋浮起来”的小实验,并让我们写一篇作文。   回到家准备做实验的材料:一个透明的玻璃杯,里面要装一半的水,一袋食盐、一个小勺子和一个完整的鸡蛋。   首先我用勺子挖三勺盐放入玻璃杯中,再用勺子搅拌均匀。最后往玻璃杯里面放入鸡蛋,谁知鸡蛋却像石头一样直接沉了下去。我不相信,再往玻璃杯里放入两勺盐,果真鸡蛋像饮料瓶盖子一样浮了起来。我再用勺子把鸡蛋摁下去,鸡蛋又像潜水员一样浮了上来。   晚上,我问妈妈:“鸡蛋怎么会在盐水里浮起来?”妈妈说:“是因为盐水的密度比鸡蛋大,清水的密度比鸡蛋小。”我又问:“密度又是什么?”妈妈说:“你升到初中就能学到相关的知识了。”   通过这次实验,我不但完成了老师的任务,还学习到很多知识。   我做了一项小实验作文300字左右【四】   今天我做了一个十分神奇的实验。首先准备材料:一张纸,一个玻璃杯。第一步,把玻璃杯倒满水,第二步把纸片剪得比杯口大一些,第三步把纸片贴在杯口上面,第四步杯子倒过来。   我第一次失败了,水流了出来。第二次也是一样,我连着好几次都失败了。就在我灰心丧气不想再做的时候,我突然想到科学家的实验那么难,我做的实验这么简单,科学家都能坚持,我为什么不能坚持呢?想着,我便又开始继续做实验了。   过了一会儿,奇迹发生了,纸片把水顶住了,实验成功了!我的好奇心一直不停,我在想:是谁用魔法把纸定住了?我上网查了一下,原来是大气压力搞的怪。   从这个实验里,我知道了大气压的作用,它真像一个厉害的魔法师。   我喜欢这个实验,因为它既好玩,又能让我增长知识,同时,还让我懂得了:“世上无难事,只怕有心人”的道理。   我做了一项小实验作文300字左右【五】   星期天看动画片,我看到一个神奇的小实验——弹力鸡蛋。于是我就想自己试着做一次,看看到底能不能成功。   到了晚上放学回家,妈妈还没回来,于是我找来一个小杯子,一小瓶醋和一个鸡蛋,决定在书房的展示台上做实验。我先把醋小心翼翼地倒在小杯子里,接着把鸡蛋泡在醋里一个小时,然后把泡好的鸡蛋拿出来,剥下外皮,向桌子上一扔,鸡蛋就高高弹起。   这让我很迷惑,这鸡蛋怎么就弹起来了呢?鸡蛋一点也不会破,这真是太神奇了。于是我在电脑上查了查,是因为醋的成分全吸收在了鸡蛋里,让鸡蛋凝固了,就像皮皮蛋一样。   这次实验很成功,如果我以后多了解一些科学知识,再遇到这种问题,就不用上网查找了。
2023-06-06 18:05:221

高粱造句子

高粱的造句如下:1. 田野里,高粱扬起了黑红黑红的脸庞,玉米好像听了秋姑娘的笑话似的张开了大嘴露出了颗颗金牙,稻子一片金黄,微风一吹,就像漾起了金色的波浪。2. 田园也不例外,高粱都垂下它的腰,像要亲吻大地。麦田里,麦穗儿粒粒饱满,金黄金黄的。风一吹,麦浪滚滚,让人心旷神怡。3. 秋天到了,田里的农作物成熟了。高粱的脸红红的,好像喝多了酒;远方一大片金黄的稻谷像一大堆金光耀眼的金子;微风轻轻地吹着小麦,好像一片金色的波浪在田野里翻滚。漂亮极了!4. 秋天是庄稼成熟的季节,也是农民伯伯最喜爱的季节。高粱涨红了脸,苞米咧开了嘴,黄澄澄的玉米粒,象一颗颗金豆子,谷子笑弯了腰,正向我们鞠躬,大豆被风吹得乐出。5. 秋天,高粱像一个醉酒的大汉,风一来,醉醺醺的,东倒西倒,涌起了无边无际的金色麦浪。金黄的稻穗儿搭肩咬耳拥挤在一起;绽开的棉桃儿,像簇簇雪团的银海。6. 看!秋天来到田野里,那火红火红的高粱像一簇簇火苗在燃烧;雪白雪白的棉花像一团团雪花从空中飘落在田野;金黄金黄的麦子随风漾起一层又一层的麦浪,犹如一池的金子,耀得那样灿烂。7. 看,农田里的水稻笑弯了腰,高粱举起了火红的火把,玉米乐得露出了大黄牙,棉花肥得把白色的身体都挤了出来,农民伯伯也沉浸在丰收的喜悦中。
