向量点积|a||b|是什么意思?
比如说一个向量ai+bj+ck,另一个向量di+ej+fk,则它们的点乘积为ad+be+cf此后故乡只2023-05-24 18:37:211
向量点积(Dot Product),向量叉积(Cross Product)
参考的是《游戏和图形学的3D数学入门教程》,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细。 向量点积的结果有什么意义?事实上,向量的点积结果跟两个向量之间的角度有关。 两个向量a,b,它们的叉积表示为axb,这个很容易跟数学中两个数字之间的相乘,但是这里是完全不同的。 两个向量叉积在图形坐标中就很直观了,axb同时垂直与a和b。 我们很容易验证axb是否同时垂直a和b向量。根据向量乘积的知识,我们只需要计算下axb分别和a,b向量的乘积是否等于0。根据下面的计算确实等于0,这也可以用来验证我们平时向量叉积是否正确的方法。 文章源地址: http://www.waitingfy.com/?p=320Ntou1232023-05-24 18:37:201
三维向量点积为0说明什么?
向量点积为0,说明向量互相垂直。mlhxueli 2023-05-15 13:52:511
向量点积
点积没什么神秘。就是数量积得意思。先看他的定义,两个向量的数量积等于他们的模之积在乘以他们夹角的余弦值。你的书上也一定有这样的说法。 其实数学是科学的语言,他和语文有同样的功能。这样就不难理解为什么会冒出这么个东西,数量积得提出是为了浅显的说明世间存在的符合向量的那些东西。比如说力,他是向量,他的做功符合向量的数量积。其他还有好多好多。 很简单,也很有用,不过可能你现在用不到,用到的时候就知道为什么会有点积让大家学习。wpBeta2023-05-15 13:52:511
两向量点积大于零的几何意义是?
这两向量的夹角为锐角康康map2023-05-15 13:52:512
向量点积计算出来的是什么?
向量a点向量b=实数,物理意义就是a向量的模和b向量在a向量方向上投影的积,a.b=│a│*投影=│a│*(│b│*cos<a,b>.水元素sl2023-05-15 13:52:501
向量点积和叉积(向量积)
向量点乘:(内积) 点乘(Dot Product) 的结果是 点积 ,又称 数量积 或 标量积 (Scalar Product)。 在空间中有两个向量: , , 与 之间夹角为 。 从代数角度看,点积是对两个向量对应位置上的值相乘再相加的操作,其结果即为点积。 从几何角度看,点积是两个向量的长度与它们夹角余弦的积。 几何意义: 点乘的结果表示 在 方向上的 投影 与 的乘积,反映了两个向量的相似度,结果越大越相似。基于结果可以判断这两个向量是否是同一方向,是否正交垂直,具体对应关系为: 则方向基本相同,夹角在0°到90°之间 则正交,相互垂直 则方向基本相反,夹角在90°到180°之间 点乘代数定义推导几何定义:(常用来求向量夹角) 设 终点为 , 的终点为 ,原点为 ,则 在 中,由 余弦定理 得: 使用距离公式进行处理,可得: 去括号后合并,可得: 根据上面的工式可计算 与 之间的夹角: 向量叉乘:(外积) 叉乘(Cross Product) 又称 向量积 (Vector Product)。 在空间中有两个向量: , , 与 之间夹角为 。 从代数角度计算: 从几何角度计算:( 为 与 所构成平面的单位向量) 其运算结果是一个向量,并且与这两个向量都 垂直 ,是这两个向量所在平面的 法线向量 。使用右手定则确定其方向。 几何意义: 如果以向量 和 为边构成一个平行四边形,那么这两个向量外积的模长与这个平行四边形的面积相等。NerveM 2023-05-15 13:52:501
向量点积的结果是个什么值呢?
如下:a向量点积b向量,结果是个数,等于abcos<a,b>,<a,b>是a向量与b向量的夹角。a向量叉积b向量,结果是个向量,模等于absin<a,b>,方向与a向量和b向量所在平面垂直,并且遵守右手法则,a握向b,拇指方向就是叉积向量方向。点积的值:u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。两个单位向量的点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物体离光照的轴线越近,光照越强。kikcik2023-05-15 13:52:501
向量点积几何意义是什么?
向量乘积分为点乘和叉乘点乘的物理意义表示已知向量a和向量b,它们的点积a•b=︱a︱︱b︱cosθ,其中θ是a,b的夹角。在物理里,点积用来表示力所作的功。当力F与质点的位移S有夹角θ时,力F所作的功W=︱F︱︱S︱cosθ=F•S,功是数量,故点积又称数量积,无向积等(无几何意义)无尘剑 2023-05-15 13:52:501
向量点积的问题
原题确实是这样吗?苏州马小云2023-05-15 13:52:502
向量叉乘和向量点积有什么区别?
向量叉乘不符合交换律(b×a方向朝下),符合结合律,分配律。向量点乘符合交换律,结合律,分配律。点乘经常用在:计算两向量的夹角;计算一个向量在另一个向量上的投影;通过夹角大小,判断两向量朝向的相似度(方向相近/相反/垂直等)。向量的叉乘会得到一个新的向量,该向量垂直于ab所在平面,符合右手螺旋定则,四根手指从a到b,a×b和大拇指同向。应用在生产生活中,点积应用广泛。利用点积可判断一个多边形是否面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。物理中,点积可以用来计算合力和功。若b为单位矢量,则点积即为a在方向b的投影,即给出了力在这个方向上的分解。功即是力和位移的点积。计算机图形学常用来进行方向性判断,如两矢量点积大于0,则它们的方向朝向相近;如果小于0,则方向相反。矢量内积是人工智能领域中的神经网络技术的数学基础之一,此方法还被用于动画渲染。西柚不是西游2023-05-14 17:28:271