2023-06-06 18:05:251

有趣的实验作文

  在日常的学习、工作、生活中,大家都跟作文打过交道吧,作文一定要做到主题集中,围绕同一主题作深入阐述,切忌东拉西扯,主题涣散甚至无主题。如何写一篇有思想、有文采的作文呢?以下是我收集整理的有趣的实验作文,仅供参考,希望能够帮助到大家。 有趣的实验作文1   昨天,老师在课堂上提了一个奇怪的问题:一个杯子装满了水,再用纸盖住,手放下来 ,水不会倒出来。这件事可不可能?   我们都说:“不可能 ”。老师说:“你们可以课下做,也可以回家做做看 ”。于是我回家迫不及待去做。首先,我拿了一个小杯子,把它装满了水,我又拿了一张洁白的纸,把它盖在杯子上,小心翼翼地倒过来,纸不仅没有掉,而且水也没有洒。这是怎么回事呢?纸为什么没有掉下来呢?水又为什么没有洒出来呢?我觉得很奇怪,今天的早读课上,我像丈二的和尚摸不着头脑,急迫的去问老师,老师耐心的回答说:“因为,一杯满满的水,被纸盖住了,里面是没有空气的,呈负压状态。再把它慢慢的翻过来,纸和水是不会掉下来的,因为杯中是负压,空气中的大气压 ‘托" 住了纸和水,使它们没有掉下来。”   我恍然大悟,才明白这个实验的原理。这次的实验真是太有趣了,不仅培养了我们的动手能力,还使我们明白了一些科学小知识。 有趣的实验作文2   今天的作文课,老师不知怎么端了一盆水进来。   大家好奇地问:“咦,老师你怎么端了一盆水呀?”老师说:“今天我们要做一个小实验。”大家听了兴奋不已,纷纷问老师做什么实验?老师说:“今天做的这个实验名字叫做‘不湿的纸巾"。”   老师首先拿出所有的材料,有纸、杯子和一盆水。实验开始了,宋丫丫拿出一张A4纸,再把纸用力揉成一团,又把纸团塞进杯子里,最后把杯子直接倒过来扣进水盆里。看到水进到了杯子里,我想:纸肯定湿了。当老师拿出杯子来一看,果然,纸湿了。宋丫丫毫不犹豫的再来一次。当她这次拿出纸杯给大家看的时候,大家都惊呆了,那个杯子里的纸一点也没有事。我大声喊道:“太神奇了,我也要来试一下。”我全神贯注,像老师一样,先把纸揉成一团,再放进杯子里,最后把纸杯翻过来,慢慢的往水里面压,当我拿出杯子一看,没湿!我乐得跳了起来。   我好奇地问:“宋丫丫,这是怎么回事呀?”宋丫丫说:“因为空气是无处不在的,当杯子进到水中的时候,杯子里的空气阻断了水的进入,所以纸仍然是干的。”我这才恍然大悟。   科学实验可真神奇啊! 有趣的实验作文3   今天,我们做了一个小实验,这个实验开始就让我们将信将疑。   实验前,老师准备了一瓶水,一只玻璃杯和硬纸板。老师说:“你们信不信硬纸板可以吸在玻璃杯上,倒过来也不会掉?”我们有的说:“不会。”有的说:“会!”   老师开始做实验了,待会我们也要做。我们目不转睛地看着,生怕在哪一处漏掉,会失败。老师拧开水瓶的盖子,把水倒在玻璃杯里倒了一半多一点的水,上面用硬纸板压在上面,老师用手掌用力向下压,接着把杯子倒过来!   “呀!”我们都惊呆了,硬纸板竟然真的吸在玻璃口上,而且杯里的水一滴也没洒出来!   老师把玻璃杯再转过来,放在桌子上说:“这个实验的过程你们都看懂了吗?”我们异口同声地说:“看懂了。”老师让我们自己动手做一做。   我照着老师的做法小心翼翼地向杯子里倒水,然后把纸板放在杯口上使劲地压,生怕里面的空气放不出来!我慢慢地转过杯子,耶!我成功啦!   我们后面的李仁杰和李冬彬他们组,也成功了!但他们又开始做第二次,可能太心急,纸板没压紧,就开始翻转玻璃杯,“哗”杯子里的水从天而降,像李白写的:“飞流直下三千尺,疑是银河落九天。”   这是不是一个神奇的游戏呢? 有趣的实验作文4   今天,老师领着开心无比的我们,来到设备齐全的实验室,做了许多有趣的实验。其中,令我最感兴趣的还是有趣的沉浮子实验。   实验室里环境优雅,地面擦得干干净净,洁白的实验台上没有一丝灰尘,柜子里的实验用品摆放的整整齐齐,黑板上密密麻麻地写满了各种科学知识,令我有些目不暇接!   老师为了让我们弄明白潜水艇在水中沉浮的道理,拿出一个小玩具——沉浮子。同学们都很好奇,你一言,我一语地讨论了起来。老师见大家这么好奇,便把沉浮子的制作方法传授给我们,老师一讲完,我们就迫不及待地做了起来。   做这个实验需要一瓶水,几只大小不一的铁钉,一只塑料滴管和一把剪刀。首先把滴管在气泡边缘处剪下,把气泡留下,然后,把铁钉塞进气泡里,然后把沉浮子放进水杯里,盖紧瓶盖,用双手挤压瓶身,沉浮子下沉就完成了。   可我的沉浮子沉不下去,这时老师说:“如果你们的沉浮子下沉困难,可以把铁钉上缠绕几圈钢丝。”我照着老师说的做,果然成功了。我心想:科学真奇妙啊!我以后一定要好好学习科学知识。   这次有趣的科学实验让我懂得了潜水艇的秘密,沉和浮的知识,还让我懂得了只有好好学习,才能做一个有用的人,这真是一次有趣的科学实验! 有趣的实验作文5   生活处处有学问,而今天的学问就在我们的课堂上。   今天,我一到班级,我就发现我们的杨桃老师准备了盒鹌鹑蛋、一个纸杯、一个支架和一个酒精灯,我们很是奇怪,就追着老师问个不停,老师却说:“今天我们要做一个实验,叫做纸锅煮蛋。”听了老师的话,我们觉得很不可思议,因为大家都知道,纸遇到火会变成灰的。   杨桃说:“大家一定都不相信吧,那大家就观察仔细喽。”只见杨桃先组装好支架,然后拿出纸杯放了点冷水在里面,放在支架上,又拿出一个鹌鹑蛋放在里面,再拿出一个酒精灯,拿下盒盖子,拿出一个打火机,把酒精灯点燃。我们屏息凝视,生怕火会把纸杯给烧成了灰。没想到一分钟、两分钟、三分钟都过去了,可纸杯还是没有坏,里面的鹌鹑蛋则十分舒服,就像在泡温泉,而下面的火就像一个小精灵,它似乎在说:“我就不信烧不坏你这个小小的纸杯了。”老师为了烧得更快,就把纸杯的口子给盖了起来,只见杯子渐渐有了几个黑点。老师让我们等一会儿,就把蛋拿了出来,剥开来,哇,竟然熟了,并且闻起来好香啊!   我们十分疑惑,老师笑着说:“这是因为纸杯的着火点大于水的沸点,所以纸杯没被烧成灰。” 有趣的实验作文6   今天,妈妈送我到心语学校学作文,老师给我们做了一个有趣的实验—-一针浮水上。我和吴润禾还有吴瑕都一致认为针不能浮在水上,而第二排的同学则一致认为能浮起来。于是,老师就做实验让我们看。   第一次,老师飞快地将针放到水里,针沉了下去了,我开心极了!可能是幸灾乐祸吧。而有些同学却目瞪口呆,难以置信。老师坚定地说:“我拿出道具就能让针浮起来了!”吴润禾也坚定地说:“我倒要看看能不能浮起来!”   第二次,老师拿出了面巾纸。然后,他把面巾纸的边撕开,取出薄薄的一张,铺到水面上,再把针小心翼翼地放在纸上。只见纸慢慢地向下沉,针却慢慢地浮在水面上。“针浮在水面上啦,针浮在水面上啦!”第二排的同学高兴地叫着。我则是惊讶不已,一句话也说不出来。   老师笑着说:“谁想做一次实验?”林义翔一马当先举起了手,老师就请了他上台做实验。他按着老师说的去做,终于成功了。可是,吴润禾不服气,就使劲儿摇了摇桌子,针立马沉下去了。老师斩钉截铁地说:“肯定是谁摇桌子了!”林义翔兴高采烈地回到了座位,因为他的实验成功了!   回家后我要做实验给妈妈看,让她也见证奇迹。 有趣的实验作文7   这一天,天气晴朗无云。我坐在椅子上,呼吸着新鲜空气,听着母鸡咯咯叫。   我打开电视,发现一个程序正在做实验。我看了一会儿,看了电视上的场景。我充满激情,想自己做实验。   此时此刻,我又听到了母亲的哭声,我的脑海里一闪而过。我想到了一个有趣的实验。   我首先为实验准备了鸡蛋、杯子和水。我先把水倒进杯子,然后把鸡蛋放进水里。我想看看鸡蛋能否浮在水中。起初,鸡蛋像船一样漂浮在水面上。然而,过了一会儿,气球像没有空气的气球一样沉了下去。我像鸡蛋一样兴奋,开始失去信心。我认为是鸡蛋的问题,所以我用鸭蛋代替了鸡蛋。然而,它像鸡蛋一样沉了下去。我问我妹妹该怎么办。姐姐说只要你往水里加很多盐,鸡蛋就会浮起来。带着一种挫败感,我做了另一个实验。我挖出几勺盐,放入水中。鸡蛋看起来像一个好奇的婴儿。我想看看外面的世界,于是开始行动。然而,他似乎不能跳,仍然在水中停留。我加了几勺盐,鸡蛋看起来被我撑得鼓鼓的,但是没有盐的帮助它们是无法到达水面的。还是够不着水。最后我加了几勺盐,鸡蛋终于上来了,我的心开始失去信心。   这个实验告诉我:做任何事情都不要轻易放弃。你应该坚持不懈,不要半途而废,否则你不会成功。 有趣的实验作文8   “成功了,成功了。”教室里闹哄哄的,到底发生了什么事情呢?   原来,事情是这样的:王老师给我吗做了一个实验,这个实验室这样的:王老师拿出了盐、小勺子和胡椒粉。教室里的同学看了,立马就举起了手,都问:王老师,你这是要干什么呢?王老师不说话,只见她拿出了一张白纸。王老师说:“我们要做一个关于盐和花胡椒粉的实验,再把它们分出来。”说完,一个同学说:“可以把胡椒粉和盐倒入水里。”这个同学说完了,王老师就拿出了水杯,把盐和胡椒粉倒入了水中,只见,一下子,胡椒粉立马分在了上面,盐一下子也被分到了下面。做完这个,老实说;“这个虽然是一个好办法,但是勺子和白纸没有什么作用呢?谁还有什么办法?”没人举手,王老师只好自己做,她把胡椒粉和盐倒在了白纸上,再把胡椒粉和盐搅拌了,拿出了勺子在手臂上擦了一会,再在粉上面擦了几下,胡椒粉就吸上来了。昨晚,王老师说:“这就是摩擦产生出的科学原理。”   这真是一个有趣的实验啊! 有趣的实验作文9   今天,我和姐姐做了一个有趣的实验。   我先准备好一条皮筋,一个杯子,一杯水,一块纱布和一张卡纸。首先,我往杯子里倒满水,然后用皮筋把纱布固定在杯口上。最后,把卡纸放在杯子上,用手掌压住杯口快速翻转,当我小心翼翼地抽开卡纸的时候,水突然从杯子里流了下来,我失望至极:实验失败了!我仔细检查,原来是皮筋没有固定好杯口,我决定重新做一遍。   这一次,我仔细地检查每一个环节,认认真真地从头做了一遍。功夫不负有心人,我终于成功了。抽掉卡纸,水竟然没有从纱布流下来。   “这是什么原理呢?”我好奇地问姐姐。姐姐耐心地回答:“空气和水都有压力,空气的压力大于水的压力,当杯子装满水后,杯子里的空气少了,外面空气的压力就大于杯中的压力。这样纱布通过外面空气的压力,很轻松地把水托住了。即使纱布上有很多小孔隙,水也不会流出来。”原来是这样,我向姐姐投去了佩服的目光。   生活中有许多有趣的科学知识,只要用心观察,努力学习,我们还会发现更多的科学奥秘。 有趣的实验作文10   星期五的科学课,我们做了放大镜实验。   上课了,我们高高兴兴地回到教室。科学老师神秘的举起手中透明的镜子,说:“这就是放大镜,它的作用可大了,我们可以通过放大镜实验知道它的神奇作用。”接着,老师又讲了实验的具体要求,并说:“这些器材很简单,一张白纸和一个放大镜。我观察放大镜,它一面是凸的,另一面是凹的。   实验开始了。首先,我们按照要求做了第一个实验。我的同桌把纸按住,我把放大镜拿着弄出一个焦点,照在一个地方。一两分钟过去了,纸还是没烧,我的同桌想放弃,我说:“再等一会儿吧。”又过了一会儿,突然,一股烟味扑鼻而来,接着,那个地方有一个烧焦的小洞。   我又拿起放大镜四处看看,啊,景物近了而且模糊了。原来,放大镜还能放大物体。我把这一情况汇报给了老师。   实验引起了我的兴趣,我暗暗地想,今后每次实验,我都要认真做,要多做探究,去发现大自然的奥秘。 有趣的实验作文11   一天,爸爸妈妈都不在家,我呆着没事干,就找来了《开发儿童智力的.科学游戏》,准备按照书上的介绍做一个实验。我把书大致看了一下,觉得《鸡蛋会游泳吗?》这个实验很有趣,就按书上写的找来了鸡蛋、筷子、杯子、盐等实验工具,准备开工啦。   我先在杯子里装了半杯水,然后把鸡蛋放在杯子里,再用小勺子把盐舀进去,最后就是拿筷子不停的搅拌。按照书上说得,鸡蛋一会儿就会浮起来。我等啊等,十分钟过去了,二十分钟过去了可鸡蛋纹丝不动,我想是不是盐太少了,于是我继续加盐,直到一瓶子盐快被我加完了。又是漫长的等待,可鸡蛋还是一动不动,我有点泄气了,(大家可别以为我是半途而废,因为再加盐的话妈妈回来一定会数落我的。)只好随手把纸杯放在厨房。   几天后,我帮妈妈做家务,发现我前两天做实验的纸杯下面有一些白色的颗粒,觉得很奇怪,赶忙跑去问妈妈。妈妈说:“你在纸杯里放啥了?”我只好一五一十的把我做实验的事告诉了妈妈,妈妈于是反问我:“那你猜猜这白色的东西会是什么呢?”我一拍脑袋,哈哈,我放了那么多盐在杯子里,那现在跑出来的肯定是盐啦!妈妈又问我,“那你知道是为什么吗?” 有趣的实验作文12   一天晚上,我做了一个有趣的实验。我先叫爸爸帮我削两个苹果,削好了之后,再拿两个大一点的碗。一个碗放一些水再放一些盐,把苹果泡在里面。另一碗什么也不放,直接把苹果放在里面。做好了这些以后,我在等待半小时后的到来。   一转眼,半小时过去了我一看,啊!奇迹出现了。我发现那个什么也没有放的碗里面的苹果已经变黄了。而那个用盐水泡着的苹果还是那么洁白、干净。“这是为什么呢?”我问爸爸。爸爸说:“因为那个没放盐水的苹果在空气中氧化了,表面变成黄色了。而那个被盐水泡过的苹果变的那么干净漂亮。这是因为盐有防腐烂和杀菌的功能。你看,人们经常用盐来阉肉,是因为人们怕肉坏了,很可惜。你现在尝一尝那两个苹果,比较一下有什么不一样。爸爸一说完,我就先拿起那个被盐水泡过的苹果,我吃了一口,嗯!那味道酸酸的、甜甜的,真好吃!我再去吃那个什么也没有放的苹果,我吃了一口,干干的、涩涩的,真难吃。   通过这次实验,我知道了盐还有防腐烂和杀菌功能,盐真是我们人类的好帮手啊! 有趣的实验作文13   暑假期间,我到兰州去玩。   一下火车,妈妈带我去吃了兰州特色小吃牛肉面,真是香。妈妈说要带我参观兰州大学的生物实验室,我期待很久了。吃完饭我就着急让妈妈带我去实验室参观。   实验室在兰州大学的一座高楼上,那里面有许多实验室。妈妈带我参观的是生物实验室。在里面工作的研究人员都穿着医生一样的白大褂。实验室里面摆满了各种容器和仪器,有摇床,高速离心机,电子天平,超低温冷冻箱等等,我以前都没有见过。摇床上摆着各种瓶子,里面有液体,不停的摇摆。离心机一分钟能转几十万次,真是神奇。   实验室的叔叔在一个圆形的盒子里用营养液培育植物,他们告诉我需要提取这些植物的单细胞基因,可以发现很多生物生长变化的奥秘。有一个实验室里全部装满灯,像白天一样,这是给植物进行光合作用。   实验室的叔叔给我讲了很多知识,我还不能都听懂。我要好好学习,长大了也当科学家,探索自然的奥秘。 有趣的实验作文14   今天,第二节课的语文课,是写有趣的实验这篇作文。邓老师拿来两杯水和一个鸡蛋,邓老师说:“都是白开水,它们有什么特别之处。”邓老师问道,同学们都说没有特别之处,然后,邓老师说:“一个鸡蛋放进水里,会不会沉下去?”有一位同学说:“会。”另一位同学又说:“鸡蛋尖的那里放下去,就不会沉,圆的放下去就会。”这为同学说完,邓老师就先把鸡蛋尖的那里先放在水里。   结果,还是沉了下去,然后,邓老师就把鸡蛋圆的那里放在另一杯水里,没想到,居然浮了起来,我们都很惊讶,然后,邓老师吧尖的圆的都放在另一杯水里,都沉了起来,有一些同学说:“鸡蛋肯定是有问题,我们都没检查过。”然后关睿同学忍不住就用手指沾了一滴水,再舔一舔,她说:“咸的。“这是唐家伟同学说的,邓老师说:“知道为什么鸡蛋会浮起来吗?因为半杯盐的重量比一杯水重,所以,放在盐水里的东西就浮起来。”   我们终于知道为什么鸡蛋放在水里会浮起来了,所以,我们要好好学习,发现更多的知识,为祖国献出贡献。 有趣的实验作文15   今天,我在家里做了一个有趣的实验“到没遇到水”这会是一场视觉盛宴,于是做了一次实验。   首先我把水池里装满水,然后小心翼翼地提起钢笔,轻轻的挤了一滴墨。这时候,令我意想不到的事情发生了。到遇到水时,墨就如一颗原子弹射入水中,瞬间爆炸开来,又拧成了一个龙卷风,在旁边一颗颗“陨石”坠入水中。墨水立刻散开。并分为许多层,最里面的一层向外涌去,可惊奇的是,他们之间似乎有一道空气墙,彼此都碰不到彼此,更别提合并了。   接着我又滴了几滴进去,他们直接分散了开来,层层叠叠,密密麻麻,一道接着一道,纵横交错,仿佛一把把黑刃,劈在水面上。然后,黑印飞速变化,变成了一座座山,呼缓呼陡,我轻轻吹了口气,只见这座“山”忽然散开,又忽然合上,整个过程不到两秒。沉在底下的墨一动不动,好像被冻住了,从上面俯视,就像一幅美丽的山水画。   果然当墨遇到水,真是一场视觉盛宴。
2023-06-06 18:05:301

记一次有趣的实验 作文

“今天好快乐,半个小时就写完了作业,真棒! ”我自言自语道。剩下的时间做什么呢? 我该去看看妈妈买来的小金鱼。我快步走到扁圆形的鱼缸前,鱼儿好像欢迎我似的,一上一下地向我游来。其中,狮子头金鱼扬着大脑袋,甩着红白相间的尾巴,好像在炫耀自己的美丽。我突发奇想:鱼在水里为什么会控制平衡? 我观察到鱼儿游动时,不停地摇摆,是不是鱼鳍和鱼尾在起作用?为了验证我的猜想,我做了大胆的实验。我先准备了小剪刀、鱼网、纱布。然后用鱼网捞出了一条喂乌龟的小草鱼,这条鱼儿好像觉察到了危险———拼命挣扎着,我默默地对小鱼说:“小鱼,你别害怕,为了实验成功,你就奉献一次吧! ”我把双面胶粘在我的拇指和食指上,一下把小鱼儿粘住了,我小心翼翼地拿起了剪刀,一下一下地把小鱼儿的鳍剪了下来,剪完后,我就把秃头秃脑的鱼儿轻轻地放进了鱼缸里,起初,小鱼儿挣扎了一会,就沉到水底,过了好一会儿,它也没有再游动。看来,我的猜测是正确的。 我还有点担心,就去查阅了百科全书,上面果真写着:鱼的鳍是让鱼掌握平衡的。鱼的尾巴是掌握方向的。通过这次实验,我觉得经过观察和实验获得知识,是多么有趣呀!
2023-06-06 18:05:078

我做了一项小实验作文

“我做了一项小实验 作文 ”是要写自己做过的一项小实验,必须是亲自做过的实验。那具体怎么写呢?下面我们一起看看这篇《我做了一项小实验作文》。 ↓↓↓点击获取更多关于“三年级”的 文章 ↓↓↓ ★★ 三年 级我做了一项小实验作 文 ★★ ★★ 我做了一项小实验作 文300字 ★★ ★★ 我做了一项小实验作 文 ★★ ★★ 三年 级好词 好段摘抄大全 ★★ ★★ 放风筝看图写话作 文三年 级 ★★ 我做了一项小实验作文1 1604班 邱悦亚 我做过很多小实验,其中我最喜欢的是“杯子电话”。首先准备好两个杯子一根毛线,一把剪刀,接着拿剪刀在两个杯子的底部戳个洞。再把毛线放在洞旁,用剪刀把线戳进去,然后打个结,不一会我的“杯子电话”就大功告成啦!我兴奋地跳起来,大声喊道:“快去试试,快去试试!”我拿着一个杯子放到嘴边,妈妈拿着另一个杯子放在耳边,我说:“妈妈你听的见吗?”妈妈摇摇头。这是为什么呢?妈妈说你试着把线拉直。于是我和她往后退,等线拉直,我大声说:“妈妈你听得见吗?”妈妈把杯子拿下来说:“轻点,我的耳朵都要被震聋啦!”我们开心的笑了起来,笑声在“杯子电话”里互相传递着。 为什么会发出声音呢?妈妈说声音可以通过固体介质传播,也就是说那条线可以传递声音的波动,所以就能实现通话。 这个实验不但好玩儿,还让我们学到了知识,真开心。 我做了一项小实验作文2 今天,我和妈妈在家里做了一个很有趣的实验。 妈妈告诉我:“用放大镜对着中午最火热太阳,放大镜反光到火柴上,,就会点燃这根火柴。”我听了很神奇,就来做一下实验吧! 首先准备放大镜、火柴、接着把放大镜一面对太阳,一面对火柴,我盯着火柴好久好久,可是他没有燃岀火来、我觉得很奇怪,问:“妈妈,为什么没有燃呢?”妈妈说:“别动,坚持住。” 时间一分一秒过去,我的双手都举酸了,火柴还是没有一点动静,我开始有一点怀疑了,是不是假的,我正想要放弃的时候,突然火柴上冒起了一缕清烟,冒烟了、冒烟了,我的心怦怦直叫。火柴的巨光慢慢燃起了一些红色的火花,噗的一声,火柴上的小火变成了大火。燃起来了,烧起来了,成功了,我兴高彩烈的喊着跳着。 我在这个实验中,知道了火柴可以借助太阳燃起来,只要多做实验,生活中的奥秘就会被我解开,这个实验真让我大开眼界啊! 我做了一项小实验作文3 今天我在语文作文课上跟着老师学做了一个小实验,实验的名字是静电的吸附原理。 老师说做这样的实验,首先要准备碎纸片、尺子和干布等材料。 但是我找来找去,也没有找到碎纸片,我拿起用完的练习本,捡了一张纸,用剪刀把纸剪碎。碎纸有了,还有尺子,很容易就找到了,干布也不费吹灰之力找到了。实验开始了,我学着老师的样子用干布包住尺子不断摩擦,然后快速放到碎纸片附近上,发现尺子把碎纸片吸起来了。我很激动。疑惑不解的问妈妈,这是怎么回事?妈妈回答说:“干布和尺子摩擦会产生静电,碎纸没有电,所以说,尺子子就会把碎纸片吸起来了。”听了妈妈的话,我又去网上查了查,原来这是静电的吸附原理。 我真的非常喜欢做实验,通过实验不但明白了其中的道理,还给我带来许多乐趣。 老师简评:小作者把实验所需要的材料以及实验的经过写的清楚明白,而且通过试验还让自己有了很大收获。 我做了一项小实验作文4 我从一本书上看到“水不一定会从孔里流出来”,大家是不是有点疑惑?确实,我也是这样。所以我做了这个实验。 实验的名字叫做“有孔你也出不来”。实验需要准备几个不一样的矿泉水瓶,一根钢针,一个脸盆,还有必不可少的水。 接下来我们就来做实验啦,我真的特别兴奋!首先我们要拿出一个矿泉水瓶,用钢针在它靠近底部的地方戳一个小孔,可能会有点困难,注意不要戳到手,可以向爸爸妈妈求助。其次用手指把小孔堵住,往瓶子里灌满水,拧紧瓶盖,如果一只手堵着孔,可以和别人一起合作完成哦!接着我们把脸盆垫在下面,堵着孔的手慢慢挪开,不要挤压和晃动矿泉水瓶。我非常惊讶,因为水居然真的没有从孔里流出来!我产生了疑惑:如果我把瓶盖打开,会是怎样的呢?水会从孔里流出来吗?于是,我就充满了好奇,期待,打开瓶盖,惊喜地发现:水从孔里流出来了!但是它怎么越流越慢了呢? 法布尔说过,在对某个事物说“是”以前,我要反复实验,没有任何怀疑。所以我又把瓶盖盖上,又把瓶盖打开,结果都跟以前一样。我又换了好几个不同的瓶子,结果还是一样。通过这样的实验我可以郑重地向你宣布:“是!” 为什么会这样呢?原来,瓶盖拧紧后,空气不流通,气压没法挤进瓶子,所以水就不会从孔里流出来;瓶盖打开后,空气就能挤进瓶子,所以水就从孔里流出来了。那为什么水会越流越慢呢?原来是随着水位的下降,压力变小的原因。 这个实验改变了我的看法,让我学到了知识,而且还很有趣,我喜欢这个实验! 我做了一项小实验作文5 1604班 于新晢 下午放学后,我听到有在人在说“你见过惠出汗的鸡蛋吗”?回到家后,这个问题一直在我脑海里荤绕不散,何不做个实验看看呢? 说干就干!我先从厨房找来一个新鲜的鸡蛋和一个注射器,接着用注射在鸡蛋上钻一个小洞,然后把鸡蛋里的:蛋白、蛋黄都用注射器抽走,再找来墨汁注射到鸡蛋里,最后用注射器往鸡蛋里面注射空气,就大功告成了,你会发现,鸡蛋周围冒出了许多一滴滴的墨汁,就像出汗一样。 这是为什么呢?原来,小鸡在蛋里面业需要空气,鸡蛋的表面一共有7000个左右的小洞,经过空气的挤压,墨汁就从小洞里“跑”出来了。 看,通过这项小实验,我知到了鸡蛋“出汗”的秘密,生活中要多多观察,揭开更多的秘密。 我做了一项小实验作文相关文章: ★ 我做了一项小实验优秀小学作文10篇 ★ 我做了一项小实验小学作文 ★ 我做了一项小实验优秀小学作文10篇(2) ★ 我做了一项小实验优秀小学作文10篇(3) ★ 做一个小实验的作文一年级精选 ★ 记一次小实验优秀作文500字 ★ 一次小实验小学三年级作文500字 ★ 小学生四年级记一次小实验作文500字 ★ 一次有趣的实验作文200字:漂浮的鸡蛋 ★ 记一次有趣的实验作文精选5篇
2023-06-06 18:04:581